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Abstract 

Parallel processing systems offer a major im- 
provement in capabilities to AI programmers. 
However, at the moment, all such systems require 
the programmer to manage the control of paral- 
lelism explicitly, leading to an unfortunate inter- 
mixing of knowledge-level and control-level infor- 
mation. Furthermore, parallel processing systems 
differ radically, making a control regime that is 
effective in one environment less so in another. 
We present a means for overcoming these prob- 
lems within a unifying framework in which 1) 
Knowledge level information can be expressed ef- 
fectively 2) Information regarding the control of 
parallelism can be factored out and 3) Different 
regimes of parallelism can be efficiently supported 
without modification of the knowledge-level infor- 
mation. The Protocol of Inference introduced in 
[Rowley et al., 19871 forms the basis for our ap- 
proach. 

1 Introduction 
Even though there are a variety of parallel computers now 
in existence, using parallelism to accelerate AI programs 
remains a difficult art. One major problem which must be 
addressed is that there are a variety of different parallel 
processing environments and these differ markedly [Hillis, 
1981; Stolfo, 1982; Davis, 1985; Forgy et al., 1984; Singh, 
19851. Even when we fix our attention on a single, general 
purpose hardware framework (for example, shared memory 
multiprocessors) and a single style of computational task 
(such as rule-based inference) there is a wide diversity of 
critical parameters that determine how much parallelism 
of what grain-size the programmer should try to obtain. 
These parameters include: 

1. The cost of initiating a new task or process. 
2. The cost of maintaining locks and other facilities for 

mutual exclusion. 
3. The cost of switching tasks. 

4. The number of processors. 

5. The bandwidth and latency of the communication 
path connecting the processors. 

Variations in these parameters lead to quite different 
strategies for optimizing a parallel program. For exam- 
ple, when there are a large number of processors and the 
cost of initiating a new task is low, the obvious strategy is 
to create as many fine-grained tasks as possible. On the 

other hand, a higher cost of task initiation leads one to 
pick a larger grain-size for tasks, so that the useful work 
done in a task dominates the overhead of initializing its 
data structures and scheduling it for execution. Similarly, 
if the system provides only expensive means for mutual 
exclusion, then one might be inclined to aim for a strat- 
egy that employs fewer locks but which also leads to less 
parallelism. 

To be concrete, in the environment of our research 
(which consists of Symbolics 3600 processors: 

1. Task initiation requires a minimum of 45 microseconds 
for “light weight” processes. 

2. A simple lock requires roughly 30 microseconds to be 
seized and freed. 

3. Switching tasks requires in excess of 100 microseconds. 

4. In an experimental multiprocessor under development 
in our laboratory there are between 8 and 16 proces- 
sors. 

5. The bandwidth of the bus connecting these processors 
is over 100 Megabytes per second and the latency is 
under 100 nsec. 

It is clear that, given these specific parameters, one 
should not try to create a parallel task whose execution 
time is smaller than 45 microseconds since what is saved 
by parallel execution is lost in task initiation. However, 
there are algorithms of interest for parallel AI systems that 
contain such tasks. For example, we have studied the Rete 
[Forgy, 19821 algorithm in some detail and our metering 
reveals that one type of significant step (the two input 
merge step) takes less than 16 microseconds on average for 
certain benchmark programs. Attempting to reduce the 
grain size of parallelism to this level is, therefore, fruitless. 
The distribution of time consumed in this step is bimodal 
(there is one peak for successful merges and a second .peak 
for failed attempts) and the relative weighting of the two 
peaks is application specific. 

A different implementation of the Rete algorithm which 
used this smaller grain-size would be warranted in an envi- 
ronment with cheaper initiation or if the application had a 
different profile. In summary, the interaction between the 
knowledge-level task and the system environment (hard- 
ware and core system software) dictates the appropriate 
strategy for introducing parallelism. 

It is desirable therefore to build applications using 
a Virtual Parallel Inference Engine, an AI program- 
ming system that allows the programmer to separate 
the knowledge-level description of the problem from the 
machine-specific control-level description and that allows 
the same knowledge-level description to effectively execute 
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as is each rule that manipulates information at that level. 
Other systems that exhibit a similar high degree of decom- 
posability can also exploit such an architecture. 

