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Abstract 

This paper reports on recent progress in the study 
of autonomous concept learning systems. In such 
systems, the initial space of hypotheses is consid- 
ered as a first-order sentence, the declarative bias, 
and can thus be derived from background knowl- 
edge concerning the goal concept. It is easy to 
show that a simple derivation process generates 
a concept language corresponding to an unbiased 
version space defined on a restricted instance de- 
scription language. However, the structure of a 
typical derivation corresponds to a stronger re- 
striction still. It is shown that this semantically- 
motivated, tree-structured bias can in fact reduce 
the size of the concept language from doubly- 
exponential to singly-exponential in the number 
of features. This allows effective learning from a 
small number of examples. 

1 autonomous 
The object of concept learning is to come up with predic- 
tive rules that an intelligent agent can use to survive and 
prosper. For example, after being ‘presented’ with several 
instances, an agent might decide that it needed to discover 
a way of predicting when an animal was liable to attack it, 
and eventually that large animals with long, pointy teeth 
and sharp claws are carnivorous: 

VCE Animal(x) A Lmge( x) A . . . _ Cemivorous(x) 

We give this example to emphasize our main concern in this 
paper: the construction of autonomous learning agents. It 
is now fairly well accepted that the process of learning a 
concept from examples can be viewed as a search in a hy- 
pothesis space (or version space) for a concept definition 
consistent with all examples, both positive and negative 
(Mitchell, 1982; Angluin & Smith, 1983). Current learning 
systems are given a hypothesis space and instance descrip- 
tions carefully designed by the programmer for the purposes 
of learning the concept that the programmer wants learnt. 
The job of the learning program under these circumstances 
is to ‘shoot down’ inconsistent hypotheses as examples are 
analysed, rather like a sieve algorithm for finding prime 
numbers. In practice this task requires some extremely in- 
genious algorithms, but it is only one aspect of the whole 

*Computer facilities were provided by the Computer Science 
Division of the University of California at Berkeley, and finan- 
cial assistance by the AT&T Foundation, Lockheed AI Center 
and the University of California MICRO program 

learning problem. We need systems that can construct 
their own hypothesis spaces and instance descriptions, for 
their own goals. After all, an agent in the real world may 
be ‘given’ its original instance descriptions in terms of pix- 
els, which hardly provide a suitable language in which to 
describe carnivores. The sentiment of (Bundy et al., 1985) 
is worth repeating: “Automatic provision . . . of the de- 
scription space is the most urgent open problem facing 
automatic learning.” 

Our theoretical project, begun in (Russell, 1986a), has 
two parts. The first is to analyse what knowledge must 
be available to the system prior to beginning the learning 
task and how it can be used to set up a hypothesis space 
and to choose descriptions for instances. The second part 
is to analyse the subsequent process of learning a concept 
from examples a~ 8~ inference process, from instances and 
background knowledge to the required rule. 

The basic approach we have taken (Russell & Grosof, 
1987) has been to express the hypothesis space as a first- 
order sentence, hence the term declarative bias. The idea is 
that, given suitable background knowledge, a system can 
derive its own hypothesis space, appropriate for a partic- 
ular goal, by logical reasoning of a particular kind. This 
paper reports on an important aspect of our research on 
declarative bias. After giving the basic definitions and the- 
orems pertaining to the automatic derivation of bias, and 
a brief discussion of the derivation algorithm, I show that 
the structure of the derivation imposes a strong, and ap- 
parently natural, constraint on the hypothesis space. A 
quantitative analysis of this constraint is given, and then 
the implications of the results are discussed in a broader 
context. 

1.1 asic efinit ions 
First we define the notions used in the logical development 
below: 

o The concept language, that is, the initial hypothesis 
space, is a set C of candzdute (concept) descrzptlons 
for the concept. Each concept description is a unarv 
predicate schema (open formula) C,(z), where the ar- 
gument variable is intended to range over instances. 

Q The concept hzerarchy is a partial order defined over 
C. The generality/specificity partial ordering is given 
by the non-strict ordering 5. representing quantified 
implication, where we define 
(A 5 B) iff {V’z.A(z) ==z B(z)} 

o An instance is just an object a in the universe ,,f di- 
course. Properties of the instance are represented by 
sentences involving a. 
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An instance description is then a nary predicate 
schema D, where D(a) holds. The set of allowable 
instance descriptions forms the instance language D. 

