
Functionality in Neurd Nets*

L.G. Valiant
Aiken Computation Laboratory

Harvard University
Cambridge, MA 02138

Abstract

We investigate the functional capabilities of
sparse networks of computing elements in accu-
mulating knowledge through successive learning
experiences . As experiences, we consider various
combinations of episodic and concept learning,
in supervised or unsupervised mode, of conjunc-
tions and of disjunctions. For these we exhibit
algorithms for learning in well defined senses.
Each concept or episode is expressible in terms
of concepts or episodes already known, and is
thus learned hierarchically, without disturbing
previous knowledge. Minimal assumptions are
made about the computing elements, which are
assumed to be classical threshold elements with
states. Also we adhere to severe resource con-
straints. Each new concept or episode requires
storage linear in the relevant parameters, and
the algorithms take very few steps. We hypoth-
esise that in our context functionality is limited
more by the communication bottlenecks in the
networks than by the computing capabilities of
the elements and hence that this approach may
prove useful in understanding biological systems
even in the absence of accurate neurophysiologi-
cal models.

I. ntroductisn
Knowledge acquisition by learning is a cognitive phe-
nomenon that has proved difficult both to define and to
reproduce computationally. The fact that the biological
systems that manifest this phenomenon are composed of
neurons that are both slow and sparsely connected com-
pounds the mystery. Fortunately these computational con-
straints are so severe and rule out so many computational
mechanisms, that it is quite possible that consideration of
them will yield incisive clues into the basic functions un-
derlying learning. In this paper we pursue just this line
of enquiry with particular reference to learning discrete
knowledge.

The proposed approach is the following. We describe a
model of a neuron that is essentially the threshold element
of McCulloch and Pitts [1943] but with additional states
and adaptive capability. The intention of the model is to

*Part of this work was done while the author was visiting Ox-
ford University. Support from the SERC and from grants NSF-
DCR-86-00379, ONR-N00014-85-K-0445 and DAAL03-86-K-
0171 is gratefully acknowledged

have it simple enough that there be little question of it be-
ing too powerful for biological plausibility. We then study
the basic learning functions that can be implemented on
networks of such neuroids. Each function implements an
interaction, the response to a single experience of commu-
nication with the outside world. To maintain plausibility
we restrict ourselves to interactions that are constrained
in three ways: (i) Since biological neurons appear to have
response times not much less than lo-’ seconds, the ba-
sic algorithms have execution times no more than about
ten neural updates. (ii) Each algorithm is a sequence of
a few steps each of which is asynchronous in that its out-
come does not depend on the order of execution of the
neuroids. (iii) Since the number of neurons in the human
brain is modest, conventionally estimated at about lOlo,
we restrict ourselves to algorithms that use storage eco-
nomically.

We conjecture that the learning capabilities under the
above resource disciplines of models such as ours upper
bound those of corresponding biological systems. This is
based on the hypothesis that if substantial long distance as-
sociations are to be realised in a sparse network with a very
low bit rate in the connections, then the capabilities of the
network are governed more by the communication limita-
tions than by the computing power of individual neuroids.
(This kind of statement may be amenable to mathematical
analysis .)

We consider several modes of learning and show that
they can be supported simultaneously by compatible mech-
anisms. In each case the learning task can be regarded
as that of establishing a circuit in the network for com-
puting a Boolean expression. Each mode of learning can
be defined formally. The intention behind the definitions
is the following. Episodic learning concerns the memo-
rization of a single instance of an input. In contrast con-
cept learning involves several input instances and aims at
deriving a rule that has good inductive behaviour in the
sense of being able to classify further unseen inputs reli-
ably (c.f.paliant, 19841). L earning is supervised if some
classification information about an input is provided by,
say, a teacher. Otherwise it is unsupervised. A special
case of the latter is correlational learning which aims at
identifying statistically correlated groups of attributes. We
shall consider the most basic forms of Boolean expressions,
namely simple conjunctions and disjunctions. It is known
that enriching these slightly in certain directions leads to
computational intractability [Kearns et al., 19871. In all
cases the attributes can be either propositional, or, in a
certain restricted sense, relational.

