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Abstract 

Knowledge-based real-time control problems 
can be usefully viewed as dynamic resource 
allocation problems. Analysis of various 
real-time applications and real-time AI 
models reveals that real-time control 
problems require the problem solving 
capability of knowledge intensive methods 
coupled with the control mechanisms of 
operating systems. Moreover, there is an 
opportunity and need to exploit parallelism 
inherent in real-time control problems. We 
describe a user-programmable concurrent 
computation model which blends the 
capabilities of knowledge-based systems and 
operating systems. We ah30 propose a novel 
set of performance measures useful for 
real-time AI systems. 

1. Introduction 

Knowledge-based real-time problems occur in 
diverse areas such as process control, autonomous 
land vehicles, and operation of complex systems 
(e.g., situation assessment, tactical planning, path 
planning, mission control, decision aiding, and risk 
control). Al solutions to these problems require 
blending knowledge-intensive approaches with 
control mechanisms of operating systems such as 
concurrent and coordinated performance of multiple 
tasks, quick reaction to high priority tasks, 
adaptation to variable rate of incoming data, and 
the ability to suspend and resume tasks. Existing 
parallel computation models in Lisp are mostly 
oriented toward achieving greater speed-up at the 
algorithmic level. RT problems pose different 
requirements. Thus the focus of our research is 
on developing new architectural models. In this 
paper we describe problem areas, extract problem 
requirements, describe a model for knowledge-based 
concurrent computation, and indicate a different set 
of performance measures useful for RT AI systems. 

2. Real-Time Control Problem 

Real-time problems involve performing tasks in a 
dynamic environment under time stress. The 
control problem requires managing available 
resources while accomplishing these tasks. In these 

problems time is both a resource and constraint. 
Time is resource in the sense that we can allocate 
different amounts of time to various tasks and 
also reclaim time by controlling other resources. 
For example, consider the case of simultaneously 
exploring several alternatives where the quality of 
solution is proportional to the time spent in 
finding the solution. In this case if we have more 
time then instead of accepting the earliest solution 
we can afford to wait and find a better quality 
solution. Another instance is a combat situation 
where an agent encountering threat may only 
have a few seconds to protect itself. If it has 
appropriate resources (extra fuel, other friendly 
agents able to help, opportunity) it can attempt to 
make an evasive move or distract the attacker and 
thereby gain time. The amount of available time 
cannot be easily quantified and often depends upon 
the context defined by the activities of other 
agents and status of other resources. 

We view real-time control as a problem of 
managing resources in performing specified tasks. 
This involves both reasoning about how to allocate 
resources and reasoning about what tasks need to 
be performed. These two problems involve several 
difficult reasoning and control issues. Solving a 
problem requires allocation of various 
computational resources. When resource 
requirements are predictable resource allocation is 
algorithmic, fixed and declared in the program, and 
is expected to be consistent with the available 
resources. However, in real-time control problems 
unpredictable external influences tend to disturb 
the existing balance of resource allocation, and it is 
required to re-al&ate resources to satisfy the needs 
of the external demands within the constraints of 
available resources while satisfying the specified 
goals. We consider this problem of dynamic 
resource a&cation as a basic problem of real- 
time control. 

3. Information Processing in Real-Time 
Control Problems 

Our working model of real-time control is as 
follows. The operation of real-time system involves 
performing a stream of tasks. The tasks are 
generated by the demands of the external 
environment or by the activities of the real-time 
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system itself. Thus information processing in RT 
control problems involves describing and controlling 
the flow of tasks through the various stages of 
concurrent computation. Most real-time AI 
problems share these characteristics. 

As an example let us consider the blackboard 
models. Blackboard architectures have been used 
for various real-time applications such as real-time 
Pro== control [D’Amborsio 871 sensor data 
interpretation, and speech recognition [Nii 861. In 
this paper we will use a specific blackboard model 
called HCVM (Heuristic Control Virtual Machine). 
HCVM is an object-oriented blackboard system 
developed by FMC and Teknowledge and used in 
knowledge-intensive real-time problem 
[D’Ambrosio 871. 

solving 
Figure 1 shows a concurrent 

view of the information flow in HCVM. The top 
level control of HCVM consists of several control 
modules. The communications manager (CM) 
handles input/output interactions with the external 
world. CM reads data from the external world, 
generates data handler (DH) tasks to update data, 
and sends these tasks to a buffer called DH-Queue. 
The use of the buffer enables CM to run 
asynchronously with other modules. Module Data 
Handler Execution (DHE) reads a DH task from 
the buffer, executes the t&S, and updates 
appropriate data in the data space, i.e, the 
blackboard. A data handler can do routine 
processing such as data validation and trend 
calculation. HCVM supports several knowledge 
source modules called knowledge handlers &H). A 
KH has a trigger condition which is evaluated 
against changes in the data space to determine if 
the KH should be scheduled for execution. A 
module called Trigger Condition Evaluation (TCE) 
evaluates the trigger conditions of all the KHs and 
puts the triggered KHs on the Agenda. The 
module Agenda Manager prioritizes and schedules 
KHs for execution. In this model the top priority 
KH gets executed. Execution of a KH can 
generate other tasks, called Task Handlers, which 
are put in a buffer for further execution. 
Encoding a KH as a sequence of THs allows 
interleaved execution of several KHs. The 
execution of knowledge handlers or task handlers 
can result in data update tasks which are sent to 
DH-Queue or output to CM. 

