
Daniel Il. CorkilP and Kevin $. Gdlagher
Department of Computer and Information Science

University of Massachusetts

Abstract

The run-time performance of a blackboard-based
application can be significantly improved by se-
lecting an appropriate blackboard database rep-
resentation. We present empirical validation of
this statement by tuning the representation used
in a large, blackboard-based AI application. Dra-
matic performance gains were obtained without
changing my problem solving or control activi-
ties. The results underscore the importance of
efficient blackboard database operations and the
benefits of a flexible, instrumented blackboard de-
velopment environment when tuning the black-
board representation.

This investigation was facilitated by use of the
Generic Blackboard Development system (GBB)
to construct the application. GBB provides the
flexibility to quickly change the database im-
plementation without recoding. Similar perfor-
mance tuning capabilities are available to any ap-
plication written using GBB.

The performance of blackboard-based applications can
be significantly enhanced by an appropriate blackboard
database implementation. The blackboard paradigm re-
lies heavily on the blackboard for knowledge source (KS)
interaction and for holding tentative, partial results until
they are needed. Although published measures are non-
existent,’ the amount of processing time devoted to black-
board interaction is significant-even in applications built
with blackboard database machinery that has been cus-
tomized for speed. Therefore, the runtime performance of

This research was sponsored in part by the Office of Naval
Research under a University Research Initiative Grant (Con-
tract N00014-86-K-0764), by donations from Texas Instru-
ments, Inc., by the National Science Foundation under CER
Grant DCR-8500332, and by the Defense Advanced Research
Projects Agency (monitored by the Office of Naval Research)
under Contract N00014-79-C-0439,

‘An exception is Fennel1 and Lesser’s measurements with
an early version of the Hearsay-II speech understanding sys-
tem which showed a blackboard interaction to KS pro-
cessing ratio of lo/17 [Fennell and Lesser, 19771. The
blackboard-interaction/processing ratios of the Distributed Ve-
hicle Monitoring Testbed (used in these experiments) range
from a/19-15/3, depending on how efficiently the blackboard
is implemented.

a blackboard-based application is strongly influenced by
the efficiency of placing and retrieving blackboard objects.

In this paper we present empirical results demonstrat-
ing the performance improvements that were obtained by
tuning the blackboard database in a large application: the
Distributed Vehicle Monitoring Testbed (DVMT) [Lesser
and Corkill, 1983; Lesser et ab., 19871. These results are
exciting because they were obtained without changing any
of the problem solving or control activities of the DVMT.
Each set of timed experiments executed the same sequence
of KSs, created and retrieved the same blackboard objects,
and generated the same solution. The only difference be-
tween each experiment was the processing time required
to insert aud retrieve blackboard objects.2

This investigation was facilitated by use of the Generic
Blackboard Development System (GBB) [Corkill et rd.,
19861 for implementing the DVMT. GBB provides both
speed and flexibility in implementing a blackboard-based
application as well as efficient execution of the resulting
application. The database implementation can be easily
changed without recoding (or even recompiling). Such flex-
ibility is important for two reasons. First, the application
writer may not initially understand the insertion/retrieval
characteristics of the application; so the representation
of blackboard objects is subject to change as design in-
tuition evolves into application experience. Second, the
insertion/retrieval characteristics may change from those
of the prototype as the application is placed into service.
This can again require changes to the blackboard repre-
sentation to maintain high performance under operational
conditions.

Before describing how the DVMT’s blackboard im-
plementation was tuned using GBB, we present a brief
overview of the DVMT’s problem-solving architecture,
concentrating on its blackboard structure, blackboard ob-
jects, and blackboard retrieval characteristics. Next we
show how the blackboard representation can be easily var-
ied using GBB. With this background in place, we describe
our experiences tuning the DVMT operating on a two rel-
atively small scenarios followed by the results of scaling
these results to a larger scenario.

‘Several systems such as Joshua [Rowley et al., 19871, MRS
[Russell, 19851, and KEE [Intellicorp, 19871 provide abstrac-
tion mechanisms for modifying the representation of data struc-
tures without changing rules. However, performance improve-
ments using Joshua often involve reductions in the number and
changes in the sequence of rule firings; MRS is tailored to logic
programming; and KEE leaves you to write your own procedu-
ral storage and retrieval functions.