Also central to our concerns are two aspects of learning
that are apparently severely constrained in neural imple-

Valiant 629

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

mentations but have received little attention. We require
the learning mechanisms to be hierarchical in that an at-
tribute in an expression to be learned may itself be the
value of a previously learned expression. Equally impor-
tant we insist that learning be cumulative. The learning of
a new expression should not interfere with existing circuits.

Each learning experience potentially involves all the in-
formation in memory, in the sense that a new input may
relate to any previously learned knowledge. For this reason
we regard learning tasks (as well as memory references) as
being among the most resource intensive cognitive tasks ,
and hence the most appropriate for our approach. In con-
trast, low level vision, for example, operates on less infor-
mation, the image on a retina. We therefore envisage the
overall learning system as being composed of a separate
neural tubulu rusu (NTR) which is the main instrument
of memory and learning, together with several peripherals
that realise communication with the outside world. The
NTR is a mathematically simple network of neuroids or
nodes with essentially no pre-programmed knowledge ex-
cept for some pre-randomization. Some of the nodes can
be controlled directly by the peripherals and are thus given
real-world meanings by them (e.g. they may fire if the in-
put has certain attributes of colour, shape, etc.)

To show our positive results we use some general mech-
anisms that support the several learning modes. We as-
sume that each node of an N node network has a little un-
der JN bi-directed connections. Since in real neurons the
number of dendrites has been estimated as up to 4 x lo4
this degree assumption is not unreasonable for a unit of
a lOlo node system. We assume connectivity properties
that are possessed by most graphs (i.e. random graphs),
and also by some well-studied easily constructed families
of them. The representation of concepts we use is local
(cf. [Feldman, 19821, [Feldman and Ballard, 1982]), essen-
tially corresponding to ‘grandmother cells’, with redun-
dancy ensured by replication. To implement relations we
assume the existence of a relator peripheral (RP) which can
identify some pre-programmed relations, and distributes in
time the flow of this information into the NTR to break
symmetries (e.g. distinguish ‘Z above y ‘from ‘y above z
‘>*

We emphasize strongly that while we claim that our ap-
proach is a valid one for understanding the functionality of
a biological system being modelled, no claim is being made
about the particular algorithms or mechanisms we use. In-
deed, once one way of realizing a functionality has been
discovered, numerous others may exist also. An immedi-
ate question that presents itself is whether the functions
realized by our mechanisms can be achieved also if the rep-
resentation used is distributed or holographic (e.g. [Hop-
field, 1982; Ackley et al., 1985; Rumelhart et al., 19861).

2 The Model and Some
Mechanisms

The NTR is modelled as a sparse network of identical neu-
roids or nodes and can be described formally as a sex-
tuple (G, W, C, I, X, S). H ere G is a directed graph with
nodes V = {1,2...,N} and edges E C V x V. Each edge
(i, j) E E has weight waj E W, where W is a set of real
numbers. A description of the instantaneous condition of

neuroid i E V consists of specifications of the weights of
all the edges directed into i (the dendrites) together with
the specification of the state triple s E C. C is a sub-
set ofQxTx{F,F} h w ere Q is a set of states, _T is a
set of real number thresholds, and the choice of {F, F} de-
notes whether the node is firing. The transition function
S defines how the state triple is updated and the learning
function)r describes how the weights are updated. For-
mally, if sj is the state triple of node j and the value of fj
denotes whether it is firing, then

sj :~iy(, C{waj 1 i is firing }), and
Wij Sj twij, fi)
The intention of the definition is to restrict communica-

tion between nodes entirely to firings. A firing of a node
can effect directly the weight of any edge incident to it.
The firing of neighbours can effect the state triple of a
node only via the value of the sum of the weights of the
edges coming from them. If Tj is the threshold of j then 6
is assumed to be such that j certainly fires if:

C{wdj 1 i is firing} 2 Tj.
Nodes may be forced to fire, independently of this, by

peripherals.
The initial condition of the network is described by I.

We assume that it contains no substantial programmed
information, except possibly for some pre-randomization.
For example, while we discuss five different kinds of neu-
roids they can be regarded as all of the same kind, but
with random initialization into distinct states that control
their subsequent history.

The updating of each neuron is regarded as atomic: for
neuron j the value of the state triple sj and the weights of
the incoming edges wij are all computed instantaneously
by the functions S and A from the previous values of them
as well as from the firing states fi of the neighbouring
nodes at that instant.

