
Knowledge43ased Real-Time ContrOll: A Parallel Processing Perspective

D. D. Sharma and N. S. Sridharan
FMC Corporation

Artificial Intelligence Center
1205 Coleman Avenue, Box 580,

Santa Clara, CA 95052

Abstract

Knowledge-based real-time control problems
can be usefully viewed as dynamic resource
allocation problems. Analysis of various
real-time applications and real-time AI
models reveals that real-time control
problems require the problem solving
capability of knowledge intensive methods
coupled with the control mechanisms of
operating systems. Moreover, there is an
opportunity and need to exploit parallelism
inherent in real-time control problems. We
describe a user-programmable concurrent
computation model which blends the
capabilities of knowledge-based systems and
operating systems. We ah30 propose a novel
set of performance measures useful for
real-time AI systems.

1. Introduction

Knowledge-based real-time problems occur in
diverse areas such as process control, autonomous
land vehicles, and operation of complex systems
(e.g., situation assessment, tactical planning, path
planning, mission control, decision aiding, and risk
control). Al solutions to these problems require
blending knowledge-intensive approaches with
control mechanisms of operating systems such as
concurrent and coordinated performance of multiple
tasks, quick reaction to high priority tasks,
adaptation to variable rate of incoming data, and
the ability to suspend and resume tasks. Existing
parallel computation models in Lisp are mostly
oriented toward achieving greater speed-up at the
algorithmic level. RT problems pose different
requirements. Thus the focus of our research is
on developing new architectural models. In this
paper we describe problem areas, extract problem
requirements, describe a model for knowledge-based
concurrent computation, and indicate a different set
of performance measures useful for RT AI systems.

2. Real-Time Control Problem

Real-time problems involve performing tasks in a
dynamic environment under time stress. The
control problem requires managing available
resources while accomplishing these tasks. In these

problems time is both a resource and constraint.
Time is resource in the sense that we can allocate
different amounts of time to various tasks and
also reclaim time by controlling other resources.
For example, consider the case of simultaneously
exploring several alternatives where the quality of
solution is proportional to the time spent in
finding the solution. In this case if we have more
time then instead of accepting the earliest solution
we can afford to wait and find a better quality
solution. Another instance is a combat situation
where an agent encountering threat may only
have a few seconds to protect itself. If it has
appropriate resources (extra fuel, other friendly
agents able to help, opportunity) it can attempt to
make an evasive move or distract the attacker and
thereby gain time. The amount of available time
cannot be easily quantified and often depends upon
the context defined by the activities of other
agents and status of other resources.

We view real-time control as a problem of
managing resources in performing specified tasks.
This involves both reasoning about how to allocate
resources and reasoning about what tasks need to
be performed. These two problems involve several
difficult reasoning and control issues. Solving a
problem requires allocation of various
computational resources. When resource
requirements are predictable resource allocation is
algorithmic, fixed and declared in the program, and
is expected to be consistent with the available
resources. However, in real-time control problems
unpredictable external influences tend to disturb
the existing balance of resource allocation, and it is
required to re-al&ate resources to satisfy the needs
of the external demands within the constraints of
available resources while satisfying the specified
goals. We consider this problem of dynamic
resource a&cation as a basic problem of real-
time control.

3. Information Processing in Real-Time
Control Problems

Our working model of real-time control is as
follows. The operation of real-time system involves
performing a stream of tasks. The tasks are
generated by the demands of the external
environment or by the activities of the real-time

Shanna and Sridharan 665

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

system itself. Thus information processing in RT
control problems involves describing and controlling
the flow of tasks through the various stages of
concurrent computation. Most real-time AI
problems share these characteristics.

As an example let us consider the blackboard
models. Blackboard architectures have been used
for various real-time applications such as real-time
Pro== control [D’Amborsio 871 sensor data
interpretation, and speech recognition [Nii 861. In
this paper we will use a specific blackboard model
called HCVM (Heuristic Control Virtual Machine).
HCVM is an object-oriented blackboard system
developed by FMC and Teknowledge and used in
knowledge-intensive real-time problem
[D’Ambrosio 871.

solving
Figure 1 shows a concurrent

view of the information flow in HCVM. The top
level control of HCVM consists of several control
modules. The communications manager (CM)
handles input/output interactions with the external
world. CM reads data from the external world,
generates data handler (DH) tasks to update data,
and sends these tasks to a buffer called DH-Queue.
The use of the buffer enables CM to run
asynchronously with other modules. Module Data
Handler Execution (DHE) reads a DH task from
the buffer, executes the t&S, and updates
appropriate data in the data space, i.e, the
blackboard. A data handler can do routine
processing such as data validation and trend
calculation. HCVM supports several knowledge
source modules called knowledge handlers &H). A
KH has a trigger condition which is evaluated
against changes in the data space to determine if
the KH should be scheduled for execution. A
module called Trigger Condition Evaluation (TCE)
evaluates the trigger conditions of all the KHs and
puts the triggered KHs on the Agenda. The
module Agenda Manager prioritizes and schedules
KHs for execution. In this model the top priority
KH gets executed. Execution of a KH can
generate other tasks, called Task Handlers, which
are put in a buffer for further execution.
Encoding a KH as a sequence of THs allows
interleaved execution of several KHs. The
execution of knowledge handlers or task handlers
can result in data update tasks which are sent to
DH-Queue or output to CM.

