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Abstract 

We investigate the functional capabilities of 
sparse networks of computing elements in accu- 
mulating knowledge through successive learning 
experiences . As experiences, we consider various 
combinations of episodic and concept learning, 
in supervised or unsupervised mode, of conjunc- 
tions and of disjunctions. For these we exhibit 
algorithms for learning in well defined senses. 
Each concept or episode is expressible in terms 
of concepts or episodes already known, and is 
thus learned hierarchically, without disturbing 
previous knowledge. Minimal assumptions are 
made about the computing elements, which are 
assumed to be classical threshold elements with 
states. Also we adhere to severe resource con- 
straints. Each new concept or episode requires 
storage linear in the relevant parameters, and 
the algorithms take very few steps. We hypoth- 
esise that in our context functionality is limited 
more by the communication bottlenecks in the 
networks than by the computing capabilities of 
the elements and hence that this approach may 
prove useful in understanding biological systems 
even in the absence of accurate neurophysiologi- 
cal models. 

I. ntroductisn 
Knowledge acquisition by learning is a cognitive phe- 
nomenon that has proved difficult both to define and to 
reproduce computationally. The fact that the biological 
systems that manifest this phenomenon are composed of 
neurons that are both slow and sparsely connected com- 
pounds the mystery. Fortunately these computational con- 
straints are so severe and rule out so many computational 
mechanisms, that it is quite possible that consideration of 
them will yield incisive clues into the basic functions un- 
derlying learning. In this paper we pursue just this line 
of enquiry with particular reference to learning discrete 
knowledge. 

The proposed approach is the following. We describe a 
model of a neuron that is essentially the threshold element 
of McCulloch and Pitts [1943] but with additional states 
and adaptive capability. The intention of the model is to 
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have it simple enough that there be little question of it be- 
ing too powerful for biological plausibility. We then study 
the basic learning functions that can be implemented on 
networks of such neuroids. Each function implements an 
interaction, the response to a single experience of commu- 
nication with the outside world. To maintain plausibility 
we restrict ourselves to interactions that are constrained 
in three ways: (i) Since biological neurons appear to have 
response times not much less than lo-’ seconds, the ba- 
sic algorithms have execution times no more than about 
ten neural updates. (ii) Each algorithm is a sequence of 
a few steps each of which is asynchronous in that its out- 
come does not depend on the order of execution of the 
neuroids. (iii) Since the number of neurons in the human 
brain is modest, conventionally estimated at about lOlo, 
we restrict ourselves to algorithms that use storage eco- 
nomically. 

We conjecture that the learning capabilities under the 
above resource disciplines of models such as ours upper 
bound those of corresponding biological systems. This is 
based on the hypothesis that if substantial long distance as- 
sociations are to be realised in a sparse network with a very 
low bit rate in the connections, then the capabilities of the 
network are governed more by the communication limita- 
tions than by the computing power of individual neuroids. 
(This kind of statement may be amenable to mathematical 
analysis .) 

We consider several modes of learning and show that 
they can be supported simultaneously by compatible mech- 
anisms. In each case the learning task can be regarded 
as that of establishing a circuit in the network for com- 
puting a Boolean expression. Each mode of learning can 
be defined formally. The intention behind the definitions 
is the following. Episodic learning concerns the memo- 
rization of a single instance of an input. In contrast con- 
cept learning involves several input instances and aims at 
deriving a rule that has good inductive behaviour in the 
sense of being able to classify further unseen inputs reli- 
ably (c.f.paliant, 19841). L earning is supervised if some 
classification information about an input is provided by, 
say, a teacher. Otherwise it is unsupervised. A special 
case of the latter is correlational learning which aims at 
identifying statistically correlated groups of attributes. We 
shall consider the most basic forms of Boolean expressions, 
namely simple conjunctions and disjunctions. It is known 
that enriching these slightly in certain directions leads to 
computational intractability [Kearns et al., 19871. In all 
cases the attributes can be either propositional, or, in a 
certain restricted sense, relational. 