The NTR has no global clock. We assume, however, a
basic time unit called a cycle. Each neuroid updates itself
at most once in each cycle. Our algorithms consist of a
sequence of steps. In each step the peripherals force a set
of neuroids to fire simultaneously, and this may cause a
cascade of other firings in the NTR. We assume that the
algorithms and total state of the NTR are such that all
such cascades terminate in a condition that is stable, where
no more neuroids can fire, and that stability is reached
before a cycle has elapsed. If a node fires in state F it
continues to do so until stability is reached. If a node
is in the persistent firing state F* then it will continue
to fire until stability is reached in the following step also.
In each step we restrict ourselves to algorithms that are
asynchronous, in the sense that the order in which the
neuroids update themselves is immaterial to the outcome.

An interaction corresponds to a new input from the
outside world. The peripheral processes the input and
presents it to the NTR as a sequence of steps in time. For
each step enough time is allowed for the spread of activa-
tion of the firings to reach stability before the next step.
Except for firings, all other state and weight information
persists between successive steps and interactions.

There is no notion of node address. All storage allo-
cation and communication is achieved implicitly using cer-
tain connectivity properties of the graph. The graph repre-
senting the connections consists of N nodes each connected

630 Learning and Knowledge Acquisition

by edges in both directions to about dN other nodes. The
weights of such a pair of bi-directed edges need not be re-
lated.

The connectivity property we need is, in its simplest
form, the following: For any two nodes i and j there
should be a third node adjacent to both of them. This kind
of property is used both for allocating previously unused
storage as well as for establishing communication between
pairs of used function nodes.

Graphs having such degree and such connectivity prop-
erties can be constructed, related as they are to finite pro-
jective planes [Hall, 19861. More relevant here is the fact
that “most” graphs of this degree approximate these prop-
erties. This adds to evolutionary plausibility. We shall
take this latter approach here and treat the graphs as ran-
dom.

In fact we need slight variants of the above property.
For fault tolerance we hypothesize that there are about
c nodes representing each concept where c is a moderate
constant (e.g. c = IO). This degree of replication has to be
preserved when new nodes are allocated. Degree J(N/c)
suffices for this.

The above description of our model can be completed
to a complexity-theoretic model parametrized by N, the
number of nodes, by imposing appropriate quantitative re-
strictions on Q, W, 6 and A. Insisting that IQ] be a constant
independent of N seems natural. The main question is how
to deal with the numerical weights. It appears generous to
allow these O(log N) bits in some agreed representation.
This would imply that S and A have circuit complexity
polynomial in N, even if no other restrictions are placed on
them. In fact the S and A actually used in our algorithms
are very restricted. All Boolean tests on numerical values
are thresholds and all numerical functions are monotonic
and continuous.

3 esdts
For each learning task we need to describe an algorithm for
achieving it. The algorithms need to be such that they do
not interfere with each other, even if, for example, several
concepts are being learned simultaneously from examples
interleaved in time. Also there need to be mechanisms for
supporting hierarchical learning.

In this section we shall outline an implementation in-
formally in as much detail as space allows. For simplic-
ity we omit some simple mechanisms that would make
the algorithms more fault tolerant. First we describe the
state set Q. Each node starts in a state that pre-destines
its purpose. Most basically a node is either a relay (R)
node or a function node. The latter splits into the vari-
ous categories of supervised learning that are supported, in
our case episodic (E), conjunctive concepts (C), disjunc-
tive concepts (D) as well as the correlational (L) category.
Each non-correlational node is initially available (A) but
once it has been designated a purpose it becomes busy
(B). A function node that is available first becomes busy
in unsupervised (V) mode (i.e. when allocated) and can
subsequently remain busy in supervised (S) mode, (but
transitions in the reverse direction are not allowed). Thus
in the notation of regular languages we denote a state by
a word from {A,B}R U {A, U, S}{E, C, D} U L. In the

descriptions of the algorithms we use further states that
exist only during the execution of single interactions, and
do not persist _after their completion. We append a de-
scription with F if it is not firing, and F or F* if it is. By
omitting a letter from a state description we denote the set
of states in which the conditions denoted by the remain-
ing letters hold. Also we identify a state description at
any instant with the set of neuroids having corresponding
states. For example SEF signifies the set of all episodic
nodes currently in supervised mode and firing.