DH-Queue

TH-Queue KH-Quc=ue

FIGURE 1. Information Flow in HCVM

4. Computational Requirements of Real-Time
Control

Based on an analysis of the HCVM system and
other real-time control applications we have
arrived at the following requirements. These
requirements have guided the development of a
concurrent real-time model described in next
section.

o Concurrent Execution of Tasks: In real-time
problems there is both an opportunity and need
for concurrent execution of tasks (e.g., the top
level control tasks and the execution of KHs in
HCVM). With suitable parallel hardware support
this can lead to the desired performance in terms
of speed and quality of solution.
o Knowlledge-Based Task Scheduling: Tasks are
scheduled for execution either because they are
required by an active plan or they are needed due
to the changes in the environment.
o Knowledge-Based Task Prioritization: Certain
tasks have a higher priority over other, e.g., tasks
pertaining to the survivability and safety of a
system. The priority of a task depends upon
several factors such as the inputs from the
environment, the tasks already under execution,
and the current goals of the system. Task
priorities are computed dynamically by the Agenda
Manager.
0 Task Interruption/Resumption: Task
interruption is required to shift resources from a
low priority task to a higher priority task in
order to achieve the desired level of responsiveness.
Suspended tasks may have to be resumed after
high priority tasks have been executed. The
decision to suspend, resume, or abort the current
task is a knowledge-based decision and amenable to
parallel processing.
o Communication Between the Tasks: Real-time
control needs cooperative problem solving, therefore,
individual tasks should be able communicate to
share data in order to achieve goals.
o Resource Constraint/Contention: Real-time
applications often have finite amount of non-
renewable resources, for example, to complete a
certain mission a vehicle has fixed amount of time
and fuel. Often the tasks may compete for the
same resources. Thus a key problem is to
determine which constraints are rigid and which
can be relaxed.
0 Knowledge-Based Resource Management:
Given a certain set of resource constraints and
various tasks competing for them a key problem is
to determine how the resources should be shifted
between the tasks.
o Risk Reduction/Graceful egradation: The
system should be able to handle the following
two situations: (I> reduction in capability due to
partial system failures; and (2) demands exceeding

666 Machine Architectures and Computer Languages for AI

the designed capability. In such situations the
real-time systems should still provide the best
performance it can.
o Concurrent Exploration of Alternatives: The
constraints of available resources and the need to
produce an acceptable solution under time stress
requires that several alternative solutions be
explored in parallel. This feature is an important
component of risk-reduction strategies.

Computational Ressurce AlPocatiom:
&mputing systems have finite resources (memory
and computational power). Real-time control
systems need capability to allocate processors
flexibly to the tasks and be able to change the
allocation dynamically to address the needs of the
problem.

5. QP-Net: A Computational Model

The computational model proposed here provides a
mechanism to generate tasks and to allocate the
tasks to processors in a flexible and machine
independent manner. Real-time computation is
described as a flow of tasks in a network of task
queues and task processors, along with various
control strategies for resource allocation.
5.1 The QP-Net Model

The basic model consists of three elements: tasks,
task queues, and servers which are task processors.
The real-time problem is modeled as a network of
task queues and servers. Typically, servers read a
task from a task queue, process the task, and if
appropriate put new tasks on the same queue or
another queue.

The model supports multiple task queues for
tasks with different priorities. The policies for
scheduling and prioritizing tasks are defined in the
context of these prioritized task queues. This
model of task queues is expressed by defining a
q-manager object shown in Figure 2a. A q-
manager has prioritized task queues in local
memory and methods defined for returning
next-task for execution and enqueue-task for
prioritizing and storing incoming task in the
proper task queue. The q-manager also has probes
to measure various performance parameters such as
the number of tasks waiting execution, the rate at
which tasks are incoming, and the rate at which

tasks are being removed. Information from these
probes is used as parameters in control strategies.
The control strategies are local to a q-manager and
may consist of prioritization and scheduling
policies, resource allocation mechanisms, and
synchronization mechanisms.