Also central to our concerns are two aspects of learning 
that are apparently severely constrained in neural imple- 

Valiant 629 

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved. 



mentations but have received little attention. We require 
the learning mechanisms to be hierarchical in that an at- 
tribute in an expression to be learned may itself be the 
value of a previously learned expression. Equally impor- 
tant we insist that learning be cumulative. The learning of 
a new expression should not interfere with existing circuits. 

Each learning experience potentially involves all the in- 
formation in memory, in the sense that a new input may 
relate to any previously learned knowledge. For this reason 
we regard learning tasks (as well as memory references) as 
being among the most resource intensive cognitive tasks , 
and hence the most appropriate for our approach. In con- 
trast, low level vision, for example, operates on less infor- 
mation, the image on a retina. We therefore envisage the 
overall learning system as being composed of a separate 
neural tubulu rusu (NTR) which is the main instrument 
of memory and learning, together with several peripherals 
that realise communication with the outside world. The 
NTR is a mathematically simple network of neuroids or 
nodes with essentially no pre-programmed knowledge ex- 
cept for some pre-randomization. Some of the nodes can 
be controlled directly by the peripherals and are thus given 
real-world meanings by them (e.g. they may fire if the in- 
put has certain attributes of colour, shape, etc.) 

To show our positive results we use some general mech- 
anisms that support the several learning modes. We as- 
sume that each node of an N node network has a little un- 
der JN bi-directed connections. Since in real neurons the 
number of dendrites has been estimated as up to 4 x lo4 
this degree assumption is not unreasonable for a unit of 
a lOlo node system. We assume connectivity properties 
that are possessed by most graphs (i.e. random graphs), 
and also by some well-studied easily constructed families 
of them. The representation of concepts we use is local 
(cf. [Feldman, 19821, [Feldman and Ballard, 1982]), essen- 
tially corresponding to ‘grandmother cells’, with redun- 
dancy ensured by replication. To implement relations we 
assume the existence of a relator peripheral (RP) which can 
identify some pre-programmed relations, and distributes in 
time the flow of this information into the NTR to break 
symmetries (e.g. distinguish ‘Z above y ‘from ‘y above z 
‘>* 

We emphasize strongly that while we claim that our ap- 
proach is a valid one for understanding the functionality of 
a biological system being modelled, no claim is being made 
about the particular algorithms or mechanisms we use. In- 
deed, once one way of realizing a functionality has been 
discovered, numerous others may exist also. An immedi- 
ate question that presents itself is whether the functions 
realized by our mechanisms can be achieved also if the rep- 
resentation used is distributed or holographic (e.g. [Hop- 
field, 1982; Ackley et al., 1985; Rumelhart et al., 19861). 

2 The Model and Some 
Mechanisms 

The NTR is modelled as a sparse network of identical neu- 
roids or nodes and can be described formally as a sex- 
tuple (G, W, C, I, X, S). H ere G is a directed graph with 
nodes V = {1,2...,N} and edges E C V x V. Each edge 
(i, j) E E has weight waj E W, where W is a set of real 
numbers. A description of the instantaneous condition of 

neuroid i E V consists of specifications of the weights of 
all the edges directed into i (the dendrites) together with 
the specification of the state triple s E C. C is a sub- 
set ofQxTx{F,F} h w ere Q is a set of states, _T is a 
set of real number thresholds, and the choice of {F, F} de- 
notes whether the node is firing. The transition function 
S defines how the state triple is updated and the learning 
function )r describes how the weights are updated. For- 
mally, if sj is the state triple of node j and the value of fj 
denotes whether it is firing, then 

sj :~iy(, C{waj 1 i is firing }), and 
Wij Sj twij, fi) 
The intention of the definition is to restrict communica- 

tion between nodes entirely to firings. A firing of a node 
can effect directly the weight of any edge incident to it. 
The firing of neighbours can effect the state triple of a 
node only via the value of the sum of the weights of the 
edges coming from them. If Tj is the threshold of j then 6 
is assumed to be such that j certainly fires if: 

C{wdj 1 i is firing} 2 Tj. 
Nodes may be forced to fire, independently of this, by 

peripherals. 
The initial condition of the network is described by I. 