The algorithms could be expressed formally by specify-
ing the update functions S and A. For the sake of clarity we
describe each step of each algorithm as a set of conditional
rules {. . .} * . . . that we expect the relevant neurons to be
executing at that step. Here {. . .} describes the conditions
required for the update described. We note that F and F*
are both firing states indistinguishable by 6 and A. Hence
in the conditions we will abbreviate “F or F*” by “F”.

As initial conditions we choose the available relay and
function nodes to have threshold 2 and the correlation
nodes threshold 3/2. Also any edge directed away from
an available relay node has weight 0. The nodes controlled
directly by peripherals are initialized as function nodes,
and all edges directed away from these and other function
nodes have weight 1 initially. The nodes are distributed
randomly in appropriate proportions among the function-
alities {E,C, D, L, R)

To describe each algorithm we describe (a) the trigger-
ing set of nodes that the peripherals cause to fire dur-
ing the interaction, (b) the desired consequence (i.e. the
functionality of the new circuit established), (c) the side-
eflects (non-interference with other circuits, and resource
bounds), and (d) th e algorithm itself which acts on each
neuroid locally. For brevity we shall not detail (c) here.

3.1 Supervised Episodic Conjunctions
In supervised learning the task is to set up a circuit that
makes a chosen target node i fire whenever a certain func-
tion of a set J of function nodes is satisfied. Learning is
episodic if it uses just one instance or example, and con-
sists of memorizing the conjunction of attributes that are
true for that example. The procedure is as follows:

Triggering Set: J U {i} where i E UE
Desired Consequence: At future interactions i E SE and

whenever J c F, i E F also.
Algorithm:

Step 1 : Triggered set is J U {i}.
{k E ARF} + k E Al$F*.
{1EUEF,kEF,jEF}~w~~:=l,wj~:=O,

I E UEIF*.
Step 2 : Triggered set is {i}

{k E ARlF, C{wj/c 1 j E F} > 1y.i E F}
+ k E ARzF*,wjk := 0.

{I E UElF} + 1 E UEzF*.
Step 3 : Triggered set is J_ U {i}.

{k E AR2+ E F} 3 wsk := 0, k E BR,TI, := 1.
{k E ARIF} a k E AR.
(1 E UEzF} a 3 := ~{WLI 1 k E F},l E SE.

Side effects: The state triples of only 0(] JI) nodes are
affected. The weights of edges not adjacent to these are
not affected.

Valiant 63 1

The idea behind the algorithm is the following. Since
initially all available relay nodes (AR) have threshold two,
and the edges to them from function nodes have weight
one, the relay nodes Ic that fire in step 1 are those adjacent
to at least two of {i} U J. For those of these that are
adjacent to i, the weight wki will be changed from zero
to one. Via the use of persistent firings it is ensured that
node i will enter step 3 in state U&F, where its threshold
will be updated to the sum of the weights of the incoming
edges from nodes that are firing. Meanwhile in step 2 the
triggered set is reduced to the singleton i and among the
relay nodes still firing those will be selected to go into
state AR2 that are adjacent to i. (The remainder, those
connected only to J, will cease firing in step 2 and revert
to state AR in step 3.) In steps 2 and 3 the nodes in state
A& will update themselves correctly in order to achieve
the desired consequence.

To complete a proof of validity we have to show that in
the graph chosen there will be at least one distinct path of
length two via a relay node from each j E J to i.

3.2 Supervised Conjunctive Concepts
Learning concepts inductively takes place over a number of
interactions, each one involving the presentation of an ex-
ample. We implement the simple elimination algorithm for
learning conjunctions from positive examples alone, that is
shown to have convergent inductive properties in [Valiant,
19841. The following describes the interaction in which the
rtrn example is presented and has attributes corresponding
to the set J,. of nodes.

Triggering Set: J,. U {i) where i E UC for r = 1 and
iESCfor r> 1.

Desired Consequence: After s interactions whenever
n{J,.] 1 5 T 5 s} C F then i E F.
Algorithm: T = 1 istreated exactly as episodic conjunc-

tions except that in step 3 i gets state SC.
For r > 2:

In other words the first example is treated as an episodic
conjunction. Any attribute in it that fails to appear in a
subsequent positive example is eliminated.