Implementing such a system using the protocol is 
straightforward and involves developing methods for the 
following protocol steps: 

0 INSERT 
o LOCATE-FORWARD-TRIGGER 

l MAP-OVER-FORWARD-TRIGGERS 

INSERT is the subroutine of TELL which decides where 
an assertion should be stored. In the uniprocessor world, 
INSERT serves as the hook to create data specific indexers; 
in the parallel processing world, it is also responsible for 
deciding which machine an assertion should be stored on. 

We implement two INSERT mixins. The first of these 
contains the normal INSERT method that stores the asser- 
tion on the local machine. The second contains an INSERT 
method that forwards a request to the remote machine 
where the assertion should be stored. Each predicate defi- 
nition is specified separately for each machine; if the pred- 
icate is actually stored on that machine, the first mixin is 
used. Otherwise the second one is employed. 

Rules are handled analogously. LOCATE-FORWARD- 
TRIGGER is the method responsible for indexing the Rete 
network nodes used to trigger forward rules. MAP-OVER- 
FORWARD-TRIGGERS is the subroutine of TELL thatisre- 
sponsible for finding these triggers and invoking the for- 
ward chaining rules triggered by an assertion. As with the 
data indexing methods we implement two versions of this 
method. For each machine, we mix in the first version if 
the rule is stored locally and the second version otherwise. 

This approach is a minor modification of the techniques 
used for sequential programs. The major difference is that 
some work is distributed across the network to remote ma- 
chines. The protocol allows us to do this simply by mixing 
in the appropriate methods. 

3.1.2 Loosely Coupled Backward Chaining 
A backward chaining system can exploit this loosely cou- 

pled environment if it can be decomposed into nearly inde- 
pendent modules of expertise. Each of these modules runs 
independently, but when it needs services from a remote 
specialist, it must send a request through the network. 

Such a Loosely coupled backward chaining system is 
also easy to capture within our protocol. As in the pre- 
vious model, we assign the statements and the backward- 
chaining rules associated with a particular packet of exper- 
tise to a particular machine. 

The new protocol methods involved in this approach are: 

e LOCATE-BACKWARD-TRIGGER 

e MAP-OVER-BACKWARD-TRIGGERS 

To gain parallelism, we modify the ASK-RULE part of 
the ASK protocol to undertake two operations in parallel. 
The first is the processing of those rules stored locally. The 
second is the sending of the query to each remote machine 
containing relevant rules. This behavior is captured in the 
h/IAP-OVER-BACKWARD-TRIGGERS protocolstep whichis 
a subroutine of ASK-RULE. 
LOCATE-BACKWARD-TRIGGER is the routine that in- 

dexes backward-chaining rule triggers; this method decides 
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which machine should store each rule and either indexes 
the rule-trigger locally or sends a message to the remote 
machine requesting it to do so. 

When a rule has satisfied a query it must call the con- 
tinuation of the query to process the result. If the query 
had been posted in a remote machine, this involves sending 
a variable binding environment across the network to the 
requesting machine. 

3.1.3 Comments on the Approach 
Sending a message through the network is very slow by 

comparison to the time it takes to implement any protocol 
step on a local machine. Thus, this approach only gains 
performance if: 1) There is a natural coarse-grained par- 
titioning of the problem and 2) The processing performed 
in response to remotely triggering a rule is quite large. 
This will be true if the body of the rule invokes a ma- 
jor computation, or if it triggers a large number of rule 
firings localized to the remote machine. Failing this, the 
approach will lead to overall system degradation rather 
than speedup. There is no inherent reason for assigning a 
rule to a specific machine. In [Singh, 19851 rules are repli- 
cated in each machine, allowing any machine to apply a 
rule immediately if it isn’t busy. Otherwise it broadcasts 
the goal, providing work for other machines. 