We assume that it contains no substantial programmed 
information, except possibly for some pre-randomization. 
For example, while we discuss five different kinds of neu- 
roids they can be regarded as all of the same kind, but 
with random initialization into distinct states that control 
their subsequent history. 

The updating of each neuron is regarded as atomic: for 
neuron j the value of the state triple sj and the weights of 
the incoming edges wij are all computed instantaneously 
by the functions S and A from the previous values of them 
as well as from the firing states fi of the neighbouring 
nodes at that instant. 

The NTR has no global clock. We assume, however, a 
basic time unit called a cycle. Each neuroid updates itself 
at most once in each cycle. Our algorithms consist of a 
sequence of steps. In each step the peripherals force a set 
of neuroids to fire simultaneously, and this may cause a 
cascade of other firings in the NTR. We assume that the 
algorithms and total state of the NTR are such that all 
such cascades terminate in a condition that is stable, where 
no more neuroids can fire, and that stability is reached 
before a cycle has elapsed. If a node fires in state F it 
continues to do so until stability is reached. If a node 
is in the persistent firing state F* then it will continue 
to fire until stability is reached in the following step also. 
In each step we restrict ourselves to algorithms that are 
asynchronous, in the sense that the order in which the 
neuroids update themselves is immaterial to the outcome. 

An interaction corresponds to a new input from the 
outside world. The peripheral processes the input and 
presents it to the NTR as a sequence of steps in time. For 
each step enough time is allowed for the spread of activa- 
tion of the firings to reach stability before the next step. 
Except for firings, all other state and weight information 
persists between successive steps and interactions. 

There is no notion of node address. All storage allo- 
cation and communication is achieved implicitly using cer- 
tain connectivity properties of the graph. The graph repre- 
senting the connections consists of N nodes each connected 
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by edges in both directions to about dN other nodes. The 
weights of such a pair of bi-directed edges need not be re- 
lated. 

The connectivity property we need is, in its simplest 
form, the following: For any two nodes i and j there 
should be a third node adjacent to both of them. This kind 
of property is used both for allocating previously unused 
storage as well as for establishing communication between 
pairs of used function nodes. 

Graphs having such degree and such connectivity prop- 
erties can be constructed, related as they are to finite pro- 
jective planes [Hall, 19861. More relevant here is the fact 
that “most” graphs of this degree approximate these prop- 
erties. This adds to evolutionary plausibility. We shall 
take this latter approach here and treat the graphs as ran- 
dom. 

In fact we need slight variants of the above property. 
For fault tolerance we hypothesize that there are about 
c nodes representing each concept where c is a moderate 
constant (e.g. c = IO). This degree of replication has to be 
preserved when new nodes are allocated. Degree J(N/c) 
suffices for this. 

The above description of our model can be completed 
to a complexity-theoretic model parametrized by N, the 
number of nodes, by imposing appropriate quantitative re- 
strictions on Q, W, 6 and A. Insisting that IQ] be a constant 
independent of N seems natural. The main question is how 
to deal with the numerical weights. It appears generous to 
allow these O(log N) bits in some agreed representation. 
This would imply that S and A have circuit complexity 
polynomial in N, even if no other restrictions are placed on 
them. In fact the S and A actually used in our algorithms 
are very restricted. All Boolean tests on numerical values 
are thresholds and all numerical functions are monotonic 
and continuous. 

3 esdts 
For each learning task we need to describe an algorithm for 
achieving it. The algorithms need to be such that they do 
not interfere with each other, even if, for example, several 
concepts are being learned simultaneously from examples 
interleaved in time. Also there need to be mechanisms for 
supporting hierarchical learning. 