DH-Queue 

TH-Queue KH-Quc=ue 

FIGURE 1. Information Flow in HCVM 

4. Computational Requirements of Real-Time 
Control 

Based on an analysis of the HCVM system and 
other real-time control applications we have 
arrived at the following requirements. These 
requirements have guided the development of a 
concurrent real-time model described in next 
section. 

o Concurrent Execution of Tasks: In real-time 
problems there is both an opportunity and need 
for concurrent execution of tasks (e.g., the top 
level control tasks and the execution of KHs in 
HCVM). With suitable parallel hardware support 
this can lead to the desired performance in terms 
of speed and quality of solution. 
o Knowlledge-Based Task Scheduling: Tasks are 
scheduled for execution either because they are 
required by an active plan or they are needed due 
to the changes in the environment. 
o Knowledge-Based Task Prioritization: Certain 
tasks have a higher priority over other, e.g., tasks 
pertaining to the survivability and safety of a 
system. The priority of a task depends upon 
several factors such as the inputs from the 
environment, the tasks already under execution, 
and the current goals of the system. Task 
priorities are computed dynamically by the Agenda 
Manager. 
0 Task Interruption/Resumption: Task 
interruption is required to shift resources from a 
low priority task to a higher priority task in 
order to achieve the desired level of responsiveness. 
Suspended tasks may have to be resumed after 
high priority tasks have been executed. The 
decision to suspend, resume, or abort the current 
task is a knowledge-based decision and amenable to 
parallel processing. 
o Communication Between the Tasks: Real-time 
control needs cooperative problem solving, therefore, 
individual tasks should be able communicate to 
share data in order to achieve goals. 
o Resource Constraint/Contention: Real-time 
applications often have finite amount of non- 
renewable resources, for example, to complete a 
certain mission a vehicle has fixed amount of time 
and fuel. Often the tasks may compete for the 
same resources. Thus a key problem is to 
determine which constraints are rigid and which 
can be relaxed. 
0 Knowledge-Based Resource Management: 
Given a certain set of resource constraints and 
various tasks competing for them a key problem is 
to determine how the resources should be shifted 
between the tasks. 
o Risk Reduction/Graceful egradation: The 
system should be able to handle the following 
two situations: (I> reduction in capability due to 
partial system failures; and (2) demands exceeding 
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the designed capability. In such situations the 
real-time systems should still provide the best 
performance it can. 
o Concurrent Exploration of Alternatives: The 
constraints of available resources and the need to 
produce an acceptable solution under time stress 
requires that several alternative solutions be 
explored in parallel. This feature is an important 
component of risk-reduction strategies. 

Computational Ressurce AlPocatiom: 
&mputing systems have finite resources (memory 
and computational power). Real-time control 
systems need capability to allocate processors 
flexibly to the tasks and be able to change the 
allocation dynamically to address the needs of the 
problem. 

5. QP-Net: A Computational Model 

The computational model proposed here provides a 
mechanism to generate tasks and to allocate the 
tasks to processors in a flexible and machine 
independent manner. Real-time computation is 
described as a flow of tasks in a network of task 
queues and task processors, along with various 
control strategies for resource allocation. 
5.1 The QP-Net Model 

The basic model consists of three elements: tasks, 
task queues, and servers which are task processors. 
The real-time problem is modeled as a network of 
task queues and servers. Typically, servers read a 
task from a task queue, process the task, and if 
appropriate put new tasks on the same queue or 
another queue. 

The model supports multiple task queues for 
tasks with different priorities. The policies for 
scheduling and prioritizing tasks are defined in the 
context of these prioritized task queues. This 
model of task queues is expressed by defining a 
q-manager object shown in Figure 2a. A q- 
manager has prioritized task queues in local 
memory and methods defined for returning 
next-task for execution and enqueue-task for 
prioritizing and storing incoming task in the 
proper task queue. The q-manager also has probes 
to measure various performance parameters such as 
the number of tasks waiting execution, the rate at 
which tasks are incoming, and the rate at which 

tasks are being removed. Information from these 
probes is used as parameters in control strategies. 
The control strategies are local to a q-manager and 
may consist of prioritization and scheduling 
policies, resource allocation mechanisms, and 
synchronization mechanisms. 