The classification of the instance is given by Q(a) or 
lQ(a). Thus the it” observation, say of a positive 
instance, would consist of the conjunction Oi(a,) A 
Qb 1. 
A concept description Cj matches an instance a, iff 
Cj(a;). The latter will be derived, in a logical system, 
from the description of the instance and the system’s 
background knowledge. 

are now ready to give the definition for the instance 
language bias. Choosing such a bias corresponds to be- 
lieving that the instance descriptions in the language con- 
tain enough detail to guarantee that no considerations that 
might possibly affect whether or not an object satisfies the 
goal concept Q have been omitted from its description. 
For this reason, we call it the Complete Description AZ- 
iom (CDA). Its first-order representation is as follows: 

Definition 1 (CDA): 

DiE’D 

That is, instances with a given description are either all 
guaranteed positive or all guaranteed negative. 

The heart of any search-based approach to concept 
learning is the assumption that the correct iavet descrip- 
tion is a member of the concept language, i.e. that the 
concept language bias is in fact true. We can represent 
this assumption in first-order as a single Disjunctive De- 
finability Aziom (DDA): 

Definition 2 (DDA): 

v (Q = cj) 
CjCC 

(Here we abbreviate quantified logical equivalence with 
“=” in the same way we defined “L”.) 

An important notion in concept learning is what 
Mitchell (1980) calls the unbiased version space. This term 
denotes the hypothesis space consisting of all possible con- 
cepts definable on the instance language. A concept is 
extensionally equivalent to the subset of the instances it 
matches, hence we have 

Definition 3 (Unbiased version space): 

{C 1 C matches exactly some element of 2=) 

As it stands, the extensional formulation of the CDA is 
inappropriate for automatic derivation from the system’s 
background knowledge. A compact form can be found us- 
&g a determination (Davies & Russell, 1987), a type of 
first-order axiom that expresses the relevance of one prop- 
erty or schema to another. A determination 1s a logical 
statement connecting two relational schemata. The deter- 
mination of a schema Q by a schema P is wrlttztl P F Q, 
and defined as follows: 

p Definition 4 (Determination ): 
P + Qiff 

~‘w+JYP(W, Y) * +, Y)] - Vz[Q(w, z) a Q( z 2):: 
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Determinations involving unary schemata (such as 
“One’s age determines whether OT not one requires a 
measles vaccination in case of an outbreak”) are best ex- 
pressed using truth-valued variables as virtual second ar- 
guments. Following Davies and Russell (1987)) the truth- 
valued variable is written as a prefix ou the formula it 
modifies. The letters rjd% . . . are typically used for such 
variables. Thus the measles determination is written 

Age(se, y) + k MeaslesVaccineNeeded(z) 

The addition of truth-valued variables to the language sig- 
nificantly reduces the length of some formulae relevant to 
our purposes, and allows for a uniform treatment. 

1.2 ask Theorems 

We now give the basic theorems that establish the possibil- 
ity of automatic derivation of an initial hypothesis space. 
Proofs are given in detail in (Russell, forthcoming). 
Theorem 11: The disjunctive definability axiom corre- 
sponding to an unbiased version space is logically equiva- 
Ient to the complete description assumption. 

Proof: Writing out the CDA s a conjunction, and dis- 
tributing A over V, we obtain a disjunction of 2n disjuncts, 
where R is the size of the instance description language D. 
Each disjunct assigns different subsets of the instances to 
be positive and negative instances, and is thus 
definition from the unbiased version space. 

Theoscem 2: The complete description assumption can be 
expressed as a single determination of the form 

W,Y) + k Q(z) 

where D( 2, Y,) E D,( 5). 

ProoE Definition 4 for the determination is transformed 
into IIorn form, then we expand the quantification over y 
and k; into a conjunction. Rearrangement of the resulting 
coujuncts into pairs of disjuncts gives us the CDA. a 

From theorem 1 we then obtain 

Corollary: The unbiased version space can be expressed 
as a single determination of the form 

As an example of the power of determinations to express 
hypothesis spaces, consider the simple case of an instance 
language with just two boolean predicates G and AT. The 
unbiased version space for this language in figure 1. The 
corresponding determination is 

i&(z) A j f2(z) t k Q(z). 

