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Abstract 

A parallel implementation of constraint satisfac- 
tion by arc consistency is presented. The im- 
plementation is constructed of standard digital 
hardware elements, used in a very fine-grained, 
massively parallel style. As an example of how to 
specialize the design, a parallel implementation 
for solving graph isomorphism with arc consis- 
tency is also given. 
Complexity analyses are given for both circuits. 
Worst case running time for the algorithms turns 
out to be linear in the number of variables n and 
labels a, O(an), and if the I/O must be serial, 
it will dominate the computation time. Fine- 
grained parallelism trades off time complexity for 
space complexity, but the number of gates re- 
quired is only O(a2n2). 

I. Introduction 
Constraint satisfaction is an important technique used in 
the solution of many artificial intelligence problems. Since 
the original applications such as Waltz filtering [Waltz, 
19751, an essential aspect of most constraint satisfaction al- 
gorithms has been their cooperative or parallel nature (eg. 
[Davis and Rosenfeld, 19811). While the parallel spread- 
ing activation nature of constraint propagation has been 
adopted whole-heartedly in specific applications such as 
connectionist relaxation [Feldman and Ballard, 1982; Hin- 
ton et al., 19841, some of the most complete and generally 
useful formal results analyze sequential algorithms [Mack- 
worth and Freuder, 1985; Mohr and Henderson, 19861. 
Generating a formal analysis of one recent connectionist 
implementation of discrete relaxation [Cooper, 19881 in- 
spired us to design a massively parallel implementation of 
the classic, more generally applicable arc consistency con- 
straint satisfaction algorithm [Mackworth, 1977; Hummel 
and Zucker, 1983; Mohr and Henderson, 19861. The im- 
plementation is constructed of standard digital hardware 
elements, used in a very fine-grained, massively parallel 
style. The resulting circuit is thus an obvious candidate 
for fabrication in VLSI, and is thus similar to the work of 
Mead [1987]. 

The paper also provides a parallel hardware implemen- 
tation of the arc consistency algorithm for a specific appli- 
cation - labelled graph matching. Such matching by con- 
straint propagation and relaxation is often used in visual 
recognition systems [Cooper, 1988; Kitchen and Rosenfeld, 
19791. 

Complexity analyses are given for both circuits. Worst 
case running time for the algorithms turns out to be linear 
in the number of variables n and labels a, O(m), and if 
the I/O must be serial, it will dominate the computation 
time. Fine-grained parallelism trades off time complexity 
for space complexity, but the number of gates required is 
only O(a2n2). 

2 Constraint Satisfaction 
In this section, we review constraint satisfaction as classi- 
cally formulated [Mackworth, 1977; Hummel and Zucker, 
1983; Mohr and Henderson, 19861. A constraint satisfac- 
tion problem (CSP) is defined as follows: Given a set of 
n variables each with an associated domain and a set of 
constraining relations each involving a subset of the vari- 
ables, find all possible n-tuples such that each n-tuple is 
an instantiation of the n variables satisfying the relations. 
We consider only those CSPs in which the domains are 
discrete, finite sets and the relations are unary and binary. 

A B-consistency algorithm removes all inconsistencies in- 
volving all subsets of size k of the n variables. In particular, 
node and arc consistency algorithms detect and eliminate 
inconsistencies involving k: = 1 and 2 variables, respec- 
t ively. 

More specifically, a typical arc consistency problem con- 
sists of a set of variables, a set of possible labels for the 
variables, a unary predicate, and a binary predicate with 
an associated constraint graph. For each i of the n vari- 
ables, the unary predicate Pa(z) defines the list of allowable 
labels 31: taken from the domain of the variables. For each 
pair of variables (i, j) in the constraint graph the binary 
predicate Qij (z, y) d e fi nes the list of allowable label pairs 
(2, y). To compute the n-tuples which satisfy the overall 
problem requires that the local constraints are propagated 
among the variables and arcs. 