Corkill and Gallagher 671

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

hwa

I t s11bgoals I

..........................

..........................

Goal Data
BB BB

..........................

..........................

KSs

Data -

Control -4- - -

N
0
(I
,’

-

Figure 1: The DVMT Node Architecture

2 An Overview of the DVMT
The Distributed Vehicle Monitoring Testbed (DVMT) sim-
ulates a network of blackboard-based problem solving
nodes working on the vehicle monitoring task. The objec-
tive of the network is to generate an answer map contain-
ing the identity and movement of vehicle patterns based
on passively sensed acoustic data. Each network node is
a complete Hearsay-II architecture [Erman et al., 19801
with KSs and blackboard levels appropriate for the task
of vehicle monitoring. The basic control components of
Hearsay-II have been augmented by goal-processing and
planning capabilities (Figure 1). In this paper, we concen-
trate on the major blackboard components: the data, goal,
consistency, and ghyp blackboards.

Hypothesized vehicle movements are represented by hy-
potheses placed on the data blackboard (D-BB). KSs per-
form the basic problem solving tasks of abstracting, ex-
tending, and refining these hypotheses. The D-BB is par-
titioned into four data abstraction levels: signals (con-
taining minimally-processed sensory data), groups (repre-
senting harmonically-grouped signal hypotheses), vehicles
(containing vehicle types hypothesized from related group
hypotheses), and patterns (containing spatially-related ve-
hicles, such as vehicles moving in formation). Each of these
abstraction levels is split into a level for location hypothe-
ses (which have one sensed position) and a level for track
hypotheses (which have a compatible sequence of sensed
positions over time) for a total of eight D-BB levels: SL,
ST, GL, GT, VL, VT, PL, and PT.

KSs combine hypotheses to form more encompassing hy-
potheses on the same or higher levels. Decisions of which
KSs to execute are made using a unified data- and goal-
directed framework [Corkill et al., 19821. The control com-
ponents of the DVMT (primarily the planner and goal pro-
cessor) create goals on the goal blackboard (G-BB), which
mirrors the 8-level organization of the D-BB. Each goal

represents a request to create a one or more hypotheses on
the D-BB within the (corresponding) area covered by the
goal. KSs serve as the “actions” for achieving goals on the
G-BB.

In addition to the D-BB and G-BB, the DVMT in-
cludes two “hidden” blackboards for instrumentation. The
consistency blackboard (C-BB) contains hypotheses repre-
senting the correct solution hierarchy as precomputed from
the input data. This oracle is invisible to the KSs and
control components, but is used to evaluate the develop-
ing solution by simulation measurement tools. The gllyp
blackboard (GH-BB) contains a complete centralized set
of the sensory data. Again these hypotheses are only used
by measurement tools.

The details of hypotheses and goal objects are also im-
portant for tuning the application, and we briefly describe
the structure of each.

A hypothesis on the D-BB, C-BB, or GH-BB has the fol-
lowing major attributes: one or more time-locations (the
vehicle’s sensed location at successive points in time), an
even t-class (the frequency classification or vehicle identity
information), and a belief (the confidence in the accuracy
of the hypothesis). The time-location structure of a hy-
pothesis is represented in GBB as a composite unit3 con-
taining series of connected (5c, y) points along the time di-
mension:

L : : ; : : : : : : : : 1

X

A goal has the following major attributes: one or more
time-regions (areas of desired problem solving activity), a
set of event-classes, and a rating (an estimate of the impor-
tance of achieving this goal). The time-region structure of
a goal is represented as a composite unit containing series
of connected (;G, y) regions along the time dimension:

All DVMT levels are implemented as GBB spaces with
dimensions time, e, y, and event-class. (Belief and mt-
ing would also be useful dimensions but these attributes
were not represented as dimensions in the current imple-
mentation of the DVMT.) Space dimensionality is central
to GBB. It provides a metric for positioning units on the

3GBB’s blackboard objects.