A server is a process (shown in Figure 2b)
which requests a task from a specified q-manager.
The q-manager served by a server can be
determined in one of the following ways:

- a single q-manager is specified thus the server
is dedicat&

- select a q-manager from an ordered list of
q-managers. For example, the server shown in
Figure 2b approaches q-managers in the following
order QI, 42, Qn until a q-manager returns a
task. Thus as long as one of the q-managers on
the list has a task to be performed the server
will do useful work.

In option 1 it is possible to have more than
one server for a q-manager. If the result of the
execution of a task is another task to be evaluated
then the server sends this task to an appropriate
q-manager.

5.2 Characteristics of Qp-Net ode1

The proposed QP-Net model is conceptually
simple and can support various requirements of
building real-time knowledge based systems. Here
we discuss a few of the characteristics.

et Can Support Real-Time equirements
As discussed in the requirements real-time control
problems require features and power of operating
systems (parallel processing, scheduling, resource
allocation), and the capability to solve knowledge
intensive problems. QP-Net combines operating
system features with object oriented programming
and can support a concurrent blackboard model.
Thus QP-Net is good for developing knowledge
based systems and real-time applications.
o Flexible Allocation of Processors
As an example let us again consider the
blackboard architecture shown in Figure 1. Using
the QP-Net model we can design three types of

Next Task
ReqwSts

Nf'xt Task A. Q-Manaqer Model

FIGIIRF: 7 Elements of CF-N+t

Sharma and Sridharan 667

multiprocessor architectures depending upon the
allocation of q-managers and servers: (1) Static
Allocation; (2) Dynamic Allocation; and (3) Hybrid
Allocation. The Stcztk AUocatton architecture
(Figure 3a) has a fixed number of servers
dedicated to various concurrent tasks. By
experimenting with the allocation of different
number of servers it is possible to fine tune the
architecture for the desired performance. Such an
architecture suffers from the problems of load
unbalance and inability to dynamically reallocate
resources to meet the demands of the problem.
Dynanzic aZloc&n (Figure 3b) is a response to the
load balancing problem. Dynamic allocation also
enables designs that are independent of specific
hardware configuration, i.e., number of processors.
In dynamic allocation free servers are assigned to
q-managers. This is same as the futures model of
MultiLisp [Halstead 861. The dynamic allocation
has a drawback: it is difficult to guarantee the
availability of resources when needed or dedicate a
fixed amount of resources.
(Figure

Hybrid allocation
3c) offers a blend of the good

characteristics of the static and dynamic allocation.
In a hybrid allocation scheme certain q-managers
(e.g., highly critical tasks) are preassigned fixed
number of servers and others are assigned servers
dynamically. This flexible design can also enable
reassigning some of the servers from the
dynamically allocatable cluster to the high priority
q-managers.
o Resource Allocation
The resource allocation problem can be viewed as:
(I) balancing processor load, and (2) controlling the
size of task queues. Strategies to balance processor
load can be quite expensive because they require
monitoring processor utilization and then migrating
tasks or objects to the under-utilized processor.
Implementing optimal migration strategies in itself
can be very expensive.

In QP-Net model load balancing is easily
achieved by using a dynamic allocation scheme
along with an ordered list of q-managers. The load
balancing thus achieved does not guarantee that
the processors are busy doing useful work. In
other models (such as futures and parallel object
oriented models) there is no easy way to detect
busy waiting during the processing. However, in
QP-Net model the effect of busy waiting is
quickly detected in terms of increased congestion at
some of the q-managers. This problem can be
solved by changing the ordered list of q-managers
of a certain number of processors. Another
approach is to view servers as Zogical processors
and the processor allocation is done dynamically as
shown in Figure 4a. If server Sl needs twice the
processing capability then instead of shifting a
processor from some where else we can change the
server to processor allocation table in the manner
shown in Figure 4b. If S2 no longer need
processors then we can remove S2 from the table.

668 Machine Architectures and Computer Languages for AI

6. Performance Measures for Parallel Real-
Time Programs

A structure of real-time algorithm (a network of
tasks), an initial allocation, and control strategies
to dynamically change the allocation defines a
dynamk real-the architecture. Given two such
architectures we need to compare their performance
and discuss the impact of various design changes.
The question to be addressed is: how do we
measure the impact of design changes?

There are two aspects of a real-time design that
a designer can change: (I) the architecture as
defined by the flow of tasks and the allocation of
resources to the tasks; and (2) the control
strategies. Effects of architectural changes are
reflected in terms of the overall usage of resources
which in turn gets reflected as execution time or
speed-up, the congestion in task queues or the
number of tasks waiting at various q-managers,
and the processor utilization. In addition to these
three parameters the control strategies also affect
responsiveness and graceful degradation.
o Speed-Up
Speed-up is a good measure of performance for
algorithms where the computations consists of a
finite number of tasks of predictable size. RT
problems are not amenable to the algorithmic
approach and are better modeled as a flow of
tasks through a network of task queues and
servers. Speed-up is not a useful measure for the
flow of tasks because:

- The flow of tasks is an indefinite process.
- The time it takes to complete a task is

unpredictable because it depends on several factors
which can affect the time at which the task is
scheduled, possible suspension of tasks, and
subsequent resumption at an indefinite time in
future. Performance depends not only on the
number of processors and synchronization effects,
but also on the rate at which tasks arrive.

