
versus Specificity: an Experience with AI and

Pascal Van Hentenryck
ECRC

Arabellastr. 17,
8000 Muenchen (F.R.G)

Abstract

This paper contains an in-depth study of a par-
ticular problem in order to evaluate several ap-
proaches to the solving of discrete combinatorial
problems. We take a warehouse location prob-
lem as a case study and present solutions to it
by using Integer Programming, a specialized pro-
gram based on A* and the constraint logic pro-
gramming CHIP. The merits of each approach are
discussed and compared in the light of the prob-
lem. Finally, we conclude by arguing that CHIP
provides a valuable addition to the current set of
tools for solving discrete combinatorial problems.

1 Introduction
Many real world problems in Artificial Intelligence, Oper-
ations Research (OR), VLSI design and Computer Science
in general can be viewed as Constraint Satisfaction Prob-
lems or discrete combinatorial problems. Because of the
NP-complete nature of these problems, no efficient general
algorithm is available for solving all of them. It follows that
this class of problems implies a trade-off between generality
and efficiency. Current approaches to the solving of dis-
crete combinatorial problems can be essentially classified
into three opposite groups

e the use of general tools like Integer Programming
packages or theorem provers.

e the writing of specialized programs in procedural lan-
guages.

e the use of a high-level declarative language embedding
some advanced AI techniques.

The main advantage of general tools is their wide appli-
cability. Most probIems can be easily expressed in their
problem-solving model However their efficiency depends
upon the nature of this expression. Whenever a problem
can be expressed naturally in their model (e.g. the math-
ematical model of Integer Programming [Garilnkel and
Nemhauser, 19721), this approach is very effective. But for
most problems, a recasting operation takes place which can
substantially increase the number of variables and hence
the search space to explore and hide some of the problem
features (e.g. symmetries, heuristics, . ..) preventing the
general tools from exploiting them.

The writing of specialized programs in procedural lan-
guages is the dual of the first approach. Here the accent is
put on efficiency by exploiting as much as possible of the
problem features. This is likely to be the most efficient

Jean-Philippe Carillon
CEGQS

204, Rond-point du Pont-de-Sevres
92516 Boulogne-Billancourt (France)

approach for many problems. Unfortunately, the develop-
ment time of these programs is significant; also they are
generally rather inflexible as it requires much programming
to change or to extend them.

The third approach, the use of a high level declarative
language, tries to preserve as much of the efficiency of the
second approach while reducing substantially the develop-
ment time and increasing the flexibility of the programs.
Of particular interest is the constraint logic programming
language CHIP which has been developed with precisely
this idea in mind. CHIP combines the declarative aspects
of PROLOG with the efficiency of constraint handling
techniques [Dincbas et al., 19871. The constraint handling
part of CHIP includes Consistency Techniques [Van Hen-
tenryck, 1987b], an important paradigm emerging from Ar-
tificial Intelligence (e.g. [Mackworth, 19771). Other high-
level constraint languages include CONSTRAINTS [Suss-
man and Steele, 19801, CLP(R) [Jaffar and Lasses, 19871
and Prolog III [Cohuerauer, 19871.

This paper presents an in-depth analysis of these ap-
proaches on a particular problem from OR. The ware-
houses location problem (section 2) is taken as a case study
and we present solutions to it by using one representative
of each class, respectively Integer Programming (section
3), a specialized program (section 4) and CHIP (section
5). We then conclude by discussing the merits of each ap-
proach and providing a more general perspective on the
solving of discrete combinatorial problems (section 6).

warehouses location problem
Assume that a factory has to deliver goods to its customers
and has at its disposal a finite number of locations where
it is possible to build warehouses. For each warehouse, we
have a cost, referred to as a fixed cost, representing the con-
struction and the maintenance of this warehouse. There
are also variable costs for the transportation of goods to
the customers. These costs are variable since they are de-
pendent on the warehouses locations (because of the dis-
tance). The problem is to determine the number and the
locations of the warehouses which minimize the (fixed and
variable) costs. In the rest of this paper, we take the fol-
lowing naming conventions

e m: the number of warehouse locations;

o 12: the number of customers;

o bj: the demand in goods of customer j;

e fi: the fixed cost of warehouse i;

o cij: the unit transport cost from warehouse i to cus-
tomer j;

660 Machine Architectures and Computer Languages for AI

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

0 vij : cij b j.