3.3 Supervised Disjunctive Concepts
Disjunctions cannot be learned from positive examples
alone (see [Kearns ei al., 19871) but in principle they can be
learned from negative examples alone [Valiant, 19851. In
the current context we shall indicate the positivity of the
example being presented in an interaction by causing the
target node i to fire. Negativity is indicated by the absence
of firing. This formulation has the advantage that learn-
ing from negative examples can take place as background
activity for numerous concepts simultaneously. To keep a
lid on the resources needed, however, it is advantageous to
have positive examples also.

The simple solution we describe has to see the positive
examples first in order to obtain the universe of possible
disjuncts. The algorithm first forms the disjunction of all
the attributes occurring in them. It then goes on to see
negative examples. By a simple elimination algorithm, va-
rieties of which are analysed in [Valiant, 19851, it deletes
all attributes that occur in any negative example.

To construct the initial disjunction we use a variation
on the algorithm for episodic conjunctions. This constructs
essentially the same circuit as there except that the thresh-
old of node i is unity and its state is SD. In the second
phase when the rth negative example is seen (i.e. nodes J,.
fire but i E SD does not), the elimination rule is

{ZESD~,~E F}=mka :=0

The algorithm can be adapted so that if it sees a posi-
tive example following some negative ones and the circuit
fails to recognise it as positive then it appends the new
attributes to the disjunction.

3.4 Perceptron Algorithms
Learning algorithms for linear discriminant functions that
are in the classical perceptron style [Rosenblatt, 19581,
[Minsky and Papert, 19691, [Littlestone, 19871 can be im-
plemented in the same manner as the above elimination al-
gorithm for disjunctions. In neuroidal implementations it
is important, however, that the algorithms be se/f-checking.
In other words if the examples of the concept are incon-
sistent with the assumed concept class then the algorithm
should discover this. Elimination algorithms do this sim-
ply by eliminating all possibilities and hence producing
null circuits. Perceptron algorithms of the classical variety
appear to need additional mechanisms. One possibility is
to do mistake counting [Littlestone, 19871.

3.5 Unsupervised Episodic Learning
In unsupervised learning there is no indication given to the
learning system as to the label to be attached to a new item
learned. In our framework we identify unsupervised learn-
ing with tasks where a new available function node has to
be allocated to realise the output of the newly created cir-
cut. We consider episodic and corre&ional learning in un-
supervised mode. The former corresponds to memorizing
a new combination of previously learned attributes, given
one instance of it (e.g. memorizing a new word). The latter
is concerned with spotting combinations of attributes that
occur in statistical correlation with each other. Episodic
unsupervised learning can be used to allocate storage in
preparation for supervised learning. Hence the progres-
sion A + U ---f S in the states. Correlational learning can
be used to learn conjunctions that are to be the constituent
monomials for subsequent supervised learning of disjunc-
tions (so as to realise limited learning of disjunctive normal
form). We shall consider only the case of learning conjunc-
tions of length two, since longer ones can be made up from
a sequence of these, time-stepped by the peripherals.

The allocation of new storage is effected by similar prin-
ciples to the ones used for finding relay nodes in supervised
learning. For any pair of function nodes i, j let Ai and Aj
be the sets of about c nodes that are functionally equivalent
to i and j respectively. We need that for all i, j there exist
about c nodes that are connected to both something in Ai
and something in Aj. For this a random graph (now re-
stricted just to the function nodes) of degree about m
suffices. The basic algorithm is as follows:

Triggering Set: (i, j}
Desired Consequence: For some previously available

episodic function node k to construct circuit such that sub-
sequently i, j E F 3 k E F.

632 Learning and Knowledge Acquisition

Algorithm:
Triggered Set: {i,j}
Step: {k E AEF, 1 E F) 3 k E UE, z&k := 0.

The idea of the algorithm is that since the threshold of
k is two, it will be fired only if it is connected to both i
and j.

Mechanisms are also needed for arresting unintended
cascades of memory allocations. It is necessary and possi-
ble, for example, to ensure that a newly allocated neuroid
does not immediately cause further allocations, unless ex-
plicitly requested by the peripherals.