In this section we shall outline an implementation in- 
formally in as much detail as space allows. For simplic- 
ity we omit some simple mechanisms that would make 
the algorithms more fault tolerant. First we describe the 
state set Q. Each node starts in a state that pre-destines 
its purpose. Most basically a node is either a relay (R) 
node or a function node. The latter splits into the vari- 
ous categories of supervised learning that are supported, in 
our case episodic (E), conjunctive concepts (C), disjunc- 
tive concepts (D) as well as the correlational (L) category. 
Each non-correlational node is initially available (A) but 
once it has been designated a purpose it becomes busy 
(B). A function node that is available first becomes busy 
in unsupervised (V) mode (i.e. when allocated) and can 
subsequently remain busy in supervised (S) mode, (but 
transitions in the reverse direction are not allowed). Thus 
in the notation of regular languages we denote a state by 
a word from {A,B}R U {A, U, S}{E, C, D} U L. In the 

descriptions of the algorithms we use further states that 
exist only during the execution of single interactions, and 
do not persist _after their completion. We append a de- 
scription with F if it is not firing, and F or F* if it is. By 
omitting a letter from a state description we denote the set 
of states in which the conditions denoted by the remain- 
ing letters hold. Also we identify a state description at 
any instant with the set of neuroids having corresponding 
states. For example SEF signifies the set of all episodic 
nodes currently in supervised mode and firing. 

The algorithms could be expressed formally by specify- 
ing the update functions S and A. For the sake of clarity we 
describe each step of each algorithm as a set of conditional 
rules {. . .} * . . . that we expect the relevant neurons to be 
executing at that step. Here {. . .} describes the conditions 
required for the update described. We note that F and F* 
are both firing states indistinguishable by 6 and A. Hence 
in the conditions we will abbreviate “F or F*” by “F”. 

As initial conditions we choose the available relay and 
function nodes to have threshold 2 and the correlation 
nodes threshold 3/2. Also any edge directed away from 
an available relay node has weight 0. The nodes controlled 
directly by peripherals are initialized as function nodes, 
and all edges directed away from these and other function 
nodes have weight 1 initially. The nodes are distributed 
randomly in appropriate proportions among the function- 
alities {E,C, D, L, R) 

To describe each algorithm we describe (a) the trigger- 
ing set of nodes that the peripherals cause to fire dur- 
ing the interaction, (b) the desired consequence (i.e. the 
functionality of the new circuit established), (c) the side- 
eflects (non-interference with other circuits, and resource 
bounds), and (d) th e algorithm itself which acts on each 
neuroid locally. For brevity we shall not detail (c) here. 

3.1 Supervised Episodic Conjunctions 
In supervised learning the task is to set up a circuit that 
makes a chosen target node i fire whenever a certain func- 
tion of a set J of function nodes is satisfied. Learning is 
episodic if it uses just one instance or example, and con- 
sists of memorizing the conjunction of attributes that are 
true for that example. The procedure is as follows: 

Triggering Set: J U {i} where i E UE 
Desired Consequence: At future interactions i E SE and 

whenever J c F, i E F also. 
Algorithm: 

Step 1 : Triggered set is J U {i}. 
{k E ARF} + k E Al$F*. 
{1EUEF,kEF,jEF}~w~~:=l,wj~:=O, 

I E UEIF*. 
Step 2 : Triggered set is {i} 

{k E ARlF, C{wj/c 1 j E F} > 1y.i E F} 
+ k E ARzF*,wjk := 0. 

{I E UElF} + 1 E UEzF*. 
Step 3 : Triggered set is J_ U {i}. 

{k E AR2+ E F} 3 wsk := 0, k E BR,TI, := 1. 
{k E ARIF} a k E AR. 
(1 E UEzF} a 3 := ~{WLI 1 k E F},l E SE. 

Side effects: The state triples of only 0( ] JI) nodes are 
affected. The weights of edges not adjacent to these are 
not affected. 

