
Parallel Hardware for Constraint Satisfaction

Michael J. Swain & Paul R. Cooper

Department of Computer Science
University of Rochester
Rochester, NY 14627

Abstract

A parallel implementation of constraint satisfac-
tion by arc consistency is presented. The im-
plementation is constructed of standard digital
hardware elements, used in a very fine-grained,
massively parallel style. As an example of how to
specialize the design, a parallel implementation
for solving graph isomorphism with arc consis-
tency is also given.
Complexity analyses are given for both circuits.
Worst case running time for the algorithms turns
out to be linear in the number of variables n and
labels a, O(an), and if the I/O must be serial,
it will dominate the computation time. Fine-
grained parallelism trades off time complexity for
space complexity, but the number of gates re-
quired is only O(a2n2).

I. Introduction
Constraint satisfaction is an important technique used in
the solution of many artificial intelligence problems. Since
the original applications such as Waltz filtering [Waltz,
19751, an essential aspect of most constraint satisfaction al-
gorithms has been their cooperative or parallel nature (eg.
[Davis and Rosenfeld, 19811). While the parallel spread-
ing activation nature of constraint propagation has been
adopted whole-heartedly in specific applications such as
connectionist relaxation [Feldman and Ballard, 1982; Hin-
ton et al., 19841, some of the most complete and generally
useful formal results analyze sequential algorithms [Mack-
worth and Freuder, 1985; Mohr and Henderson, 19861.
Generating a formal analysis of one recent connectionist
implementation of discrete relaxation [Cooper, 19881 in-
spired us to design a massively parallel implementation of
the classic, more generally applicable arc consistency con-
straint satisfaction algorithm [Mackworth, 1977; Hummel
and Zucker, 1983; Mohr and Henderson, 19861. The im-
plementation is constructed of standard digital hardware
elements, used in a very fine-grained, massively parallel
style. The resulting circuit is thus an obvious candidate
for fabrication in VLSI, and is thus similar to the work of
Mead [1987].

The paper also provides a parallel hardware implemen-
tation of the arc consistency algorithm for a specific appli-
cation - labelled graph matching. Such matching by con-
straint propagation and relaxation is often used in visual
recognition systems [Cooper, 1988; Kitchen and Rosenfeld,
19791.

Complexity analyses are given for both circuits. Worst
case running time for the algorithms turns out to be linear
in the number of variables n and labels a, O(m), and if
the I/O must be serial, it will dominate the computation
time. Fine-grained parallelism trades off time complexity
for space complexity, but the number of gates required is
only O(a2n2).

2 Constraint Satisfaction
In this section, we review constraint satisfaction as classi-
cally formulated [Mackworth, 1977; Hummel and Zucker,
1983; Mohr and Henderson, 19861. A constraint satisfac-
tion problem (CSP) is defined as follows: Given a set of
n variables each with an associated domain and a set of
constraining relations each involving a subset of the vari-
ables, find all possible n-tuples such that each n-tuple is
an instantiation of the n variables satisfying the relations.
We consider only those CSPs in which the domains are
discrete, finite sets and the relations are unary and binary.

A B-consistency algorithm removes all inconsistencies in-
volving all subsets of size k of the n variables. In particular,
node and arc consistency algorithms detect and eliminate
inconsistencies involving k: = 1 and 2 variables, respec-
t ively.

More specifically, a typical arc consistency problem con-
sists of a set of variables, a set of possible labels for the
variables, a unary predicate, and a binary predicate with
an associated constraint graph. For each i of the n vari-
ables, the unary predicate Pa(z) defines the list of allowable
labels 31: taken from the domain of the variables. For each
pair of variables (i, j) in the constraint graph the binary
predicate Qij (z, y) d e fi nes the list of allowable label pairs
(2, y). To compute the n-tuples which satisfy the overall
problem requires that the local constraints are propagated
among the variables and arcs.

Mohr and Henderson [1986] specify one such constraint
satisfaction algorithm for arc consistency: AC-4. They
show that the complexity of AC-4 is O(u2e), where a is the
number of labels (or the cardinality of the domain), and e
is the number of edges in the constraint graph associated
with Qij(z, y).

Hummel and Zucker describe a parallel version of the
arc consistency algorithm as follows (using Mackworth’s
notation).

Arc consistency is accomplished by means of the label
discarding rule: discard a label x at a node i if there exists
a neighbor j of i such that every label y currently assigned
to j is incompatible with x at i, that is, lQij(~, y) for all
y E Oj. The label discarding rule is applied in parallel at
each node, until limiting label sets are obtained.