672 Machine Architectures and Computer Languages for AI

blackboard in terms that are natural to the application do-
main. Units are viewed as occupying some n-dimensional
extent within the space’s dimensionality. Application code
can create and retrieve units according to the dimensions
of spaces, without regard to the underlying implementa-
tion of the blackboard structure [Corkill et al., 29871. Di-
mensional references, however, contain enough information
when combined with information about the structure of the
blackboard to allow efficient retrieval code to be generated.

3 The Experiments
Access to the DVMT provided the opportunity to empir-
ically evaluate the performance of the DVMT simulator,
given differing specifications for the blackboard database
implementation. We selected a “typical” single problem-
solving node scenario and created three configurations
(each one increasingly complex) for experimentation. The
first configuration (which will be labeled Cl) had a re-
duced amount of sensory noise and a reduced grammar.
The second configuration (C2) had a reduced amount of
sensory noise and a full grammar. The third configura-
tion (C3) had all th e sensory noise and reduced grammar.
The less complicated versions (Cl and C2) required sig-
nificantly less processor time, and allowed us to run more
tuning experiments.

The domain of these experiments was limited to the
blackboard implementation strategies provided by GBB,
and the performance comparisons are between GBB’s var-
ious strategies. Considerable effort has been spent opti-
mizing GBB’s database machinery, and even GBB’s de-
fault blackboard implementation strategy results in “rea-
sonable” performance when fewer than 15-20 units reside
on a blackboard level.”

We emphasize that identical processing occurs in all the
experimental tests within an experiment suite. The input
data is identical, KSs run in the same sequence, locate the
same hypotheses, produce the same output, the control
components make the same decisions, and so on. Further-
more, t.he abstract representation of the blackboard (its de-
composition into spaces), the dimensionality of each space,
and the unit retrieval pattern specifications remained con-
stant. The only variable is the blackboard database ma-
chinery used by GBB to store and retrieve blackboard
units.

Our experiments concentrated on how hypotheses are
stored on the D-BB, C-BB, and GH-BB and how goals are
stored on the G-BB. Intuition led us to expect that when a
small number of units were to be created on a blackboard
level, a simple “push them on a list” implementation would
be best due to its low overhead. When a large number
of units were created on a space and numerous retrievals
were performed on them, a more complex “dimensional-
metric-based” implementation was appropriate. Finally,
we expected that hypotheses and goals would have differ-
ent balances in their storage strategies because hypotheses
are composites of points while goals tended to be overlap-
ping composites of (2, y) regions. (This expectation proved
false.)

.'Due to its size, it was impractical to recode the DVMT
to obtain performance measurements for a non-GBB-based
implementation.

We began by analyzing each configuration’s blackboard
interaction statistics. GBB can provide the number and
types of units created on each space, the number of in-
sertion and retrieval operations performed on each space,
and the time spent on these operations. The numbers of
hypotheses and goals created on each blackboard space are
as follows:

Cl: Number of Blackboard Objects --
Level-- 1 _ _._ PL PT GL GT VL VT ST SL

_-.. -.- _ --
C-B5 D-BB ------ 64 32 16 16 4 2 1 1 -- 264 164 188 192 44 .-..--- 0 0 0 . -_---__ G-B5 .- 450 362 44 . 96 0 0 0 0 - c=-ii-BB 192 -- - __ -- /

_ _ _~~

C2: Number of Blackboard Objects
-y-BB D-BB G-BB GH-BB Level

SL 64 192 0 192
ST 4 0 0
GL 32 264 96
GT 2 0 0
VL 16 44 44
VT 1 164 362
PL 16 0 0
PT 1 352 892

C3: Number of Blackboard Objects --_1__---
Level

SL
C-B5 D-BB G-55=-BB /

64 2176 0 2176
ST 4 0 0
GL 32 342 1088
GT 2 0 0
VL 16 57 57
VT 1 234 455
PL
PT 1 297 610

The number of KS executions required to find the solution
in each configuration is:

In all configurations, few units are created on the ST, GT,
and PL levels. This is because the control components
were instructed to restrict the synthesis path to the SL,
GL, VL, VT, PT levels.

The number of blackboard unit retrieval operations is
also important for tuning. For the each configuration,
GBB reports the following operation counts. The tables
show the number of retrieval operations for each space fol-
lowed by the percentage of the total number of retrievals,
enclosed in parentheses.