In general, a determination with k Boolean features corre- 
sponds to an unbiased version space of 2” elements. 

In this section I remark briefly on the considerations that 
apply to the process of deriving a suitable determination 
to form the initial hypothesis space for a concept learning 
problem. This will help to put the following section into 
context. 



Figure 1: Unbiased version space for two boolean predi- 
cates 

Although, in principal, the inference of the determina- 
tion could be performed as a resolution proof, a specialized 
reasoner is more appropriate. What we want to get out of 
the inference process is a determination for the goal con- 
cept such that the left-hand side forms a maxamally oper- 
ational schema. The notion of operationality of a concept 
definition is central in the literature on explanation-based 
learning (Mitchell, Keller & Kedar-Cabelli, 1986; Keller, 
1987), where it refers to the utility of a concept definition 
for recognizing instances of a concept. Our use of the term 
is essentially the same, since the left-hand side of the de- 
termination forms the instance language bias. This means 
that it should be easy to form a description of the instance 
within the instance language it generates. For example, 
to learn the &ZngeTOUSCUTniVOTe concept we would like to 
find a bias that refers to visible features of the animal such 
as size and teeth, rather than to features, such as diet, 
whose observation may involve considerable cost to the 
observer. The particular operationality criteria used will 
clearly depend on the situation and overall goals and capa- 
bilities of the agent. In our implementation we adopt the 
approach taken by Hirsh (1987), who expresses knowledge 
about operationality as a set of meta-level sentences. Ef- 
fectively, these sentences form an ‘evaluation function’ for 
biases, and help to guide the search for a suitable instance 
language bias. 

There is also an additional criterion for judging the util- 
ity of a particular bias. The success and expected cost 
of doing the concept learning will depend critically on the 
size and nature of the bias. A weak bias will mean that 
a large number of instances must be processed to arrive 
at a concept definition. Maximizing operationality for our 
system therefore means minimizing the size of the hypoth- 
esis space that is derived from the determination we ob- 
tain. -The following section describes the computation of 
the size of the hypothesis space corresponding to a given 
tree-structured bias. 

But what form does the derivation of a bias take? Since 
we are beginning with a goal concept for which we must 
find an operational determination, we must be doing some 
kind of backward chaining. The inference rules used for 
the chaining will not, however, be standard modus ponens, 
since we are attempting to establish a universal and the 
premises used are usually other determinations, as opposed 
to simple implicative rules. Thus the basic process for de- 
riving a suitable instance language bias is implemented aa a 
backward chaining inference, guided by operationalitv cri- 

Figure 2: A bias derivation tree 

teria, and using inference ruIes appropriate for concauding 
determinations. These inference r es are given in (Rus- 
sell, 1986b). The particular rule that is of interest for this 
paper is the extended transitivity rule, valid for functional 
relations: 

An example of a derivation tree is given in figure 2. The 
tree corresponds to the derivation of the determination 

If the features Fi through Pe are known to be operational, 
for example if they are easily ascertained through experi- 
ment, then the system will have designed an appropriate 
instance language for the goal concept Q, and hence an ini- 
tial, ‘unbiased’ hypothesis space. It is worth noting that 
there might be a very large number of features potentially 
applicable to objects in the domain of Q, so this bias rep- 
resents a considerable restriction. 

It is clear that the unbiased hypothesis space derived by the 
above procedure will not allow successful inductive learn- 
ing if used ‘as is’. Elsewhere (Russell, forthcoming), I dis- 
cuss ways in which it can be restricted by the addition of 
further domain knowledge and the imposition of syntactic 
restrictions based on computational considerations. I will 
now show that the determinations used in the derivation of 
the bias themselves impose a strong additional restriction 
on the space of possible definitions for the goal concept. 