682 Machine Architectures and Computer Languages for AI

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

Others such as Waltz 119751 and Hinton [1977] have also
suggested implementing constraint satisfaction in parallel.
Wang, Gu and Henderson [1987] have designed and imple-
mented a systolic architecture for arc consistency.

arclware Implementation
The Arc Consistency (AC) chip consists of two arrays of JK
flip-flops and suitable amounts of combinational circuitry.
The most important part of the design is the representation
for the two constraint tables P’(x) and Qij(x,y). In the
massively parallel connectionist design style, we adopt the
unit/value principle, and assign one memory element to
represent every possible value of Pi(x) and &ii (x, y). (As
will be seen, JK flip-flops are used as the memory elements
because of their convenient reset characteristics). To allow
the hardware to compute any arc consistency problem, the
two arrays must be able to represent any given Pa(x) and
Qaj (x, y) of sizes bounded by n and a.

The first (node) array consists of an flip-flops we call
u(i, x) which are initialized to Pi(x). That is, if x is a
valid label at node i, then the the flip-flop u(i, x) is initial-
ized to on. Thus initially at least, the flip-flops which are
on all correspond to labellings of a node which are valid
considering only the local (unary) constraint at that node.
Note that all flip-flops are initialized. The final answer to
the computation (which labels are arc consistent at each
node) will be contained in this array at the end of the
computation.

The second (arc) array consists of u2n(n- 1) flip-flops we
designate v(i, j, x, y) which are initialized to conform to the
arc constraint table Qij(x, y). Note that the table Qdj(x, y)
can designate three things. If Qii(x,y) = 1, then the arc
(i, j) is present in the constraint graph and the label pair
(x, y) is a valid labelling of the pair. If Qij(x, y) = 0, the
arc (i, j) is again present in the constraint graph, but the
label pair (i, j) in not allowed on that arc. But Qij (x, y)
might also just not be present in the arc constraint table,
which indicates that there is no consistency constraint be-
tween nodes i and j. To account for the fact that Qij(x, 3)
might be incomplete, v(i, j, x, y) is initialized as follows:
if i is adjacent to j in the constraint graph

otherwise

v(i, A x9 Y) = Qij(x, Y)

f+, i x, Y) = 1
Note that the arc array is static; it does not change
throughout the computation.

The basic structure of the two arrays of flip-flops is
shown in Figure 1.

It remains only to develop combinational circuitry which
implements the label discarding rule - ie. that causes the
flip-flop representing the label x at node i to be reset to
zero if it becomes inconsistent. The combinational cir-
cuitry is thus designed so that the K (reset) input of the
JK-flip-flop u(i, x) receives the value:

reset(u(i, x)) = 1 /I Q(~.GY)A+,~Y))
j=l,j#a’y=l

The J input of each JK-flip-flop is tied to 0. A partial
circuit diagram for this equation is given in Figure 2. This

Node Array Arc Array

a labels
a2 label pairs

1pJfJfJ-

(A,A) (A,B) ky) -

(1,2) 0 11 n

4Ilcltl (1,31 ~7 f-7 n
I

‘. \
S-W JK flip-flops

n nodes n(n-1) arcs

Figure 1: Unary and Binary Constraint Tables

figure show the reset circuitry for one flip-flop in the node
table u(i, x). In the figure, the entire node table is present,
but only the part of the arc table v(i, j, x, y) useful for
this node is drawn. An analogous circuit for each node
completes the whole circuit.

To interpret the equation and circuit, consider first the
inner term ~(j, y) A 2)(i,j, x, y) for a particular case of
u(i, x). The fact that v(i, j, x, y) is true tells us that there
is an arc between i and j, and (x, y) is a consistent la-
bel pair for this arc. We already know that u(i, x) is true;
aanding with ~(j, y) checks that the other end of the arc has
a valid label. Point A on the circuit diagram in Figure 2
shows where this term is computed.

At this point, as far as node i is concerned, x is a label
consistent with node neighbor j’s label y. The vi=, simply
ensures that at least one label y on neighboring node j is
consistent. This function has been computed after the or
gate at point B in Figure 2

Label x on node i is thus consistent with its neighbor j.
But what about node i’s other neighbors? The A~=l,j~i
ensures that there is arc consistency among all node i’s
neighbor’s. The and gate at C in Figure 2 ensures this.

If the signal is on at point C, that means that label x is
consistent for node i - therefore, the flip-flop need not be
reset. Thus the not gate.

To reverse the analysis, if some node j does not have a
consistent labelling, then at point B, the signal will be off.
The and will fail, so the signal at C will also be 0, and
then the not gate will cause flip-flop u(i, x) to be reset.