A server is a process (shown in Figure 2b) 
which requests a task from a specified q-manager. 
The q-manager served by a server can be 
determined in one of the following ways: 

- a single q-manager is specified thus the server 
is dedicat& 

- select a q-manager from an ordered list of 
q-managers. For example, the server shown in 
Figure 2b approaches q-managers in the following 
order QI, 42, . . . . Qn until a q-manager returns a 
task. Thus as long as one of the q-managers on 
the list has a task to be performed the server 
will do useful work. 

In option 1 it is possible to have more than 
one server for a q-manager. If the result of the 
execution of a task is another task to be evaluated 
then the server sends this task to an appropriate 
q-manager. 

5.2 Characteristics of Qp-Net ode1 

The proposed QP-Net model is conceptually 
simple and can support various requirements of 
building real-time knowledge based systems. Here 
we discuss a few of the characteristics. 

et Can Support Real-Time equirements 
As discussed in the requirements real-time control 
problems require features and power of operating 
systems (parallel processing, scheduling, resource 
allocation), and the capability to solve knowledge 
intensive problems. QP-Net combines operating 
system features with object oriented programming 
and can support a concurrent blackboard model. 
Thus QP-Net is good for developing knowledge 
based systems and real-time applications. 
o Flexible Allocation of Processors 
As an example let us again consider the 
blackboard architecture shown in Figure 1. Using 
the QP-Net model we can design three types of 

Next Task 
ReqwSts 

Nf'xt Task A. Q-Manaqer Model 

FIGIIRF: 7 Elements of CF-N+t 
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multiprocessor architectures depending upon the 
allocation of q-managers and servers: (1) Static 
Allocation; (2) Dynamic Allocation; and (3) Hybrid 
Allocation. The Stcztk AUocatton architecture 
(Figure 3a) has a fixed number of servers 
dedicated to various concurrent tasks. By 
experimenting with the allocation of different 
number of servers it is possible to fine tune the 
architecture for the desired performance. Such an 
architecture suffers from the problems of load 
unbalance and inability to dynamically reallocate 
resources to meet the demands of the problem. 
Dynanzic aZloc&n (Figure 3b) is a response to the 
load balancing problem. Dynamic allocation also 
enables designs that are independent of specific 
hardware configuration, i.e., number of processors. 
In dynamic allocation free servers are assigned to 
q-managers. This is same as the futures model of 
MultiLisp [Halstead 861. The dynamic allocation 
has a drawback: it is difficult to guarantee the 
availability of resources when needed or dedicate a 
fixed amount of resources. 
(Figure 

Hybrid allocation 
3c) offers a blend of the good 

characteristics of the static and dynamic allocation. 
In a hybrid allocation scheme certain q-managers 
(e.g., highly critical tasks) are preassigned fixed 
number of servers and others are assigned servers 
dynamically. This flexible design can also enable 
reassigning some of the servers from the 
dynamically allocatable cluster to the high priority 
q-managers. 
o Resource Allocation 
The resource allocation problem can be viewed as: 
(I) balancing processor load, and (2) controlling the 
size of task queues. Strategies to balance processor 
load can be quite expensive because they require 
monitoring processor utilization and then migrating 
tasks or objects to the under-utilized processor. 
Implementing optimal migration strategies in itself 
can be very expensive. 

In QP-Net model load balancing is easily 
achieved by using a dynamic allocation scheme 
along with an ordered list of q-managers. The load 
balancing thus achieved does not guarantee that 
the processors are busy doing useful work. In 
other models (such as futures and parallel object 
oriented models) there is no easy way to detect 
busy waiting during the processing. However, in 
QP-Net model the effect of busy waiting is 
quickly detected in terms of increased congestion at 
some of the q-managers. This problem can be 
solved by changing the ordered list of q-managers 
of a certain number of processors. Another 
approach is to view servers as Zogical processors 
and the processor allocation is done dynamically as 
shown in Figure 4a. If server Sl needs twice the 
processing capability then instead of shifting a 
processor from some where else we can change the 
server to processor allocation table in the manner 
shown in Figure 4b. If S2 no longer need 
processors then we can remove S2 from the table. 
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6. Performance Measures for Parallel Real- 
Time Programs 

A structure of real-time algorithm (a network of 
tasks), an initial allocation, and control strategies 
to dynamically change the allocation defines a 
dynamk real-the architecture. Given two such 
architectures we need to compare their performance 
and discuss the impact of various design changes. 
The question to be addressed is: how do we 
measure the impact of design changes? 