Valiant 63 1 



The idea behind the algorithm is the following. Since 
initially all available relay nodes (AR) have threshold two, 
and the edges to them from function nodes have weight 
one, the relay nodes Ic that fire in step 1 are those adjacent 
to at least two of {i} U J. For those of these that are 
adjacent to i, the weight wki will be changed from zero 
to one. Via the use of persistent firings it is ensured that 
node i will enter step 3 in state U&F, where its threshold 
will be updated to the sum of the weights of the incoming 
edges from nodes that are firing. Meanwhile in step 2 the 
triggered set is reduced to the singleton i and among the 
relay nodes still firing those will be selected to go into 
state AR2 that are adjacent to i. (The remainder, those 
connected only to J, will cease firing in step 2 and revert 
to state AR in step 3.) In steps 2 and 3 the nodes in state 
A& will update themselves correctly in order to achieve 
the desired consequence. 

To complete a proof of validity we have to show that in 
the graph chosen there will be at least one distinct path of 
length two via a relay node from each j E J to i. 

3.2 Supervised Conjunctive Concepts 
Learning concepts inductively takes place over a number of 
interactions, each one involving the presentation of an ex- 
ample. We implement the simple elimination algorithm for 
learning conjunctions from positive examples alone, that is 
shown to have convergent inductive properties in [Valiant, 
19841. The following describes the interaction in which the 
rtrn example is presented and has attributes corresponding 
to the set J,. of nodes. 

Triggering Set: J,. U {i) where i E UC for r = 1 and 
iESCfor r> 1. 

Desired Consequence: After s interactions whenever 
n{J,. ] 1 5 T 5 s} C F then i E F. 
Algorithm: T = 1 istreated exactly as episodic conjunc- 

tions except that in step 3 i gets state SC. 
For r > 2: 

In other words the first example is treated as an episodic 
conjunction. Any attribute in it that fails to appear in a 
subsequent positive example is eliminated. 

3.3 Supervised Disjunctive Concepts 
Disjunctions cannot be learned from positive examples 
alone (see [Kearns ei al., 19871) but in principle they can be 
learned from negative examples alone [Valiant, 19851. In 
the current context we shall indicate the positivity of the 
example being presented in an interaction by causing the 
target node i to fire. Negativity is indicated by the absence 
of firing. This formulation has the advantage that learn- 
ing from negative examples can take place as background 
activity for numerous concepts simultaneously. To keep a 
lid on the resources needed, however, it is advantageous to 
have positive examples also. 

The simple solution we describe has to see the positive 
examples first in order to obtain the universe of possible 
disjuncts. The algorithm first forms the disjunction of all 
the attributes occurring in them. It then goes on to see 
negative examples. By a simple elimination algorithm, va- 
rieties of which are analysed in [Valiant, 19851, it deletes 
all attributes that occur in any negative example. 

To construct the initial disjunction we use a variation 
on the algorithm for episodic conjunctions. This constructs 
essentially the same circuit as there except that the thresh- 
old of node i is unity and its state is SD. In the second 
phase when the rth negative example is seen (i.e. nodes J,. 
fire but i E SD does not), the elimination rule is 

{ZESD~,~E F}=mka :=0 

The algorithm can be adapted so that if it sees a posi- 
tive example following some negative ones and the circuit 
fails to recognise it as positive then it appends the new 
attributes to the disjunction. 

3.4 Perceptron Algorithms 
Learning algorithms for linear discriminant functions that 
are in the classical perceptron style [Rosenblatt, 19581, 
[Minsky and Papert, 19691, [Littlestone, 19871 can be im- 
plemented in the same manner as the above elimination al- 
gorithm for disjunctions. In neuroidal implementations it 
is important, however, that the algorithms be se/f-checking. 
In other words if the examples of the concept are incon- 
sistent with the assumed concept class then the algorithm 
should discover this. Elimination algorithms do this sim- 
ply by eliminating all possibilities and hence producing 
null circuits. Perceptron algorithms of the classical variety 
appear to need additional mechanisms. One possibility is 
to do mistake counting [Littlestone, 19871. 