Cl: Number of Blackboard Retrievals
Level C-BB D-BB G-B5 GH-BB

SL 680 (3) 1344 (6) 192 (I> 556 (3)
ST 4 (0) 0 (0) 368 (2)
GL 1184 (6) 800 (4) 456 (2)
GT 2 (0) 0 (0) 504 (2)
VL 1204 (6) 338 (2) 348 (2)
VT 872 (4) 1439 (7) 712 (3) Total
PL 16 (0) 0 (0) 44 (0) 21,228
PT 5343 (25) 2620 (12) 2202 (IO)

CorkIll and Gallagher 673

C2: Number of Blackboard Retrievals
r Level

~C-B~B---ij-BB~- -.-_ -_ .-” ---~--
G-BB GH-BB .~ ______ - ___-._~--^ __ __---. - _-

SL 680 t 2) 1344 t 3) 192 (0) 656 (1)
ST 4 (0) 0 t 0) 368 (1)
GL 1184 (3) 800 (2) 456 (1)
GT 2 t 0) 0 t 0) 504 t 1)
VL 1204 (3) 338 (1) 348 (1)
VT 872 (2) 2604 (7) 712 (2) Total
PL 16 (0) 0 t 0) 88 t 0) 38,551

1 PT 16839 (44) 5134 (13) 4306 (11)

C3: Number of Blackboard Retrievals
Level C-BB D-BB G-BB GH-BB

SL 6624 (5) 16552 (13) 2176 t 2) 5512 (4)
::: 18536 4 (15) t 0) 2162 0 t (0) 2) 4132 2530 t t 2) 3)

GT
VL
VT
PL

2 (0)
3310 t 3)
2912 (2)

16 (0)
PT 45983 (36)

0 t 0)
484 t 0)

2392 t 2)
0 (0)

6058 t 5)

672 (1)
430 t 0)
994 t 1)
57 t 0)

5335 (4)

Total
126,873

Each retrieval operation involves a composite four-
dimensional pattern in time, a, y, and event-class. In ad-
dition, the DVMT provides additional procedural filtering
code to GBB’s retrieval process. In our experiments, the
time required by these filters is considered part of the re-
trieval time,

There are two things to note about these numbers. First,
almost half the retrieval operations are from the C-BB
(used in performance monitoring) but there are relatively
few units stored on the C-BB. Therefore, a simple, “low-
overhead” strategy is appropriate for representing the C-
BB. Second, the distribution of retrieval operations on the
D-BB and G-BB shifts dramatically from the filtered case
to the complete case. (Surprisingly, we found the retrieval
characteristics of hypothesis and goals to be very similar,
and the representation strategy that worked well for one
also worked well for the other.)

4 Specifying the la&board
Impletientation

In GBB, the implementation strategy for storing units on
spaces is specified by defining a unit-mapping for each unit
to each space in the blackboard. The same unit type can
be stored differently on different spaces, and different unit
types can be stored differently on the same space. Any
unit-mapping can be redefined at any time before the spec-
ified spaces are instantiated. This means that the imple-
mentation strategy can be changed without having to re-
compile unit definitions or application code. The ease of
changing the unit-mapping facilitates experimental tuning
of the blackboard database implementation strategy.

The simplest implementation strategy is to maintain a
list of all units of a particular type on a particular space.
Retrieval time for this representation is proportional to the
number of units on the space.

A more sophisticated strategy is to group units into
buckets based on their dimensional attributes. This strat-
egy partitions each dimension’s range into a number of
subranges. Each bucket contains those units which fall
within the bounds of the bucket. The number of buck-
ets and their sizes provide a time/space tradeoff for unit
insertion and retrieval.

Using more than one dimension for retrieval adds an
additional twist to the bucket strategy. One option is to
define a multi-dimensional array of buckets. Another op-
tion is to define several vectors of buckets and have the
retrieval process intersect the result of retrieving in each
dimension. A third option is to define one vector and one
multi-dimensional array; and so on. Each choice trades off
access time for storage space differently.