3.6 Correlational Learning
Next we describe how correlations are detected. In gen-
eral the question of detecting correlated pairs is computa-
tionally problematic even for sequential models. This can
be seen by considering what we have called the light-bulb
problem: There are n synchronized sources (bulbs). Each
one is on (off) during each time interval with probability
p ((1 - p) respectively) independent of previous intervals.
Also one pair of bulbs is correlated (e.g. the probabil-
ity that they are both on in any one interval is Q >> p2)
while all other pairs are pairwise independent. The prob-
lem is to detect the correlated pair. If p = l/2 then after
O(Iogn) intervals, the n sequences of bits for the n sources
will contain sufficient information, the pair having minimal
Hamming distance corresponding to the desired pair. The
computational problem is to discover this pair efficiently.
The first sequential algorithm achieving this in less than n2
steps is due to Paturi [1988], and requires na steps where
o is a constant (1 < Q < 2) depending on the correlation.
It remains an open problem whether this bound can be
improved to near linear.

For a plausible neural implementation we need more
stringent requirements. Perhaps surprisingly, these can be
satisfied in the case when p is small (- l/N) which is just
the case of most practical interest. For in any interaction
we expect just a minute fraction of the episodes or concepts
in memory to be relevant.

The basic algorithm for learning pairwise correlations is
taken from [Valiant, 19851 and is of the Hebb variety [Hebb,
19491. The rules that update the correlation neruoids are
the following

(k E LF,i E F) 3 t&k := (T(?.!&)
{k E LF, i E F} j ?.&k := asl(wik)
Here u is an increasing function such that of (1) + 5/4

and a-‘(1) + 0 as r + 00, both processes taking place
in suitably small steps. The idea of the algorithm is that
k E L will fire only if at least two of its inputs fire. Only
those edges ‘f&k will be reinforced often enough that do
correspond to elements of correlated pairs. Network con-
nectivity properties are used to ensure that for any corre-
lated pair, there will be a correlation neuroid adjacent to
both.

The learning of large numbers of correlated pairs can be
shown to be supportable as a background activitiy simul-
taneously with other processes.

3.7 Relators
We think of the firing of a function node as indicating, in
the first instance, the truth of a proposition regarding the
input examined by the peripherals. In order to be able

to express relational information about the input we will
need to designate some of the function nodes controlled
by the peripherals as indicative of relations. We shall use
a restricted notion of a relation that we call a relator. If
z,y are propositional variables and R a relator then the
statement zRy denotes that in the input examined by the
peripherals there are objects X, Y satisfying x and y re-
spectively that are in relationship R.

We assume that there is a reIator peripheral (RP) con-
taining a fixed set of pre-programmed relators that it is
capable of interpreting. For each binary relation R it con-
trols two nodes (or sets of nodes) in NTR called J?(l) and
J2c2) to correspond to the two arguments. If a conjunc-
tion of relations (~rRiyi)(x2Rzy2). . . (x,.Rgr) is detected
by the RP in any mode of learning or recognition, the RP
breaks this into 2r steps for presentation to the NTR. For
1 5 s 5 r at step 2s - 1 x, and R$l) fire, while at step 2s ys
and Ri2) fire. Thus timing is used to resolve the symmetry
between each pair (x~, ?/s), and also the symmetries among
the relations.

Learning Boolean expressions that contain relators can
be done in the following way. First each pair (x, Rci)) is
learned in unsupervised episodic mode at a different step.
Finally the UE nodes so created are used as if they were
propositional, to learn the expression in some standard
way.

While relators cannot express identity among objects
explicitly, this can be simulated using certain special addi-
tional relators or propositional predicates. For example the
unary uniqueness relator R, where Rx denotes that there is
only one object satisfying 2, is clearly useful. In a sense we
can simulate arbitrary equivalence classes among the ob-
jects if we hypothesize predicates zi where zi denotes “this
is the ith object in the scene” for some ordering imposed
by the peripherals. In that case whenever RP fires x, and
R(,l) (or Rs2) and ys), it also fires the zi corresponding
to the object concerned. The triggering sets then become
triples.

3.8 Learning Hierarchically
In a typical learning situation we have a triggering set
J U {i} where i is the intended output neuroid of a cir-
cuit to be constructed. If learning is hierarchical then the
nodes in the triggering sets may be higher level concepts
not controlled directly by the peripherals. To fire them a
cascade of firings of neuroids corresponding to lower level
concepts would have to be initiated. The unintended fir-
ings may, however, cause unwanted interference. This can
be avoided by introducing a mechanism that detects the
highest level firing in any such cascade.