The above statement is a particular case of the ware-
houses location problem where no capacity constraints are
enforced on the warehouses. Although simpler (but still
NP-Complete) than the general problem, it fully serves
the purpose of this paper.

rogramming
3.1 Problem solution
In this section, we show how the above problem can be
formulated as an Integer Programming problem. This re-
quires stating the problem in terms of integer variables
and linear equations or iuequations. For this purpose, we
introduce the following variables

o wi which is
otherwise.

equal to 1 if warehouse is open and to 0

b gij which is equal to 1 if warehouse i delivers goods to
customer j and to 0 otherwise.

Now the problem can be stated as follows
m n m

minz = C CVij gij + Cf.iVJi

subject
i=l j=l

to

i=l

m

Cgij = 1 (j = 1, . . .) 7Z)
i=l

n

c gij 5 nyi (i = 1,. . . , m)
j=l

gij, wi = 0 or 1 (j = 1, . . . , n and i = 1, . . . , m)
This program can now be solved with standard algo-

rithms such as branch & bound or cutting plane methods
[Garfinkel and Nemhauser, 19721.

3.2 Evaluation of the approach
This approach clearly does not require much effort if one
has a Integer Programming package at his disposal. How-
ever, it is likely to be very inefficient. Note that the num-
ber of variables in this formulation is nm + m. The search
space to explore is thus 2nm+m. In case of real life prob-
lems (e.g. 20 locations and 80 customers), this gives rise
to huge Integer Programming problems.

The problem with this formulation is that we lose the
privileged role played by the variables wi. As shown in
the next section, only these variables matter. But Integer
Programming has no way to deduce it from the formula-
tion. Similarly, it is not possible to express heuristics for
the choice of the open warehouses. This illustrates a com-
mon fact about Integer Programming. Most of the time,
the problem structure is lost, entailing much redundancies
during the search.

4 specialized program
4.1 Problem solution
We now present a specialized program for the warehouses
location problem which has been developed by the sec-

ond author of this paper and turned into a software prod-
uct (running on a micro-computer) that was instrumental
in solving real world problems. It implements a specific
branch & bound algorithm but can also be viewed as an
implementation of the A* procedure [Nilsson, 19821.

The basic idea behind the program is to reason about
the warehouses. Once the number and the location of the
warehouses have been chosen, it is a simple matter to as-
sign each customer to a warehouse; we simply choose the
closest one which is open. Therefore the search space to
explore is the set of all possible warehouse configurations.

A node in the branch & bound will represent a set of con-
figurations. Of course, this set is not represented explicitly
but can be characterized by mentioning which warehouses
are always open or closed in these configurations and which
are still undecided.

To fully specify the program, we have to define

the branching process: the way a node is split into sub-
nodes;

the search rule: the way the next node to work on is
selected.

the bounding process: the way the evaluation of the
node is carried out;

The branching process is achieved by fixing the value for
a still undecided warehouse. From a particular node, two
sub-nodes are generated, one where the warehouse is open
and one where it is closed.

The search rule selected in the specialized program was
to select first the node with the best evaluation. In OR
terminology, this means that the program conducts a best-
first branch & bound.

The bounding process amounts to find an evaluation of
the best configuration available from a node. At this node,
the best possible value for the variable cost of a particular
customer is when this customer receives goods from the
closest warehouse which is open or undecided. We refer
this value as the best potential cost for this customer at
that node. Now the evaluation of a node can be defineds as
the summation of all the fixed costs of the open warehouses
plus the summation of the best potential costs for the cus-
tomers. It can be seen that this evaluation is optimistic;
it is always smaller or equal to the value of the best con-
figuration. Indeed, “opening a warehouse” increases the
evaluation since it adds a fixed cost and “closing a ware-
house” may increase the evaluation since it may raise the
best potential cost of some customers. The optimistic na-
ture of the evaluation makes possible to rule out a node
as soon as its evaluation is greater than the value of an
already found solution.

Note that better evaluation functions can be found for
this problem if we measure efficiency by the number of gen-
erated nodes. However, it was found while experimenting
with real world problems that such functions increase the
CPU time needed for solving them.

4.2 Evaluation of the approach
The search space to explore is 2m within this approach.
This is to contrast with the Integer Programming formu-
lation. Specific heuristics (e.g. the choice of the warehouse
on which is based the branching process) can also be in-
cluded inside the algorithm. Therefore, as far as efficiency

Van Hentemyck and Carillon QGI

is considered, this approach is fully appropriate, simply
because it takes the problem features into account.