The retrieval process in GBB can be broken down into
four steps: primary retrival, before-pattern procedural fil-
tering, pattern-based filtering, and after-pattern procedu-
ral filtering [Gallagher and Corkill, 19881. The primary re-
trieval step examines the retrieval pattern and determines
what buckets must be searched. If more than one array or
vector has been defined then an intersection process is per-
formed. The remaining three steps examine the units in
the buckets selected by the primary retrieval. The before-
pattern and after-pattern filtering steps apply application-
specific procedural predicates (if supplied) to units selected
by the primary retrieval step or passed by the pattern-
based filtering step, respectively. The pattern-based filter-
ing step compares each unit with the entire pattern. This
step is necessary because non-conforming units can be re-
trieved in the primary retrieval step. Pattern-based filter-
ing can be expensive, depending on the complexity of the
pattern, so, reducing the number of candidate units in the
primary retrieval step can result in significant performance
gains.5

To illustrate the tradeoffs, consider the three tracks (A,
B, and C) depicted below and suppose the application is
looking for tracks which pass through the point (5,3).

If the space is represented simply as a list of units then the
primary retrieval step retrieves all three units, which must
be compared with the pattern. If the space is represented
as two vectors (one for z and one for y), then the pri-
mary retrieval step selects all units that occupy the z = 5
bucket (in this case B & C). This set is intersected with
the set of units occupying the y = 3 bucket (A & B), for a
primary retrieval result set (B). Pattern-based filtering is
then applied to each element of this result set.

5 The Experiments
We began our tuning experiments by running the DVMT
on configuration Cl (the simplest scenario) using its “de-
signed” blackboard database implementation: a single vec-
tor for time. This storage strategy had been intuitively se-

5All DVMT procedural filters were held constant throughout
the experiments reported in this paper.

674 Machine Architectures and Computer Lannuasxs for AI

1 Experiment Total Time -----BBTime
((t x Y>> 17:21 lo:23 (60)
(t (x YH 17:44 IO:48 (61)
cc (t x 39) 17:45 IO:59 (62)
(t = (x Y)) 18:00 ii:20 (63)
((x Y)> 18:33 ii:43 (63)
cc (x Y)) 18:48 12:03 (64)
(t x Y> 18:56 12:14 (65)

i" X "YP c) 19:13 19:52 12:19 13:03 (64) (66)
(x Y 4 20:06 13:19 (66)
(9 20:47 14:26 (69)
(t 4 21:28 14:40 (68)

I"1

(fl

23:37 23:42 17:07 17:08 (72) (72)

36:19 36:20 29:51 3O:Ol (82) (83)

Table 1: Cl Configuration Experiments.

lected (by the first author, based on a pre-GBB implemen-
tation of the DVMT) as providing a reasonable balance
between retrieval time versus insertion time and storage
space. As the experiments demonstrated, this intuition re-
sulted in only mediocre performance-an indication of the
importance of database flexibility and performance moni-
toring tools!

The second experiment ran Cl with the simplest storage
strategy, storing all units on a space in a list. As expected,
this resulted in even poorer performance. We then tried
two vectors, a and y. This gave a dramatic performance
improvement, reducing the total execution time by more
almost half compared to the baseline “list” strategy. Us-
ing three vectors time, a, and y resulted in a further five
percent reduction in execution time.

We ran many additional experiments (approximately 90)
using different strategies for each space and each type of
unit. The best strategy was time, c, and y as a three di-
mensional array. The total execution time in the best case
was one half that of the worst case (the simple “list” strat-
egy). Even more dramatic is the decrease in the execution
time due to blackboard operations. In the best case black-
board operations took only 10:23, whereas in the worst
case blackboard operations took 3O:Ol.

Table 1 summarizes the most interesting Cl experi-
ments. Each experiment is identified by the storage strat-
egy used. A list of letters indicates that each dimension
is stored in a vector of buckets. An additional level of
parentheses indicates that those dimensions are grouped
together into a multi-dimensional array of buckets. For
example, (t x y c) indicates four vectors (one each for
time, 2, y, and event-class) while (t (x y)) indicates one
vector for time, and one 2-dimensional array for Z, and
y. In the table, all buckets for the time and event-class
dimensions were unit width; buckets for z and y were of
width 5.’ Furthermore, each space in the C-BB was rep-
resented as a simple list 0, which was the most effective
strategy given its limited number of units.