3.5 Unsupervised Episodic Learning 
In unsupervised learning there is no indication given to the 
learning system as to the label to be attached to a new item 
learned. In our framework we identify unsupervised learn- 
ing with tasks where a new available function node has to 
be allocated to realise the output of the newly created cir- 
cut. We consider episodic and corre&ional learning in un- 
supervised mode. The former corresponds to memorizing 
a new combination of previously learned attributes, given 
one instance of it (e.g. memorizing a new word). The latter 
is concerned with spotting combinations of attributes that 
occur in statistical correlation with each other. Episodic 
unsupervised learning can be used to allocate storage in 
preparation for supervised learning. Hence the progres- 
sion A + U ---f S in the states. Correlational learning can 
be used to learn conjunctions that are to be the constituent 
monomials for subsequent supervised learning of disjunc- 
tions (so as to realise limited learning of disjunctive normal 
form). We shall consider only the case of learning conjunc- 
tions of length two, since longer ones can be made up from 
a sequence of these, time-stepped by the peripherals. 

The allocation of new storage is effected by similar prin- 
ciples to the ones used for finding relay nodes in supervised 
learning. For any pair of function nodes i, j let Ai and Aj 
be the sets of about c nodes that are functionally equivalent 
to i and j respectively. We need that for all i, j there exist 
about c nodes that are connected to both something in Ai 
and something in Aj. For this a random graph (now re- 
stricted just to the function nodes) of degree about m 
suffices. The basic algorithm is as follows: 

Triggering Set: (i, j} 
Desired Consequence: For some previously available 

episodic function node k to construct circuit such that sub- 
sequently i, j E F 3 k E F. 
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Algorithm: 
Triggered Set: {i,j} 
Step: {k E AEF, 1 E F) 3 k E UE, z&k := 0. 

The idea of the algorithm is that since the threshold of 
k is two, it will be fired only if it is connected to both i 
and j. 

Mechanisms are also needed for arresting unintended 
cascades of memory allocations. It is necessary and possi- 
ble, for example, to ensure that a newly allocated neuroid 
does not immediately cause further allocations, unless ex- 
plicitly requested by the peripherals. 

3.6 Correlational Learning 
Next we describe how correlations are detected. In gen- 
eral the question of detecting correlated pairs is computa- 
tionally problematic even for sequential models. This can 
be seen by considering what we have called the light-bulb 
problem: There are n synchronized sources (bulbs). Each 
one is on (off) during each time interval with probability 
p ((1 - p) respectively) independent of previous intervals. 
Also one pair of bulbs is correlated (e.g. the probabil- 
ity that they are both on in any one interval is Q >> p2) 
while all other pairs are pairwise independent. The prob- 
lem is to detect the correlated pair. If p = l/2 then after 
O(Iogn) intervals, the n sequences of bits for the n sources 
will contain sufficient information, the pair having minimal 
Hamming distance corresponding to the desired pair. The 
computational problem is to discover this pair efficiently. 
The first sequential algorithm achieving this in less than n2 
steps is due to Paturi [1988], and requires na steps where 
o is a constant (1 < Q < 2) depending on the correlation. 
It remains an open problem whether this bound can be 
improved to near linear. 

For a plausible neural implementation we need more 
stringent requirements. Perhaps surprisingly, these can be 
satisfied in the case when p is small (- l/N) which is just 
the case of most practical interest. For in any interaction 
we expect just a minute fraction of the episodes or concepts 
in memory to be relevant. 

The basic algorithm for learning pairwise correlations is 
taken from [Valiant, 19851 and is of the Hebb variety [Hebb, 
19491. The rules that update the correlation neruoids are 
the following 

(k E LF,i E F) 3 t&k := (T(?.!&) 
{k E LF, i E F} j ?.&k := asl(wik) 
Here u is an increasing function such that of (1) + 5/4 

and a-‘( 1) + 0 as r + 00, both processes taking place 
in suitably small steps. The idea of the algorithm is that 
k E L will fire only if at least two of its inputs fire. Only 
those edges ‘f&k will be reinforced often enough that do 
correspond to elements of correlated pairs. Network con- 
nectivity properties are used to ensure that for any corre- 
lated pair, there will be a correlation neuroid adjacent to 
both. 

The learning of large numbers of correlated pairs can be 
shown to be supportable as a background activitiy simul- 
taneously with other processes. 