Mohr and Henderson [1986] specify one such constraint 
satisfaction algorithm for arc consistency: AC-4. They 
show that the complexity of AC-4 is O(u2e), where a is the 
number of labels (or the cardinality of the domain), and e 
is the number of edges in the constraint graph associated 
with Qij(z, y). 

Hummel and Zucker describe a parallel version of the 
arc consistency algorithm as follows (using Mackworth’s 
notation). 

Arc consistency is accomplished by means of the label 
discarding rule: discard a label x at a node i if there exists 
a neighbor j of i such that every label y currently assigned 
to j is incompatible with x at i, that is, lQij(~, y) for all 
y E Oj. The label discarding rule is applied in parallel at 
each node, until limiting label sets are obtained. 

682 Machine Architectures and Computer Languages for AI 

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved. 



Others such as Waltz 119751 and Hinton [1977] have also 
suggested implementing constraint satisfaction in parallel. 
Wang, Gu and Henderson [1987] have designed and imple- 
mented a systolic architecture for arc consistency. 

arclware Implementation 
The Arc Consistency (AC) chip consists of two arrays of JK 
flip-flops and suitable amounts of combinational circuitry. 
The most important part of the design is the representation 
for the two constraint tables P’(x) and Qij(x,y). In the 
massively parallel connectionist design style, we adopt the 
unit/value principle, and assign one memory element to 
represent every possible value of Pi(x) and &ii (x, y). (As 
will be seen, JK flip-flops are used as the memory elements 
because of their convenient reset characteristics). To allow 
the hardware to compute any arc consistency problem, the 
two arrays must be able to represent any given Pa(x) and 
Qaj (x, y) of sizes bounded by n and a. 

The first (node) array consists of an flip-flops we call 
u(i, x) which are initialized to Pi(x). That is, if x is a 
valid label at node i, then the the flip-flop u(i, x) is initial- 
ized to on. Thus initially at least, the flip-flops which are 
on all correspond to labellings of a node which are valid 
considering only the local (unary) constraint at that node. 
Note that all flip-flops are initialized. The final answer to 
the computation (which labels are arc consistent at each 
node) will be contained in this array at the end of the 
computation. 

The second (arc) array consists of u2n(n- 1) flip-flops we 
designate v(i, j, x, y) which are initialized to conform to the 
arc constraint table Qij(x, y). Note that the table Qdj(x, y) 
can designate three things. If Qii(x,y) = 1, then the arc 
(i, j) is present in the constraint graph and the label pair 
(x, y) is a valid labelling of the pair. If Qij(x, y) = 0, the 
arc (i, j) is again present in the constraint graph, but the 
label pair (i, j) in not allowed on that arc. But Qij (x, y) 
might also just not be present in the arc constraint table, 
which indicates that there is no consistency constraint be- 
tween nodes i and j. To account for the fact that Qij(x, 3) 
might be incomplete, v(i, j, x, y) is initialized as follows: 
if i is adjacent to j in the constraint graph 

otherwise 

v(i, A x9 Y) = Qij(x, Y) 

f+, i x, Y) = 1 
Note that the arc array is static; it does not change 
throughout the computation. 

The basic structure of the two arrays of flip-flops is 
shown in Figure 1. 

It remains only to develop combinational circuitry which 
implements the label discarding rule - ie. that causes the 
flip-flop representing the label x at node i to be reset to 
zero if it becomes inconsistent. The combinational cir- 
cuitry is thus designed so that the K (reset) input of the 
JK-flip-flop u(i, x) receives the value: 

reset(u(i, x)) = 1 /I Q(~.GY)A+,~Y)) 
j=l,j#a’y=l 

The J input of each JK-flip-flop is tied to 0. A partial 
circuit diagram for this equation is given in Figure 2. This 
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Figure 1: Unary and Binary Constraint Tables 

figure show the reset circuitry for one flip-flop in the node 
table u(i, x). In the figure, the entire node table is present, 
but only the part of the arc table v(i, j, x, y) useful for 
this node is drawn. An analogous circuit for each node 
completes the whole circuit. 