Intuitively, the restriction comes about because the-tree 
structure of the derivation limits the number of ways in 
which the different features can interact. For example, in 
figure 2, PI and P2 cannot interact separately with P3, but 
only through the function which combines them. Another 
way to think about it is to consider the value of Q as a 
function of the variables which are the values of PI through 
PG. The ‘flat’ bias determination derived above simply 
states that 

q = fhr?%~3,~4,~5,~6) 

for some boolean function f. The tree-structured deriva- 
tion in Figure 2 shows that the form of the function is 
restricted: 

q = f(g(h(pl,p?),P3,j(p4,P5)),P6) 

for some functions f, g, k, j. In the following paragraph- 
the formula for the number of functions allowed by an ar 
bitrar) tree structure will be developed. For simplicity of 
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redundancy factor is now 8, so we get 218((n1 -2)(nz- 
2)(ns - 2))/8 functions in total. 

o The total number of rules consistent with the tree 
structure is the sum of these four terms. 

The general formula for a tree of arbitrary structure can 
only be given as a recursive relationship between the total 
number of functions and the number of functions from each 
immediate subtree (see figure 3(c)) A subtree that is a leaf 
node contributes 4 functions. (4 w 

Figure 3: Examples of tree-structured biases 
Theorem 3: Let ‘Izl 
contributed from the k 

. nk be the numbers of functions 
branches of a tree-structured bias 

derivation. Then the number of rules consistent with the 
bias is given by 

presentation, we will assume that all descriptive features k 1 
are boolean. 

First, , consider the simplest possible nested tree struc- 
ture, shown in figure 3(a). This corresponds to the func- 
tional equation Q = f(g(pr,pz),ps). There are 222 = 16 
possible functions g, and these are shown in figure 1. Note 
that the negation of each of the 16 also appears in the set. 
There are also 16 possible functions f, but this does not 

C$fSj(7%1-2,...,nk -2) 
I=0 

where S, is the sum of products of its arguments taken j 
at a time, with So = 1, and A, is the number of boolean 
functions of j variables in which all the variables appear. 
Aj is computed using the following facts: 

mean that there are 16 x 16 possible functions Q. In four of 
the functions f , namely f = twe, f = false, f = p3 and 
f = 1~3, the first argument does not appear. The remain- 
ing 12 can be divided into 6 pairs which are mirror images 
under negation of the first argument; e.g., g/\p3 and 19~~3 
form such a pair. Of the 16 possible instantiations of the 
first argument, i.e. the functions g, two (the true and false 
functions) generate expressions redundant with one of the 
four mentioned above. The remaining 14 are divided into 
7 pairs, each of which contains an expression and its nega- 
tion. The combined set of 12 x 14 functions thus consists 
of 12 x 7 = 84 functions each appearing twice. We thus 
have 84 + 4 = 88 possible rules for Q instead of 2” = 256 
for the flat bias. 

In general, if there are n functions in a subtree the 
number of functions in the supertree will be multiplied by 
(n - 2)/2, for th ose functions in which the corresponding 
argument appears. 

Consider now case 3(b), in which we have already com- 
puted the number of functions in the subtrees to be nl, 

712, 123. There are 223 = 256 functions at the top level. 
We now count the total number of distinct functions gen- 
erated when these are combined with the functions from 
the subtrees. 

A0 = 2 

A, = 22J - ‘ci (;)A, 
a=0 

Proof: by induction on the structure of the tree. c) , 

These formulae may be somewhat difficult to interpret. 
Indeed, it seems surprising that simply organizing the func- 
tional expression for Q into a tree would cause a very large 
reduction in the number of possible functions. But even in 
a small case the reduction is dramatic: a balanced, four- 
leaf binary tree structure allows 520 possible rules, as com- 
pared to 65536 for the flat bias. In fact, we can state a gen- 
era1 result that may be quite important for the possibility 
of efficient autonomous learning. 

Theorem 4: For a tree-structured bias whose degree of 
branching is bounded by a constant Ic, the number of rules 
consistent with the bias is exponential in the number of 
leaf nodes. 