When ease of programming is considered, things are just
the other way around. The program kernel consists in
about 2000 lines of Pascal and requires several months
of development time. Equally important is the fact that
this approach is rather unflexible. Changing the heuris-
tics or adding new constraints would imply an important
programming task. For instance, adding a disjunctive con-
straint between two warehouses (i.e. at most one of them
can be selected in a solution) requires a complex change of
the system. Adding a capacity constraint on the warehouse
would require a complete redesign of the system.

5 A CHIP solution
We now present a solution of the warehouses location prob-
lem in the constraint logic programming language CHIP.
This presentation is essentially self-contained but more de-
tails about CHIP can be found in the given references.

5.1 Problem solution
The program is presented by successive refinements, start-
ing with a first naive program and then adding more fea-
tures to make it more efficient.

Finding solutions. We first define a program for yield-
ing solutions. The basic approach for doing so in CHIP
consists in defining a program which generates the prob-
lem constraints and a program which generates values for
the problem variables, i.e.

location(Lware,Lcust,Cost) :-
gen-constraint(Lware,Lcust,Cost),
gen-value (Lware, Lcust) .

The first predicate in the body defines two lists of
domain-variables and sets up the constraints between
these variables. Domain variables [Van Hentenryck and
Dincbas, 19861 is one of the main extensions of CHIP com-
pared with usual logic languages. They are similar to
logic variables except that they can only take a finite set
of values. Domain variables are the basic extension for
embedding Consistency Techniques in logic programming
[Van Hentenryck, 1987a). During the constraint propaga-
tion, domains are reduced, possibly leading to instantia-
tions of variables (when only one value remains) or to a
failure (when no value is left). This step is studied in more
details in the next sections.

The second predicate makes choices for the variables.
The choice process can be very different from one pro-
gram to another, e.g. it might be based on instantiation or
domain-splitting [Van Hentenryck, 1987bl. In the present
program, it can simply be defined as follows.

gen-value (Lware, Lcust) : -
labeling(Lware),
labeling(Lcust) .

labelingc 11).
labelingc CX I Yl > : -

indomain(
labeling(Y).

We first start by choosing which warehouses are included
in the solution and then we assign a warehouse to each
customer. The indomain predicate simply generates values
for the variables. It gives to the variable a value from its
domain. If backtracking occurs at this point, another value
is tried and so on until none are available. Note that all
the tree-search is abstracted away inside this predicate.

During execution, these two steps work as coroutines.
The constraint propagation is started by the first step.
When no more information can be deduced, a choice is
made in the second step. This brings additional informa-
tion, which may restart constraint propagation. Note that
this mechanism has not to be programmed by the user.
This is provided directly by CHIP.

Defining the variables. We herein consider the vari-
ables used inside the program.

Lware is a list of zero-one domain-variables for the ware-
house locations. The jth
to 1 if the jth

such variable wa will be assigned
warehouse location is open in the solution

and will be zero otherwise.
Lcust is a list of domain-variables ranging over [l,n] for

the customers. The variable gj represents the warehouse
which delivers goods to the jth customer.

We also use another domain-variable vcj for each cus-
tomer. The variable vcj represents the variable cost as-
sociated with customer j. This variable ranges over the
possible variable costs associated to this customer.

Finally, the evaluation function can be defined as

fl x w1+ . . . + fm X Wm + UC1 f . . . + UC,.

Relating the customers and their variable costs.
We now have to define the constraints enforcing the re-
lations between these variables.

We need a constraint to make the correspondence be-
tween the values of the variables gj and the variables vcj
(1 5 j 2 n). Th is is achieved through the predicate

element(I,L,El)

element (I, L,E1) holds iff the Ith element of L is El.
This predicate is handled in a looking ahead way. For the
*th I customer, the constraint looks like as follows

element (gj, [VI j, . . . , vkj , . . . , Vmj] , vcj) .

with vij defined as in section 2.
There are n such constraints since they are n customers.

The pruning achieved by this constraint can be described
in the following way. As soon as the cost vcj is updated,
some now inconsistent values of gj are removed from con-
sideration. Similarly, when gj is updated (e.g. a value is
removed from its domain), the cost is updated in corre-
spondence.