6We experimented with va.rying bucket sizes, but in these
scenarios “reasonable” changes in bucket width had little efl’ect

r ExDeriment To&l Time BB Time 1
L a

cc (t x Y))
(t c (x YN
cc (x YN
Nt x Y>>
0 (x Y))
(t x Y 4

I;,YYY(;l
(t x Y>
(t 4
tx Y)
(t)

I”1
fl

37:08 18:15 (49)
37:56 f9:15 (51)
38:51 20:26 (53)
39:22 20:43 (63)
40:09 21:56 (55)
4O:ll 21:40 (54)
41:14 22:58 (56)
41:51 23:27 (56)
43:06 24:55 (58)
43:51 25:29 (58)
45:ll 26:58 (60)
49:22 31:04 (63)
54:59 37:05 (67)
55:ll 37:28 (68)
68:43 51:37 (75)
84:40 67:21 (80)

Table 2: C2 Configuration Experiments.

Experiment Total Time BB Time
w x Y)) 203:18 65:34 (32)
0 (x YN 205:09 68:09 (33)
cc (t x YN 205:42 68:07 (33)
(t c (x Y)) 207:OO 70:35 (34)
(t x Y) 207:22 70:43 (34)
(t x Y 4 208:52 72:15 (35)
(t) 210:06 89:57 (43)
(b Y)) 212:46 76:53 (36)
(x Y 4 213:38 77:43 (36)
(c (x Y)) 214:25 78:46 (37)
(x Y> 216:ll 79:59 (37)
(t 4 218:15 82:37 (38)

246:54 111:04 (45)
248:19 112:06 (46)
353:15 222:41 (63)
594: 55 493:12 (83)

Table 3: C3 Configuration Experiments.

The processing times are in minutes and seconds from
a single run on an 8Mbyte Texas Instruments Explorer
II. Differences of lo-20 seconds are insignificant due to
timer resolution. The processing time for performing
non-blackboard activities in each experiment was approx-
imately 6:40 (ranging from 6:20-6:58). Mean paging time
was 9 seconds (8-12 seconds). The last column (in paren-
thesis) gives the percentage of time spent doing blackboard
operations.

Table 2 contains the results with the C2 configuration.
Again lo-20 second differences are insignificant. Jn this
set, the processing time for performing non-blackboard
activities in each experiment was approximately 18:00
(17:07-18:54). M ean paging time was 36 seconds (34-42
seconds).

The results from C3, the most complex configuration
are in Table 3. In this set, the processing time for non-
blackboard operations was approximately 135:00 (ranging
from 130:33-137:45). Mean paging time was 5:30 (4:50-
7:08).

As the three sets of results show, tuning the blackboard
representation results in even more dramatic performance on performance.

Corkill and Gallagher 675

improvements as the complexity of the configuration is in-
creased. In Cl and C3 there are only a small number of
event classes. In Cl the single vector event-class unit map-
ping is no faster then the simple “list” unit mapping. But,
in C3, because of the increased amount of sensory noise
the (event-class) mapping is 40% faster than then (1.

In some cases the overhead of using an additional dimen-
sion in the unit mapping is not worth it. For example, in
Cl and C3, using event-class doesn’t improve performance
at all. Except for the single vector (event-class) map-
ping, any mapping that uses event-cZass does worse than
the same mapping without event-class.

Regardless of the mapping used, the time required to
insert units on the blackboard was less then one percent
of the total runtime. (The range was 0.1% for C3 up
to 0.9% for Cl.) The relatively small insertion cost was
surprising, even to the implementers of GBB. Virtually all
the blackboard time was spent in retrieval. In fact, 80-90
percent of the retrieval time was spent in the pattern based
filtering step.

The following table illustrates the effect of different map-
pings on the number of units retrieved by the primary re-
trieval step. The first column shows the average number
of units returned by the primary retrieval and the second
column shows the total time spent in the pattern based
filtering step. These numbers are for the PT level of the
G-BB for configuration Cl. At the end of the run there
were 892 units on this space. On average 26.25 units passed
the pattern based filtering step.