The implementation of the backward chaining system 
must be careful about its treatment of logic-variable bind- 
ings since the standard shallow-binding scheme used in 
Prolog is incompatible with the Or-parallelism introduced 
here; however, space does not allow us to discuss this in 
detail here. 

3.2 Closely Coupled Systems 
In the next two sections we will assume a hardware en- 
vironment consisting of a shared-memory multiprocessor. 
This greatly reduces the cost of sending a task to a remote 
processor since this involves only adding and removing en- 
tries from a task queue. This allows much greater oppor- 
tunity for parallelism and for smaller grain-sized tasks. 

3.2.1 Closely Coupled Backward Chaining 
Our model for backward-chaining in this environment 

achieves both and-parallelism and or-parallelism and is 
similar to [Singh, 19861. F or each backward-chaining rule, 
we create a Rete network whose initial nodes correspond 
to the subgoals in the IF part of a backward-chaining rule. 
After the rule is triggered and the THEN part of the rule 
has been matched to the query, a task is created for each 
of the subgoals in the IF part of the rule. Each task instan- 
tiates its subgoal with the variable bindings of the match 
and then posts a query for solutions to the instantiated 
subgoal. 

Since the only variables instantiated in the posted sub- 
goals are those of the THEN part of the rule, it is possible 
to receive solutions to two of the subgoals that inconsis- 
tently instantiate the other variables. This is the point of 
the Rete network. A solution to a particular subgoal is 
sent to the corresponding node of the Rete network; the 
Rete algorithm then finds all sets of mutually consistent 
solutions to the subgoals. The continuation of the query 
is called for each solution that emerges from the terminal 
node of the Rete network, producing the and parallelism. 



Implementing 
protocol steps: 

this model involves use of the following 

o MAP-OVER-BACKWARD-TRIGGERS 

o COMPILE-BACKWARD-ACTION 

The first of these is modified to trigger the relevant rules 
in parallel. 

The second of these methods is used to customize how 
the rule-compiler treats the IF part (or the right-hand side) 
of the rule. It builds the Rete network and emits code for 
each subgoal which posts the instantiated query for the 
subgoal and feeds each solution to the appropriate Rete 
network node. 

3.2.2 Closely Coupled Forward Chaining 
This approach has been discussed widely in the litera- 

ture [Okuno & Gupta, 1988; Stolfo, 19821, particularly in 
t,he context of OPS-5 implementations. OPS-5 imposes a 
sequential bottleneck in order to perform the conflict res- 
olution step. We remove this restriction in our model. 

The IF part of Forward chaining rules is normally com- 
piled into a Rete network. The THEN part of the rule 
is normally compiled into a sequence of TELL statements, 
one for each pattern. Parallelism can be achieved by com- 
piling the THEN part into parallel TELL statements. In 
addition, the Rete network implementation can introduce 
parallelism by creating separate tasks to handle the pro- 
cessing of individual statements. Further parallelism can 
be introduced by creating separate tasks to handle the sub- 
steps of processing an individual statement. The relevant 
protocol steps are: 

e h/IAP-OVER-FORWARD-TRIGGERS 

o COMPILE-FORWARD-TRIGGER 

e COMPILE-FORWARD-ACTION 

The first of these is the run-time routine used to fetch 
relevant rules when a statement is asserted; this proto- 
col step introduces the opportunity to exploit parallelism 
within the process of rule lookup. The second two meth- 
ods are called by the rule compiler during the compilation 
of forward rules. COMPILE-FORWARD-TRIGGER is the in- 
terface to the part of the compiler that builds the Rete 
network. The last method controls how the THEN part of 
a forward-chaining rules is compiled; it provides the oppor- 
tunity to make the actions on the right hand side execute 
in parallel. 

3.2.3 Comments on the Approach 
The approach requires a shared memory multiprocessor 

in which separate processes share address space. This ap- 
proach can lead to lots of parallelism, particularly if the 
Rete network implementation is designed to maximize par: 
allelism. However, as we stated in the introduction, one 
must be careful. If the grain size of a task is reduced to the 
point where its startup cost is comparable to its execution 
time, nothing is gained; as we mentioned earlier, some of 
the primitive steps of the Rete algorithm exhibit this prob- 
lem. In addition, parallelism in the Rete network requires 
us to enforce mutual exclusion in critical regions. The cost 
of locking may be high and should be carefully considered. 
Oltuno and Gupta [1988] d escribe a parallel OPS-5 imple- 
mentation with a parallel Rete algorithm similar to ours. 