- The network of tasks queues and processors
itself is dynamic because it changes to
accommodate the demands of the external
environment.
The network of tasks requires control algorithms
to respond to the demands of the external
environments. Since speed-up is useful at the
algorithmic level and it can provide a useful
measure for the control algorithms.
o Congestion: The Number of Tasks Waiting
for Execution
Congestion is a measure of the flow of tasks and
a useful parameter for resource allocation. The size
of the queue tends to increase and decrease (since
the arrival times and the processing times of IX&S

can-not be totally controlled or predicted) and one
can compute the average size. The mean queue
size is a useful parameter; it is a result of how
the system performs, it is measurable, and it is

Data Handler
Execution

I/O
Port

Trigger Evaluation

Prioritized

TH Execcution KH Execution

Here 2 processors are dedicated to Communications Manager, 3 to Data
Handlers, 1 each to Trigger Evaluation and Agenda manager, and 4 each to KHs and THs.

R. DYNAMIC ALLOCATION
Here there is only one global
task queue served by all the processors
in the order they become free from
executing the previous task. This is
essentially the FUTURE model.

Data Handler
Execution

Communication
Manager /

DH-Queue
Trigger Evaluation

I/O
Ports

KH or TH Execution

Here Communication Manager, Data

shown in Figure A. However, KHs and
THs are assigned processors
dynamically.

Agenda

Prioritized
KHs

TH-Queue

FIGURE 3. Schemes for Allocating Processors to Tasks

Shanna and Sridharan 669

Servers

I I I I

Processoc
A B

Figure 4. Allocation of Servers to Processors

possible to analytically relate the mean queue size
to the number of processors [Cox 611. For a large
network of queues and processors it also provides
a means to pinpoint hot areas of congestion.
0 Processor Utilization
The third parameter is the fraction of time
processors are doing useful work. This parameter
provides a measure of how economical the system
is and if there is room for improvement. It can be
measured, provides an indication of system
performance, and the overall system utilization can
be analytically expressed in terms of the properties
of individual processors [Cox 611.
0 Responsiveness
Responsiveness indicates how deftly the system can
respond to dynamic task demands. Responding to
dynamic tasks may require detecting the need to
take some action (e.g., an overgrown task queue),
undertake new tasks, or shift resources from the
current tasks to new tasks. A useful measure of
responsiveness is the latency of tasks in a certain
priority class, i.e., the mean queuing-time.
o Graceful Degradation
Graceful Degradation refers to the ability of the
system to adapt to workloads exceeding the
processing capability of the system. Specific
measures will be number of critical tasks correctly
completed and the solution quality. Solution
quality can be measured by measuring how many
unacceptable solutions were generated and how
many acceptable solutions were missed.
7. Conclusion

Real-time control is an important and challenging
research area. b our view important research
problems are:

- developing an understanding of the role of
knowledge and control strategies for achieving real-
time performance;

developing high level concurrent
computational models to support the required
knowledge-intensive problem solving;

- developing an understanding of important
performance measures and how to use them for
designing better solutions.
Viewing real-time control as a resource allocation
problem provides a useful framework for study@
the issues mentioned above. Our research group at

FMC is studying these problems in the context of
problems of interest to us. We believe that the
QP-Net model provides a useful framework to
study the implications of developing concurrent
architectures for real-time applications and for
understand their performance characteristics. We
have implemented the basic elements on a 16 node
Butterfly multiprocessor in Butterfly Scheme and
are currently implementing the refinements on a
Symbolics using an object-oriented system with
simulation of concurrency.

References

[Cox 611 D.R.Cox and W.L. Smith.@aes. John
Weily and Sons Inc., 1961.

[D’Ambrosio $71 B. D’AMbrosio, M.R. Fehling,
S. Forrest, P. Raulefs, and B.M. Wilber. Real-Time
Process Management for Material Composition in
Chemical Manufacturing. IEEE Expert 2(2),
Summer, 1987.

[Halstead 861 R.H. Halstead. Parallel Symbolic
Computing. IEEE Computer, August, 1986.

[Nii 861 HP. Nii. Blackboard Application Systems.
AI Magazine 3(3), August, 1986.

670 Machine Architectures and Computer Languages for AI