There are two aspects of a real-time design that 
a designer can change: (I) the architecture as 
defined by the flow of tasks and the allocation of 
resources to the tasks; and (2) the control 
strategies. Effects of architectural changes are 
reflected in terms of the overall usage of resources 
which in turn gets reflected as execution time or 
speed-up, the congestion in task queues or the 
number of tasks waiting at various q-managers, 
and the processor utilization. In addition to these 
three parameters the control strategies also affect 
responsiveness and graceful degradation. 
o Speed-Up 
Speed-up is a good measure of performance for 
algorithms where the computations consists of a 
finite number of tasks of predictable size. RT 
problems are not amenable to the algorithmic 
approach and are better modeled as a flow of 
tasks through a network of task queues and 
servers. Speed-up is not a useful measure for the 
flow of tasks because: 

- The flow of tasks is an indefinite process. 
- The time it takes to complete a task is 

unpredictable because it depends on several factors 
which can affect the time at which the task is 
scheduled, possible suspension of tasks, and 
subsequent resumption at an indefinite time in 
future. Performance depends not only on the 
number of processors and synchronization effects, 
but also on the rate at which tasks arrive. 

- The network of tasks queues and processors 
itself is dynamic because it changes to 
accommodate the demands of the external 
environment. 
The network of tasks requires control algorithms 
to respond to the demands of the external 
environments. Since speed-up is useful at the 
algorithmic level and it can provide a useful 
measure for the control algorithms. 
o Congestion: The Number of Tasks Waiting 
for Execution 
Congestion is a measure of the flow of tasks and 
a useful parameter for resource allocation. The size 
of the queue tends to increase and decrease (since 
the arrival times and the processing times of IX&S 

can-not be totally controlled or predicted) and one 
can compute the average size. The mean queue 
size is a useful parameter; it is a result of how 
the system performs, it is measurable, and it is 



Data Handler 
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I/O 
Port 

Trigger Evaluation 

Prioritized 

TH Execcution KH Execution 

Here 2 processors are dedicated to Communications Manager, 3 to Data 
Handlers, 1 each to Trigger Evaluation and Agenda manager, and 4 each to KHs and THs. 

R. DYNAMIC ALLOCATION 
Here there is only one global 
task queue served by all the processors 
in the order they become free from 
executing the previous task. This is 
essentially the FUTURE model. 

Data Handler 
Execution 

Communication 
Manager / 

DH-Queue 
Trigger Evaluation 

I/O 
Ports 

KH or TH Execution 

Here Communication Manager, Data 

shown in Figure A. However, KHs and 
THs are assigned processors 
dynamically. 

Agenda 

Prioritized 
KHs 

TH-Queue 

FIGURE 3. Schemes for Allocating Processors to Tasks 

Shanna and Sridharan 669 



Servers 

I I I I 

Processoc 
A B 

Figure 4. Allocation of Servers to Processors 

possible to analytically relate the mean queue size 
to the number of processors [Cox 611. For a large 
network of queues and processors it also provides 
a means to pinpoint hot areas of congestion. 
0 Processor Utilization 
The third parameter is the fraction of time 
processors are doing useful work. This parameter 
provides a measure of how economical the system 
is and if there is room for improvement. It can be 
measured, provides an indication of system 
performance, and the overall system utilization can 
be analytically expressed in terms of the properties 
of individual processors [Cox 611. 
0 Responsiveness 
Responsiveness indicates how deftly the system can 
respond to dynamic task demands. Responding to 
dynamic tasks may require detecting the need to 
take some action (e.g., an overgrown task queue), 
undertake new tasks, or shift resources from the 
current tasks to new tasks. A useful measure of 
responsiveness is the latency of tasks in a certain 
priority class, i.e., the mean queuing-time. 
o Graceful Degradation 
Graceful Degradation refers to the ability of the 
system to adapt to workloads exceeding the 
processing capability of the system. Specific 
measures will be number of critical tasks correctly 
completed and the solution quality. Solution 
quality can be measured by measuring how many 
unacceptable solutions were generated and how 
many acceptable solutions were missed. 
7. Conclusion 

Real-time control is an important and challenging 
research area. b our view important research 
problems are: 

- developing an understanding of the role of 
knowledge and control strategies for achieving real- 
time performance; 

developing high level concurrent 
computational models to support the required 
knowledge-intensive problem solving; 

- developing an understanding of important 
performance measures and how to use them for 
designing better solutions. 
Viewing real-time control as a resource allocation 
problem provides a useful framework for study@ 
the issues mentioned above. Our research group at 

FMC is studying these problems in the context of 
problems of interest to us. We believe that the 
QP-Net model provides a useful framework to 
study the implications of developing concurrent 
architectures for real-time applications and for 
understand their performance characteristics. We 
have implemented the basic elements on a 16 node 
Butterfly multiprocessor in Butterfly Scheme and 
are currently implementing the refinements on a 
Symbolics using an object-oriented system with 
simulation of concurrency. 
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