Symbolic constraints such as the element constraint
are essential tools for solving many discrete combinato-
rial problems. Part of the CHIP efficiency comes from the
ability to handle them. They enable the programs to be
stated and solved in a natural form even if some constraints
are not linear as it is the case in the present example. In
principle, any symbolic constraint which can be expressed
as a logic program can be handled in CHIP.

662 Machine Architectures and Computer Languages for AI

Relating the warehouses and the customers. There
remains one constraint to be expressed to conclude the
description. This constraint simply states that, whenever a
warehouse is closed in the solution, no customer can receive
goods from it,.

Such constraint could be taken into account during the
generation step. However doing so will lead to a less declar-
ative program. If, in the future, we want to change the
generator, we will have to take care about this constraint.
A better way is to separate the constraint from the gener-
ator and to coroutine their execution.

We define a predicate removef romcustomer (wa , Cu)
which, given a list Wa of 0 or 1 and a list Cu of inte-
gers, holds if all the elements of Cu are different of i if the
jth element of the list Wa is 0. In the program, the first
argument stands for the list of warehouse locations and the
second one for the list of customers.

A simple definition can be

removef romcustomer([XI Y] , Lcust) : -
removef romcustomer ([XI Y] , Lcust (1) .

removef romcustomer (Cl , _ , -1 .
removefromcustomer([XlY] ,Lcust,Nb) :-

ifoutof(X,Nb,Lcust),
Nbl is Nb + 1,
removefromcustomer(Y, Lcust ,Nbl) .

ifoutof (O,Nb,Lcust) : -
outof (Nb, Lcust) .

ifoutof (1 ,Nb,Lcust) .

Adding the declaration

delay if outof (ground, any, any) .
will coroutine its execution with the generator. Indeed,

the above program will generate a set of ifoutof con-
straints. Such a constraint cannot be selected until the first
argument becomes ground. When this happens, the con-
straint is selected and removes a warehouse location from
the possible choices for the customer if the warehouse has
been “closed”. The ability to separate the definition of the
constraint (the logic) and the way to use it (the control)
is responsible for the ease of programming and the great
modifiability of CHIP programs.

Finding the optimal solution. So far, we have a pro-
gram to generate solutions. To find the optimal solution,
we use the higher-order minimize (G, F) where G is a goal
and F a linear expression. This meta-level predicate solves
the goal G in a way that minimizes the value of F. It imple-
ments a depth-first branch & bound technique [Van Hen-
tenryck, 1987b]. M ore precisely, this predicate will search
for a solution of Goal. Once such a solution has been
found with a cost C (i.e. the value of F for this solu-
tion), a constraint F < C is dynamically generated which
constrains the search for the other solutions. The pro-
cess terminates when all the search space has been im-
plicitly searched through. The handling of the generated
constraints is achieved through a reasoning on the vari-
ation intervals, similar in essence to the one of [?I. The
program now looks like as follows

location(Lware,Lcust,Cost) :-
gen,constraint (Lware, Lcust ,Cost) ,

minimize(gen,value(Lware,Lcust),Cost).

Lee us have a look at how are evaluated the partial solu-
tions with this program. Remember that the expression to
minimize is

fl x Wl + . . . + fm x w, + UC1 + . . . + UC,.

Suppose we have already assigned values to some ware-
houses. It follows that some wj have already received a
value. Also, if some wj have been assigned to 0, some of
the values in the domains of UC& can have been removed.
The system evaluates this expression in an optimistic way
by assuming that each remaining domain-variable gets its
smallest possible value. This is equivalent, to the summa-
tion of

1. all the fixed costs of the warehouse locations that have
be retained in the partial solution

2. the best potential costs for the customers.

It follows that the natural statement of this problem in
CHIP directly leads to the same bounding process as in
the specialized program.

Now we already have a working program. PJote that we
never specify that the customers must receive their goods
from the closest warehouse. This fact is discovered inde-
pendently by the program. If we change the generator
for the customers so that it assigns first the closest possi-
ble warehouse, the program will never consider any other
choice, the evaluation function pruning them automati-
cally. Hence it yields the same complexity result as the
specialized program. We now show how to improve the
efficiency of the program by adding some redundant con-
straints and/or searching for a good first solution.

Adding redundant constraints. There are some
warehouse locations that are not worth considering for a
given customer because the construction of another ware-
house location will induce a smaller cost. A simple logic
program can be written to enforce these constraints.