To interpret the equation and circuit, consider first the 
inner term ~(j, y) A 2)(i,j, x, y) for a particular case of 
u(i, x). The fact that v(i, j, x, y) is true tells us that there 
is an arc between i and j, and (x, y) is a consistent la- 
bel pair for this arc. We already know that u(i, x) is true; 
aanding with ~(j, y) checks that the other end of the arc has 
a valid label. Point A on the circuit diagram in Figure 2 
shows where this term is computed. 

At this point, as far as node i is concerned, x is a label 
consistent with node neighbor j’s label y. The vi=, simply 
ensures that at least one label y on neighboring node j is 
consistent. This function has been computed after the or 
gate at point B in Figure 2 

Label x on node i is thus consistent with its neighbor j. 
But what about node i’s other neighbors? The A~=l,j~i 
ensures that there is arc consistency among all node i’s 
neighbor’s. The and gate at C in Figure 2 ensures this. 

If the signal is on at point C, that means that label x is 
consistent for node i - therefore, the flip-flop need not be 
reset. Thus the not gate. 

To reverse the analysis, if some node j does not have a 
consistent labelling, then at point B, the signal will be off. 
The and will fail, so the signal at C will also be 0, and 
then the not gate will cause flip-flop u(i, x) to be reset. 

3.1 Correctness 
To begin with, recall that we are interested in discarding 
labelsyan operation which corresponds to resetting on flip- 
flops to 0. Furthermore, since the J input of each JK-flip- 
flop in the node array is tied to zero, the flip-flops can only 
ever be reset to 0, never set. Once they are off they must 
stay off, so the whole process is clearly monotonic. There- 
fore, all we need to show for correctness is to show that 
the network correctly applies the label discarding rule. If 
the network discards labels when they should be discarded, 
and does not discard them when the should be kept, then 
it implements the label discarding rule correctly. 

The label discarding rule can be formally expressed as 
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Figure 2: Partial Circuit Diagram for the AC Chip 

follows: 

3j(j # i)b[u(j, 3) A 44 A xj Y> = 01 
But this expression is equivalent to 

or 

j=l,j#i y=l 

which is just the condition under which (i, x) is reset. 
Therefore, the network correctly discards labels when it 
should. The converse follows from negating the above 
equations. 

3.2 Complexity 
The circuit requires un JK-flip-flops for the node array, 
and u2n(n - 1) flip-flops for the arc array. From Figure 2 
we see that there is an and gate for every flip-flop in the 
arc array, so u2n(n - 1) 2-input and gates are required for 
this purpose. For each of the an flip-flops in the node array 
there is n - 1 or gates required, each taking a inputs - a 
total of un(n - 1) or gates. Finally, there are un and and 
not gates (nand gates), each taking n - 1 inputs. There 
are also O(u2n2) wires. 

The worst case time complexity of the network occurs 
when only one JK-flip-flop is free to reset at a time. So 
if propagation through the and and or gates is consid- 
ered instantaneous, the worst case time complexity is an. 

If a logarithmic time cost is assigned to the large fan- 
in and and or gates the worst case time complexity is 
O(u log(u)n log(n)). 

Kasif [1986] h as shown that solving constraint satis- 
faction with arc consistency is log-space complete for P 
(the class of polynomial time deterministic sequential al- 
gorithms). This suggests that it is likely no poly-log time 
algorithm will be found, so O(nu) time is liable to be near 
the minimum achievable with polynomially-many proces- 
sors [Swain and Cooper, 19881. 

Note that if the node and arc arrays must be initial- 
ized serially, loading them takes more time (O(u2n2) steps) 
than executing the algorithm. For almost all applications 
of constraint satisfaction the binary predicate Qij(x, y) can 
be specified with less than O(u2n2) information, and so in- 
stead of the arc array a circuit could be built that supplies 
the correct values to the and gates without needing so 
many memory elements to fill. An application in which 
this is true is graph matching, which we describe in the 
next section. 