4 Conclusion
It seems unreasonable to ascribe a complex function to a
computational system unless one has a plausible candidate
for the computational mechanism that might be support-
ing the function. In this paper we have described a neural
model of computation and demonstrated some mechanisms
for realising some very basic functions that appear to be
relevant to cognition. A more complete exposition of these
results will appear in a forthcoming paper [Valiant, 19881.

Valiant 633

It would be desirable clearly to extend the results to
other functions, such as richer learnable classes [Blumer et
al., 1986; Haussler, 1987; Kearns et. al., I987]. Also there
seems to be substantial scope for improving the quality
or robustness of the algorithms given. One issue is re-
silience to errors in the data. Also there are numerous
other questions, which we have not addressed, concerning
the behaviour of the system during long sequences of in-
teractions.

[Valiant, 19841 L. G. Valiant. A theory of the learnable.
CACM, 27 (1984), 1134-1142.

[Valiant, 19851 L. 6. Valiant. Learning disjunctions of
conjunctions. Proc. of 9th Int. Joint Conf. on Artifi-
cial Intelligence, (ed A. Joshi), Morgan Kaufmann, Los
Altos, CA (1985), 560-566.

[Valiant, 19881 L. G. Valiant. Functional capabilities of
neural nets. To appear.

References
[Ackley et al., 19851 D. H. Ackley, 6. E. Hinton and T. J.

Sejnowski. A learning algorithm for Boltzmann ma-
chines. Cognitive Science, 9 (1985) 147.

[Blumer et al., 19861 A. Blumer, A. Ehrenfeucht, D. Haus-
sler and M. Warmuth. Classifying learnable geomet-
ric concepts with the Vapnik-Chervonenkis dimension.
Proc. 18th ACM Symp. on Theory of Computing, (1986)
273-282.

[Feldman and Ballard, 19821 J. A. Feldman and D. H. Bal-
lard. Connectionist models and their properties. Cogni-
tive Science, 6 (1982) 205-254.

[Feldman, 19821 J.A. Feldman Dynamic connections in
neural networks. BioZ. Cybern. 46 (1982) 27-39.

[Hall, 19861 M. Hall, Jr. Combinatorial Theory. Wiley,
New York, (2nd edition) 1986.

[Haussler, 19871 D. Haussler Learning Conjunctive Con-
cepts in Structural Domains. Proc. AAAI (1987), Mor-
gan Kaufmann, Los Altos, C.A. 466-470.

[Hebb, 19491 D. 0. Hebb. The Orgunisution of Behuviour.
Wiley, New York, 1949.

[Hopfield, 19821 J. J. Hopfield. Neural networks and
physical systems with emergent computational abilities.
Proc. Nut. Acud. Science, 79 (1982) 2554.

[Kearns et al., 19871 M. Kearns, M. Li, L. Pitt and L. G.
Valiant. Recent results on Boolean concept learning.
Proc. 4th Int. Workshop on Machine Learning, Morgan
Kaufmann, Los Altos, CA (1987) 337-352.

[Littlestone, 19871 N. Littlestone. Learning quickly when
irrelevant attributes abound. In Proc. 28th IEEE Symp.
on Foundations of Computer Science, (1987) 68-77.

[McCulloch and Pitts, 19431 W. S. McCulloch and W. H.
Pitts. A logical calculus of ideas imminent in nervous
activity. BUZZ. of Math. Biophysics, 5 (1943) 115.

[Minsky and Papert, 19691 M. Minsky and S. Papert.
Perceptrons. MIT Press, Cambridge, MA (1969).

[Paturi, 19881 R. Paturi. The light bulb problem. Techni-
cal Report CS88-129, UC San Diego, 1988.

[Rosenblatt, 19581 F. R osenblatt. The perceptron, a prob-
abilistic model of information storage and organization
in the brain. PsychoZogicuZ Review, 62 (1958) 386.

[Rumelhart et al., 19861 D. E. Rumelhart, G. E. Hinton
and R. J. Williams. Learning internal representations
by error propagation. In PuruZZeZ Distributed Processing,
Vol 1, (eds D. E. R umelhart and J. L. McClelland), MIT
Press, Cambridge (1986).

634 Learning and Knowledge Acquisition