These concerns make a simulation environment ex- 
tremely valuable to help understand how a particular sys- 
tem environment matches a particular detailed approach 
to parallelism. 

e Simdation Environments 
A simple simulator of Multilisp has been written that al- 
lows us to investigate questions about the maximum avail- 
able parallelism in Lisp applications. ’ 

In addition, a second type of simulation environment is 
provided by the multiprocessing capability of the Symbol- 
its Genera operating system. In this environment, multiple 
processors sharing a single memory are straightforwardly 
simulated by separate processes running on a uniprocessor. 

4.1 Simulating Varying Degrees of 
Parallelism 

The Multilisp simulator runs in a single process and con- 
sists of two parts. The first part simulates the execution 
as if every future that is created immediately finds a pro- 
cessor available to run it. This shows the maximal amount 
of parallelism available to the program. 

The simulator works by keeping track of an imaginary 
“simulation clock”. Between requests to create and evalu- 
ate futures (that is when normal, serial, Lisp is running) 
the simulation clock simply tracks the normal process time. 
When futures are created, the creation time of the future 
is recorded in the future. When the future is run, the 
simulation clock is “backed up” to the creation time of 
the future, and advances from that point. The use of re- 
sources for which there may be contention is also recorded 
by noting the time periods for which a resource is “locked” 
against competing users. 

The result of the simulation is a history, which has the 
structure of a graph. Each arc in the history corresponds 
to the serial execution of some piece of Lisp. A grapher 
tool allows us to display the history in graphical form, 
and extract certain statistics (e.g. processor utilization, 
speedup over serial execution). 

The history of program execution contains sufficient in- 
formation to construct other histories under conditions of 
limited parallelism. This is what the second part of the 
simulator does. The re-simulator takes a maximally par- 
allel history, a number of processors, and an argument de- 
scribing the scheduling policy. It performs an event-driven 
simulation and returns another history which represents 
the execution of the same program under those new con- 
ditions. 

4.2 Simulation by Multiprocessing 
Simulation by multiprocessing is done by writing programs 
using the normal techniques of scheduling and contention 
avoidance, and then creating several processes (each emu- 
lating one processor in a multiprocessor) which then look 
for tasks in a shared queue. Each process can then be 
metered separately using standard tools. 

‘Strictly speaking, the language we simulate is not Multilisp, 
which is based on Scheme, but an equivalent language based on 
adding Multilisp constructs to Common Lisp. The distinction is 
basically a syntactic one and unimportant to the investigation. 
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4.3 Comparison of the Two Techniques 
Each of the two simulation techniques has advantages over 
the other. The Multilisp simulator has the advantage that 
one simulation running real code can be resimulated under 
varying conditions in a controlled fashion. Metering the 
original simulation is easy, since it happens in one process, 
and resimulation is free of variations induced by scheduling 
policy, paging overhead, and the like. On the negative 
side, it is easy to perform a resimulation that does not 
obey causality constraints. If lisp forms ever produce side 
effects that will be seen by another future, it is mandatory 
to time-stamp such values. It is easy to overlook such side 
effects and so care must be taken to ensure that results 
reflect some potential version of reality. 

Simulation by multiprocessing is a much closer simula- 
tion of the reality of a shared-memory multiprocessor. Ef- 
fectively, the operating system is performing fine-grained 
time-slicing where in the Multilisp simulator above, the 
resimulator performed coarse grained time-slicing. Causal- 
ity effects are almost completely eliminated because of the 
fine-grained time-slicing, and shared resource contention 
must be handled properly or else the program will pro- 
cluce wrong results which are immediately apparent. 

The two techniques are complementary. 