4 Graph Matching 

Graph matching can be defined as a constraint satisfaction 
problem. General graph matching requires k-consistency 
[Freuder, 19781 (and is NP -complete, in fact). With just 
arc consistency, a restricted yet still interesting class of 
graphs may be matched. Furthermore, the effectiveness of 
matching graphs by constraint satisfaction with only arc 
consistency can be enhanced if the graphs are labelled. 
This kind of restricted matching of labelled graphs is par- 
ticularly suited to the visual indexing problem [Cooper, 
1988]. In this problem, labelled graphs are used to rep- 
resent structurally composed objects. The constraint sat- 
isfaction process is used only to filter recognition candi- 
dates, and the few graphs not discriminable with the lim- 
ited power of arc consistency can be addressed in other 
ways. 

If labelled graph matching is framed as a constraint sat- 
isfaction process, the unary constraint is that the labels 
of corresponding vertices be the same. The binary (arc) 
constraint ensures that the connectedness between pairs 
of corresponding vertices be the same. In other words, if 
there is an edge between 2 vertices in one graph, there bet- 
ter be an edge between the corresponding vertices in the 
other graph. In this section, we describe without loss of 
generality the matching of undirected graphs. 

So, for the graph matching problem: 

Pi(x) = (label(i) = label(x)) 

and 

Qaj(x, y) = (adjacent(i, j) = adjacent(x, y)) 

For the graph matching problem the number of possible 
labels equals the number of vertices so a = n. 

There are some modifications we can make to the general 
arc consistency circuit that are to our advantage for this 
particular application. 
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Constraint Table Computation by 
Special-Purpose Circuitry 
One modification is to replace the arc array 
designed as follows. Construct two arrays of 

by a circuit 

n ( > n(n - 1) 
2 

=- 
2 

flip-flops representing adjacent(i, j) and adjacent(z, y) re- 
spectively. Note that these are adjacencies in the in- 
put graphs, not in the constraint graph. For all possi- 
ble (i,.i>(G Y) P airs, wire one flip-flop from the (i, j) array 
and one flip-flop from the (x:, y) array to a gate comput- 
ing the equality function ZOf. Then the output of the 
((i, j), (x, y))‘th gate represents Qij(z, y). Then the net- 
work will have only O(n2) flip-flops to load prior to the 
computation. 

Analogous special purpose circuitry to compute P,(X) 
from the vertex/label sets of each graph can easily be imag- 
ined as well. In the case, the equality gate must check 
equality of the labels, so is likely comparing more than 
just a single bit. 

In any case, it is clear that actually computing the con- 
straint tables Pi(x) and Qij(z, y) may be a significant part 
of the overall computation. In many specialized cases, it 
is clearly possible to actually build parallel circuitry to 
assist in computing the constraint tables, rather than seri- 
ally computing the predicates beforehand and then loading 
them into the parallel hardware. 

Symrnet ric Mat thing 
Graph matching need not be simply isomorphism, as many 
vision applications emphasize [Shapiro and Haralick, 19811. 
If we restrict ourselves to pure isomorphism however, the 
graph matching problem is symmetric. In terms of the 
constraint satisfaction formulation, the symmetry means 
that the vertices of graph A have to be possible labels for 
graph B as well as vice versa. Therefore for a flip-flop 
(i, Z) to stay, one may require it to be consistent regarding 
2 as the label and i as the vertex and vice versa. So in 
addition to the and-or network described for the general 
constraint satisfaction problem the graph matching circuit 
has a complementary network in the opposite direction. 
The two circuits are anded together before the inverter 
at the K input of the JK latch. Together these circuits 
compute 

--I cc /1 \j twti Y> A Qij(“, 
j=l,j#iy=l 

i;\ \j (wti Y) A Q&, 
y=l,y#zj=l 

The circuit which implements this equation finds all pos- 
sible labelings that are pairwise consistent both for match- 
ing graph A to graph B and for matching graph B to graph 
A. 