Searching for a first solution. It is generally a good
idea to search for a good solution before starting the
branch & bound. This helps pruning the search space since
we will only look at, solutions with a smaller cost. Several
strategies can be used for this step. The one we retain was

e Trying to minimize the number of warehouses.

o Ordering the warehouses in function of their proximity
to the customers.

Once we have computed a good first solution, we search
for the optimal solution and prove optimality by using a
dual approach for generating values, trying first to have
the greatest possible number of warehouses.

Sketch cof the final program. So the final program
looks like the following

location(Lware,Lcust,Cost) :-
defining(Lware,Lcust,Cost),
removeredundant (Lcus t , Lware) ,
searchinggoodsol (Upper) ,
minimize(gen-value(Lware,Lcust),Cost,Upper).

Van Hentenryck and Carillon 663

The alterations of the basic program are the predicates The alterations of the basic program are the predicates
for enforcing the additional constraint and for searching a for enforcing the additional constraint and for searching a
good solution. good solution. The latter is similar to the basic scheme The latter is similar to the basic scheme
except that it uses another generator of values. Finally, except that it uses another generator of values. Finally,
the higher-order predicate for optimization has one more the higher-order predicate for optimization has one more
argument, the upper bound computed during the search argument, the upper bound computed during the search
for a good solution. This means that we are only searching for a good solution. This means that we are only searching
for solutions whose cost is smaller than this upper bound. for solutions whose cost is smaller than this upper bound.

5.2 Evaluation of the approach dion of the approach
In terms of efficiency, In terms of efficiency, the above program is comparable to the above program is comparable to
the second approach. the second approach. Real-life problems have been solved Real-life problems have been solved
within a few minutes. For instance, the optimal solution of within a few minutes. For instance, the optimal solution of
a 21-20 instance is found and proved optimal in 20 seconds a 21-20 instance is found and proved optimal in 20 seconds
on a SUN 3/160 with our prototype interpreter. A similar on a SUN 3/160 with our prototype interpreter. A similar
result is obtained in 90 seconds for a 21-80 instance. Most result is obtained in 90 seconds for a 21-80 instance. Most
of the second approach’s efficiency is preserved, the results of the second approach’s efficiency is preserved, the results
being about 5 to 10 slower than the specific program. being about 5 to 10 slower than the specific program.

The fundamental advantage of the third approach comes The fundamental advantage of the third approach comes
from its flexibility. The overall program is two pages long from its flexibility. The overall program is two pages long
and a few days were required to understand the problem and a few days were required to understand the problem
and to write it. Changing the program is not a difficult and to write it. Changing the program is not a difficult
matter. matter. It is straightforward to add a disjunctive con- It is straightforward to add a disjunctive con-
straint between two warehouses. We simply add a linear straint between two warehouses. We simply add a linear
inequation in the first step. In the same way, it would inequation in the first step. In the same way, it would
take a couple of hours to include capacity constraints; it take a couple of hours to include capacity constraints; it
mainly amounts to remove the redundant constraint and mainly amounts to remove the redundant constraint and
to change the heuristics for finding the first solution. to change the heuristics for finding the first solution.

6 Discussion 6 Discussion
This paper has presented an in-depth analysis of a ware- This paper has presented an in-depth analysis of a ware-
houses location problem as a case-study for evaluating sev- houses location problem as a case-study for evaluating sev-
eral approaches to the solving of discrete combinatorial eral approaches to the solving of discrete combinatorial
problems. Two of them have been fully implemented and problems. Two of them have been fully implemented and
experience with both programs has been reported. How experience with both programs has been reported. How
can we summarize this experience ? As far as convenience can we summarize this experience ? As far as convenience
of programming is considered, Integer Programming turns of programming is considered, Integer Programming turns
out to be the ideal solution. Unfortunately, the inability to out to be the ideal solution. Unfortunately, the inability to
exploit the problem features makes it very inefficient. The exploit the problem features makes it very inefficient. The
other two approaches provide realistic approaches for solv- other two approaches provide realistic approaches for solv-
ing real world problems. ing real world problems. Although the second approach Although the second approach
turns out to be slightly more efficient, the lost in efficiency turns out to be slightly more efficient, the lost in efficiency
of the third approach is largely compensated by its short of the third approach is largely compensated by its short
development time and flexibility. development time and flexibility.