5 Simulation of Parallel Rete 
Networks 

Rete networks are an important technique for achieving 
parallelism in both our models of closely coupled paral- 
lelism; they have been studied [Gupta, 1984; Okuno & 
Gupta, 19881 in the context of OPS5 execution model. 
Conflict Resolution is an important part of the control 
structure of the OPS5 model but it is a bottleneck that 
limits available parallelism; for tasks that merely compute 
the deductive closure of an initial set of facts (theorem 
proving or simulation) Conflict Resolution is unnecessary 
(since rule execution order is irrelevant). Our studies in- 
volve programs for which Conflict Resolution is an artificial 
bottleneck, in particular, a rule-based circuit simulator. 

5.1 Parallelism in the R&e network 
Joshua uses a standard Rete network consisting of match 
and merge nodes. The nodes store states that hold consis- 
tent sets of variable bindings. As matching/merging pro- 
ceeds states propagate through the Rete network. The 
need for mutual exclusion arises if a new state reaches each 
of the parents of a merge node at the same time. It is nec- 
essary that only one of the tasks merges the two new states 
by employing some form of mutual exclusion. 

We have studied a relatively fine grain locking scheme 
that allows more parallelism. The exact steps that occur 
when a new state comes in to a parent node are as follows: 

1. Grab the lock of merge node directly below. 
2. Push the new state into the state list at the parent. 

3. Grab a pointer to the head of the brother node’s state 
list. 

4. Unlock the lock 
5. Do merges with states in the previously grabbed state 

list. 

5.2 Task size 
Within the matching/merging process there are many dif- 
ferent ways to break up the work into separate paralleliz- 
able tasks. Here is a partial list ordered by decreasing task 
size: 

Each individual firing of a rule spawns a separate task 
in which the all the work associated with body of t#he 
rule gets executed. 

A rule body may do several TELLS; each of these can 
be spawned as a separate task. Each task handles all 
of the TELL protocol - both the data indexing and 
the rule indexing (matching/merging). 

Each state created by a rete node (match or merge) 
can be spawned as a task. All of the merges of the 
state with other states (in brother nodes) happens 
within this task. 

Each individual merge operation can be spawned as a 
task. Every merge between two states happens in its 
own task. 

Our metering tools show that the last of these is below 
the threshold for successful parallel execution. Figure 1 
shows the processor utilization charts resulting from sim- 
ulating the parallel execution of a rule-based circuit simu- 
lator using the first three of the above options. 

As can be seen, speedup continues up to 32 processors 
although cost effectiveness decreases somewhere between 
8 and 16 processors. Larger simulations would effectively 
utilize more processors. 

6 Conchsions 
Our initial explorations suggest that the Joshua Protocol of 
Inference can be effectively used to build a Virtual Parallel 
Inference Engine. It cleanly separates the control of par- 
allelism from the expression of task knowledge and allows 
the same rule-base to be executed in both sequential and 
parallel environments without modification. Furthermore, 
it allows the same rule base to be executed in a variety 
of different parallel environments, tailoring the strategy to 
the detailed nature of the system. Again this does not 
involve modifying the knowledge-level structures. 

However, there are still many difficult problems to be 
confronted. So far we have conducted limited studies of 
programs which can be correctly executed without enforc- 
ing ordering constraints between the rules. There are nat- 
ural classes of problems (such as deductive closure and 
simulation) where this is allowable. But there are many 
problems for which this is not true and some control must 
be placed over rule execution. The conflict resolution step 
of OPS-5 imposes a serial bottleneck after every rule’s ex- 
ecution, artificially limiting the ability to exploit paral- 
lelism. We are searching for other control techniques that 
are more explicit and less limiting. 

We also recognize that our descriptions of the use of the 
Protocol to implement parallelism are limited and naive. 
There are obviously many other ways to capture paral- 
lelism. We believe that our approach has one distinct ad- 
vantage, namely its ability to include and experiment with 
any new technique that arises. 
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Figure 1: Processor utilization as a function of N, the number of processors available, while performing a rule-based 
circuit simulation. Time increases downward; the graphs show the number of processors active as a function of elapsed 
time. 
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