3.7 Relators 
We think of the firing of a function node as indicating, in 
the first instance, the truth of a proposition regarding the 
input examined by the peripherals. In order to be able 

to express relational information about the input we will 
need to designate some of the function nodes controlled 
by the peripherals as indicative of relations. We shall use 
a restricted notion of a relation that we call a relator. If 
z,y are propositional variables and R a relator then the 
statement zRy denotes that in the input examined by the 
peripherals there are objects X, Y satisfying x and y re- 
spectively that are in relationship R. 

We assume that there is a reIator peripheral (RP) con- 
taining a fixed set of pre-programmed relators that it is 
capable of interpreting. For each binary relation R it con- 
trols two nodes (or sets of nodes) in NTR called J?(l) and 
J2c2) to correspond to the two arguments. If a conjunc- 
tion of relations (~rRiyi)(x2Rzy2). . . (x,.Rgr) is detected 
by the RP in any mode of learning or recognition, the RP 
breaks this into 2r steps for presentation to the NTR. For 
1 5 s 5 r at step 2s - 1 x, and R$l) fire, while at step 2s ys 
and Ri2) fire. Thus timing is used to resolve the symmetry 
between each pair (x~, ?/s), and also the symmetries among 
the relations. 

Learning Boolean expressions that contain relators can 
be done in the following way. First each pair (x, Rci)) is 
learned in unsupervised episodic mode at a different step. 
Finally the UE nodes so created are used as if they were 
propositional, to learn the expression in some standard 
way. 

While relators cannot express identity among objects 
explicitly, this can be simulated using certain special addi- 
tional relators or propositional predicates. For example the 
unary uniqueness relator R, where Rx denotes that there is 
only one object satisfying 2, is clearly useful. In a sense we 
can simulate arbitrary equivalence classes among the ob- 
jects if we hypothesize predicates zi where zi denotes “this 
is the ith object in the scene” for some ordering imposed 
by the peripherals. In that case whenever RP fires x, and 
R(,l) (or Rs2) and ys), it also fires the zi corresponding 
to the object concerned. The triggering sets then become 
triples. 

3.8 Learning Hierarchically 
In a typical learning situation we have a triggering set 
J U {i} where i is the intended output neuroid of a cir- 
cuit to be constructed. If learning is hierarchical then the 
nodes in the triggering sets may be higher level concepts 
not controlled directly by the peripherals. To fire them a 
cascade of firings of neuroids corresponding to lower level 
concepts would have to be initiated. The unintended fir- 
ings may, however, cause unwanted interference. This can 
be avoided by introducing a mechanism that detects the 
highest level firing in any such cascade. 

4 Conclusion 
It seems unreasonable to ascribe a complex function to a 
computational system unless one has a plausible candidate 
for the computational mechanism that might be support- 
ing the function. In this paper we have described a neural 
model of computation and demonstrated some mechanisms 
for realising some very basic functions that appear to be 
relevant to cognition. A more complete exposition of these 
results will appear in a forthcoming paper [Valiant, 19881. 

Valiant 633 



It would be desirable clearly to extend the results to 
other functions, such as richer learnable classes [Blumer et 
al., 1986; Haussler, 1987; Kearns et. al., I987]. Also there 
seems to be substantial scope for improving the quality 
or robustness of the algorithms given. One issue is re- 
silience to errors in the data. Also there are numerous 
other questions, which we have not addressed, concerning 
the behaviour of the system during long sequences of in- 
teractions. 

[Valiant, 19841 L. G. Valiant. A theory of the learnable. 
CACM, 27 (1984), 1134-1142. 

[Valiant, 19851 L. 6. Valiant. Learning disjunctions of 
conjunctions. Proc. of 9th Int. Joint Conf. on Artifi- 
cial Intelligence, (ed A. Joshi), Morgan Kaufmann, Los 
Altos, CA (1985), 560-566. 

[Valiant, 19881 L. G. Valiant. Functional capabilities of 
neural nets. To appear. 
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