Proof: Any tree with n leaves has at most n - 1 internal 
nodes. Each internal node generates at most 22k times 
the product of the numbers of functions generated by its 
subtrees. The total number of functions in the tree is thus 
bounded by (22k)n-1. a 

e In 2 of the 256, none of the three arguments appear, 

0 In 2 of the 256, only the first argument appears. giv- 

giving us 2. 

ing us 2( (nl - 2)/2). S imilarly, the other branches 
contribute 2((nz - 2)/2) and 2((n3 - 2)/2). Hence we 
get 2((nl - 2) + (n2 - 2) + (n3 - 2))/2 in total. 

be learned that will have error less than e from only m 

Corollary: Given a tree-structured bias as described 
above, with probability greater than 1 - S a concept can 

examples, where 

-i- (n - 1)2k 
I 

e In 10 of the 256, only the first two arguments appear. 
Each of these 10 generates (nl - 2)(nz - 2)/4 functions 
(since we get double redundancy). Thus functions in 

Proof Direct instantiation of Lemma 2.1 in (Haussler. 
1988). m 

which only two arguments appear contribute lO( (nl - 
2)(n2 - 2) + (712 - 2)(n3 - 2) -f- (713 - 2)(nl - 2))/4 in 

Since the size of the ‘unbiased’ hypothesis space is dou- 

total. 
bly exponential in the number of leaves, requiring an expo- 
nential number of examples, it seems that the tree strut 

o In256-(lO+lO+lO)-(2+2+2)-2=218ofthe ture represents a very strong bias, even beyond that pr’J- 

top-level functions all three arguments appear. The vided by the restriction to a circumscribed set of primitive 
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features. For comparison, a strict conjunctive bias also 
requires a linear number of examples. 

To achieve learnability in the sense of Valiant (1984), 
we must find a polynomial-time algorithm for generating 
hypotheses consistent with the tree-structured bias and a 
set of examples. Such an algorithm has been found for 
the case in which the functions at each internal node of 
the tree are restricted to be monotone. The general case 
seems more difficult. The natural process for identifying 
the correct rule is simply to identify the correct rule for 
each subtree in a bottom-up fashion, by generating exper- 
iments that vary the features in the subtree, keeping other 
features constant. Since, by construction, internal nodes 
of the tree are not easily observable, the induction process 
is far from trivial. 

iscussion 

Especially given the recent positive results on the learnabil- 
ity of functions in the presence of background knowledge in 
the form of determinations, due to Mahadevan and Tade- 
palli (l988), it is tempting to view the above analysis as an- 
other class of concepts in the process of being shown to be 
learnable. It is, however, important to keep in mind that a 
tree-structured bias is derived from background knowledge 
of the domain, rather than being a syntactic restriction. In 
addition, the derivation generates a restricted set of fea- 
tures to be considered, and can thus be seen as providing a 
solution for the situatzon-identi,fication problem (Charniak 
gL McDermott, 1985). In the theory of learnability, the 
set of features is considered part of the input, or, for an 
autonomous agent, to be perhaps the set of all features at 
the agent’s disposal (Genesereth & Nilsson, 1987). 

A simple theorem prover for deriving suitable determi- 
nations has been implemented, and has been used to au- 
tomate the derivation of the Meta-DENDRAL bias first 
shown in (Russell & Grosof, 1987). We are currently in 
the process of developing suitably broad domain theories so 
that the system can be used to derive biases for a number 
of different goal concepts within an area of investigation. 
The relationship between knowledge-based bias derivation 
and the intelligent design of scientific experiments is par- 
ticularly intriguing. A scientist designing an experiment 
to measure the gravitational acceleration g seems to select 
exactly the right variables to vary. She does not concern 
herself with the possible effect of presidential incumbents 
on the force of gravity; this is a good thing, since otherwise 
experiments would have to be repeated at four-year inter- 
vals. It would be of interest to philosophers of science to be 
able to model such considerations using a knowledge-based 
process. There also seem to be strong connections between 
the idea of tree-structured bias and Hintikka’s notion of in- 
teractional depth, which concerns the degree of nesting and 
interaction of variables assumed when constructing theo- 
ries of multi-variable phenomena, such as occur in many- 
body problems. 

On the technical front, there remain questions of how 
tree-structured bias will interact with other biases such as 
conjunctive bias and the predicate hierarchy; of how the 
bias can be used to direct experimentation; and of how 
we can formally analyse more complex bias derivations, 
for instance those using other inference rules and those in 

which the same feature appears several times. In addition, 
we would like to study the use of other classes of back- 
ground knowledge. These are all interesting subproblems 
for a general theory of knowledge-guided induction. 
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