How can we generalize this experience ? None of these How can we generalize this experience ? None of these
approaches is adequate for all problems. Therefore it is approaches is adequate for all problems. Therefore it is
interesting to identify the problems and the approach that interesting to identify the problems and the approach that
applies. applies.

As far as the problem can be viewed naturally as an In- As far as the problem can be viewed naturally as an In-
teger Programming problem, the first approach is the way teger Programming problem, the first approach is the way
to go. It provides both efficiency and ease of programming. to go. It provides both efficiency and ease of programming.

The third approach, the use of CHIP is appropriate for The third approach, the use of CHIP is appropriate for
all problems where it is difficult to extract or to exploit all problems where it is difficult to extract or to exploit
mathematical properties. mathematical properties. CHIP is then an efficient and CHIP is then an efficient and
flexible way to solve the problem. Its efficiency comes from flexible way to solve the problem. Its efficiency comes from
Consistency Techniques, the ability to take into account Consistency Techniques, the ability to take into account
problem features and the handling of symbolic constraints. problem features and the handling of symbolic constraints.
In addition, it makes possible to write extensible and flex- In addition, it makes possible to write extensible and flex-
ible programs in a rather short time. Note that the ease of ible programs in a rather short time. Note that the ease of
programming can directly influence the efficiency. People programming can directly influence the efficiency. People
are likely to exploit some problem features which would re- are likely to exploit some problem features which would re-

quire otherwise much programming effort. As such, CHIP
is also a valuable prototyping tool. Many real world prob-
lems are in its problem-solving scope. For instance, CHIP
has been applied successfully to graph coloring, disjunc-
tive scheduling, two-dimensional cutting-stock problems,
assembly-line scheduling, microcode labeling problems and
channel routing. Some of these applications can be found
in [Van Hentenryck, 1987b]. For all these problems, CHIP
is comparable in efficiency with specialized programs.

Counterexamples to this class are, for instance, travel-
ling salesman and transport problems. Their mathemat-
ical properties enable, for instance, powerful relaxation
methods to be used. Therefore the natural formulation
of these problems within CHIP will not be able to com-
pete with specialized programs based on these techniques.
It is of course always possible to write programs exploiting
these properties in CHIP but we then lose its basic ad-
vantages. For these kinds of problems, it is clear that the
second approach is the most appropriate.

It follows from this analysis that all three approaches
are complementary for solving real world discrete combi-
natorial problems and that CHIP is a valuable addition to
the set of conventional tools.

Acknowledgments.

The first author gratefully thanks Mehmet Dincbas,
Herve GalIaire, Alexander Herold, Helmut Simonis and the
members of the CHIP group for numerous discussions.

References
[Colmerauer, 19871 A. Colmerauer. Opening the Prolog-

III Universe. B YZ’E Magazine, 12(9), August 1987.

[Dincbas et al., 19871 M. Dincbas, H. Simonis, and Van
Hentenryck P. Extending Equation Solving and Con-
straint Handling in Logic Programming. In CREAS,
Texas, May 1987.

[Garfinkel and Nemhauser, 19721 R.S Garfinkel and G.L
Nemhauser. Integer Programming. John Wiley &
Sons, 1972.

[Jaffar and Lassez, 19871 J. Jaffar and J-L. Lasses. Con-
straint Logic Programming. In POPL-87, Munich
(FRG) , January 1987.

[Mackworth, 19771 A.K. Mackworth. Consistency in Net-
works of Relations. AI Journal, 8(1):99-118, 1977.

[Nilsson, 19821 Nils Nilsson. Principles of Artificial Intel-
Zigence. Springer-Verlag, 1982.

[Sussman and Steele, 19801 G.J. Sussman and G.L. Steele.
CONSTRAINTS-A Language for Expressing Almost-
Hierarchical Descriptions. AI JournuZ, 14(l), 1980.

[Van Hentenryck, 1987a] P. Van Hentenryck. A Frame-
work for Consistency Techniques in Logic Program-
ming. In IJCAI-87, Milan, Italy, August 1987.

[Van Hentenryck, 1987b] P. Van Hentenryck. Consistent y
Techniques in Logic Programming. PhD thesis, Uni-
versity of Namur (Belgium), July 1987.

[Van Hentenryck and Dincbas, 19861 P. Van Hentenryck
and M. Dincbas. Domains in Logic Programming.
In AAAI-86, Philadelphia, USA, August 1986.

664 Machine Architectures and Computer Languages for AI