4.1 Complexity 
If no special purpose circuitry is used to computePa and 
it is input as a table of an or n2 entries (in this case, a = n), 

then the complexity is as follows. The node array requires 
n2 JK-flip-flops. The reduced arrays representing the input 
graphs require a total of n(n - 1) flip-flops. To replace the 
arc array, there are n2(n - 1)2 x01’ gates. Analogous to 
the earlier design n(n - 1) 2-input and gates are required, 
n2(n - 1) OF gates, and n2 nand gates. There are O(n*) 
wires, as for the general constraint satisfaction network. 

The worst case time complexity for the graph matching 
network is the same as for the constraint satisfaction net- 
work, O(n2) ignoring propagation time and O(n2 log2 n) 
taking it into account. Loading and unloading the network 
takes O(n2) sequential time, and so does not affect the 
worst-case performance of the network. Since the expected 
time of the constraint satisfaction step could be much less 
than the worst-case performance, sequential loading and 
unloading is still likely to be the performance bottleneck. 

4.2 Comparison with Connectionist 
Network 

Cooper [1988] g ives a connectionist network design for solv- 
ing the same labelled graph matching problem addressed 
here. Interestingly, although the two networks were devel- 
oped from completely different heritages, and for different 
reasons, they are remarkably alike. In particular, the cen- 
tral aspect of both designs - the representation of the unary 
and binary constraint predicates as completely filled-in ta- 
bles - is exactly the same. This reflects the adoption of the 
unit/value design principle, which is useful for obtaining a 
very high degree of parallelism, no matter what the primi- 
tive units of computation. In fact, it is straightforward to 
realize our current design as a connectionist network with 
simple unit functions such as and and or. We describe 
a connectionist simulation of this network implementation 
in Swain and Cooper [1988]. 

Unlike the chip design, a connectionist network is never 
intended to interface with sequential processes, so the in- 
put constraint tables can be filled by parallel spreading 
activation. As a result, the I/O bottleneck does not occur. 
Of course, if the digital network were to receive parallel 
input, the same would be true. 

5 iscussion and Conclusions 
The utility of constraint satisfaction methods in the solu- 
tion of many AI problems suggests that efficient implemen- 
tations might be widely useful. Furthermore, constraint 
satisfaction methods have an obvious parallel character. 

In this paper, we have given a massively parallel de- 
sign which provably implements one classic constraint sat- 
isfaction algorithm. Our implementation thus inherits the 
correctness characteristics of the original formulation. We 
have also shown how this design is easily specializable for 
particular problems. This specialization process provides 
a desirable alternative to designing and proving a new par- 
allel network for each particular problem. 

As might be expected, the highly parallel implementa- 
tion runs very fast. Although worst case running time is 
linear in the number of variables and labels, it is more 
reasonable to expect that the network runs in a small con- 
stant number of time steps. Overall, if I/O time is not 
included, the performance of the network can be expected 
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to be much better than that of the best sequential imple- 
mentations. 

For sufficiently small problems it would be straightfor- 
ward to construct our arc consistency chip, even for the 
general case. If, however, the parallel machine is forced 
to interface with sequential processes, the run-time com- 
plexity becomes similar to that expected from standard 
sequential implementations of arc consistency. This I/O 
bottleneck can be overcome by supplying parallel input or 
by specializing the chip to solve a particular problem, as 
we showed in the graph matching example. 

Specialization also helps address the issues that arise in 
solving larger problems. It is easy to see that the limits of 
current VLSI technology arise quickly when O(n2a2) space 
is required. But in some current work, we have discovered 
that it is possible to reduce these resource requirements 
by as much as three or four orders of magnitude for some 
classes of problems, even using the same basic design[Swain 
and Cooper, 19881. 

Constructing special-purpose hardware is effective in en- 
vironments where classes of problem instances are well- 
understood and repeat frequently. (For example, a robot 
vision system designed for industrial application). An al- 
ternative to using special purpose hardware is to imple- 
ment a parallel algorithm on a general purpose paral- 
lel computer, such as the Connection Machine. This al- 
ternative becomes especially interesting if it yields run- 
time complexity comparable to our current design. We 
have been investigating this possibility [Swain and Cooper, 
19881, as have other researchers [Henderson and Samal, 
19881. 
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