We have provided performance results of tuning the
DVMT by matching its blackboard database structure to
its blackboard interaction characteristics. We found the
improvements to be significant, and the improved perfor-
mance of the DVMT was worth our tuning investigations.

These results do not suggest that blackboard database
optimization should replace the use of superior problem-
solving knowledge or control capabilities as a means of en-
hancing performance. They do demonstrate, however, that
improving blackboard interaction efficiency should not be
neglected. The potential performance improvements due
to the blackboard implementation are proportional to the
ratio of blackboard interaction to KS (and control) pro-
cessing.

Our experiences with the DVMT tuning process demon-
strates the importance of obtaining detailed measurements
of the insertion/retrieval characteristics of each space (and
even within a space). These measurements can signifi-
cantly augment “intuitive” decisions for blackboard imple-
mentation strategies and form an important component of
a blackboard development environment.

References
[Corkill et aZ., 198’7] D aniel D. Corkill, Kevin Q. Gal-

lagher, and Philip M. Johnson. Achieving flexibility,
efficiency, and generality in blackboard architectures.
In Proceedings of the National Conference on Arti-
ficial Intelligence, pages 18-23, Seattle, Washington,
July 1987. (Al so to appear in Readings in Distributed
Artificial Intelligence, Alan Bond and Les Gasser, ed-
itors, Morgan Kaufmann, in press, 1988.).

[Corkill et al., 19861 D aniel D. Corkill, Kevin Q. Gal-
lagher, and Kelly E. Murray. GBB: A generic
blackboard development system. In Proceedings of
the Na.tionaZ Conference on Artificial Intelligence,
pages 1008-1014, Philadelphia, Pennsylvania, August
1986. (Also to appear in Blackboard Systems, Robert
S. Engelmore and Anthony Morgan, editors, Addison-
Wesley, in press, 1988.).

[Corkill et al., 19821 D aniel D. Corkill, Victor R. Lesser,
and Eva Hudlicka. Unifying data-directed and goal-
directed control: An example and experiments. 111
Proceedings of the National Conference on Artificial
Intelligence, pages 143-147, Pittsburgh, Pennsylva-
nia, August 1982.

[Erman et al., 19801 Lee D. Erman, Frederick Hayes-Roth,
Victor R. Lesser, and D. Raj Reddy. The Hearsay-
II speech-understanding system: Integrating knowl-
edge to resolve uncertainty. Computing Surveys,
12(2):213-253, June 1980.

[Fennell and Lesser, 19771 Richard D. Fennel1 and Vic-
tor R. Lesser. Parallelism in Artificial Intelligence
problem solving: A case study of Hearsay II. IEEE
Transactions on Computers, C-26(2):98-1 11, Febru-
ary 1977.

[Gallagher and Corkill, 19881 Kevin Q. Gallagher and
Daniel D. Corkill. Blackboard retrieval strategies in
GBB. May 1988. (Submitted to the Second AAAI
Workshop on Blackboard Systems.).

[Intellicorp, 19871 Intellicorp. KEE 173.1 Reference Man-
ual. 1987.

[Lesser and Corkill, 19831 Victor R. Lesser and Daniel D.
Corkill. The Distributed Vehicle Monitoring Testbed:
A tool for investigating distributed problem solving
networks. AI Magazine, 4(3):15-33, Fall 1983.

[Lesser eZ al., 19871 Victor R. Lesser, Daniel D. Corkill,
and Edmund H. Durfee. An Update on the Distributed
Vehicle Monitoring Testbed. Technical Report 87- 111,
Department of Computer and Information Science,
University of Massachusetts, Amherst, Massachusetts
01003, December 1987.

[Rowley et aZ., 19871 Steve Rowley, Howard Shrnhe, and
Robert Cassels. Joshua: Uniform access to heteroge-
neous knowledge structures or why joshing is better
than conniving or planning. In Proceedings of the Nn-
tionaZ Conference on Artificial Intelligence, pages 48-
52, Seattle, Washington, July 1987.

[Russell, 19851 Stuart Russell. The Compleat Guide to
MRS. Technical Report KSL No. 85-12, Knowledge
Systems Laboratory, Computer Science Department,
Stanford University, Stanford, California 94305, June
1985.

676 Machine Architectures and Computer Languages for Al