3.1 Correctness
To begin with, recall that we are interested in discarding
labelsyan operation which corresponds to resetting on flip-
flops to 0. Furthermore, since the J input of each JK-flip-
flop in the node array is tied to zero, the flip-flops can only
ever be reset to 0, never set. Once they are off they must
stay off, so the whole process is clearly monotonic. There-
fore, all we need to show for correctness is to show that
the network correctly applies the label discarding rule. If
the network discards labels when they should be discarded,
and does not discard them when the should be kept, then
it implements the label discarding rule correctly.

The label discarding rule can be formally expressed as

Swain and Cooper 683

,,_- K Reset Input

*m--w-

-. Point C

UCLA) /;I-1

El u(W)

. . ~,

i-i

‘~p+,C)
I, *: \.’ 1 ,‘-. c.

u(2,C)

@

‘\
‘- Point B

Point A

Figure 2: Partial Circuit Diagram for the AC Chip

follows:

3j(j # i)b[u(j, 3) A 44 A xj Y> = 01
But this expression is equivalent to

or

j=l,j#i y=l

which is just the condition under which (i, x) is reset.
Therefore, the network correctly discards labels when it
should. The converse follows from negating the above
equations.

3.2 Complexity
The circuit requires un JK-flip-flops for the node array,
and u2n(n - 1) flip-flops for the arc array. From Figure 2
we see that there is an and gate for every flip-flop in the
arc array, so u2n(n - 1) 2-input and gates are required for
this purpose. For each of the an flip-flops in the node array
there is n - 1 or gates required, each taking a inputs - a
total of un(n - 1) or gates. Finally, there are un and and
not gates (nand gates), each taking n - 1 inputs. There
are also O(u2n2) wires.

The worst case time complexity of the network occurs
when only one JK-flip-flop is free to reset at a time. So
if propagation through the and and or gates is consid-
ered instantaneous, the worst case time complexity is an.

If a logarithmic time cost is assigned to the large fan-
in and and or gates the worst case time complexity is
O(u log(u)n log(n)).

Kasif [1986] h as shown that solving constraint satis-
faction with arc consistency is log-space complete for P
(the class of polynomial time deterministic sequential al-
gorithms). This suggests that it is likely no poly-log time
algorithm will be found, so O(nu) time is liable to be near
the minimum achievable with polynomially-many proces-
sors [Swain and Cooper, 19881.

Note that if the node and arc arrays must be initial-
ized serially, loading them takes more time (O(u2n2) steps)
than executing the algorithm. For almost all applications
of constraint satisfaction the binary predicate Qij(x, y) can
be specified with less than O(u2n2) information, and so in-
stead of the arc array a circuit could be built that supplies
the correct values to the and gates without needing so
many memory elements to fill. An application in which
this is true is graph matching, which we describe in the
next section.

4 Graph Matching

Graph matching can be defined as a constraint satisfaction
problem. General graph matching requires k-consistency
[Freuder, 19781 (and is NP -complete, in fact). With just
arc consistency, a restricted yet still interesting class of
graphs may be matched. Furthermore, the effectiveness of
matching graphs by constraint satisfaction with only arc
consistency can be enhanced if the graphs are labelled.
This kind of restricted matching of labelled graphs is par-
ticularly suited to the visual indexing problem [Cooper,
1988]. In this problem, labelled graphs are used to rep-
resent structurally composed objects. The constraint sat-
isfaction process is used only to filter recognition candi-
dates, and the few graphs not discriminable with the lim-
ited power of arc consistency can be addressed in other
ways.

If labelled graph matching is framed as a constraint sat-
isfaction process, the unary constraint is that the labels
of corresponding vertices be the same. The binary (arc)
constraint ensures that the connectedness between pairs
of corresponding vertices be the same. In other words, if
there is an edge between 2 vertices in one graph, there bet-
ter be an edge between the corresponding vertices in the
other graph. In this section, we describe without loss of
generality the matching of undirected graphs.

So, for the graph matching problem:

Pi(x) = (label(i) = label(x))

and

Qaj(x, y) = (adjacent(i, j) = adjacent(x, y))

For the graph matching problem the number of possible
labels equals the number of vertices so a = n.

There are some modifications we can make to the general
arc consistency circuit that are to our advantage for this
particular application.

6W Machine Architectures and Computer Languages for AI

Constraint Table Computation by
Special-Purpose Circuitry
One modification is to replace the arc array
designed as follows. Construct two arrays of

by a circuit

n (> n(n - 1)
2

=-
2

flip-flops representing adjacent(i, j) and adjacent(z, y) re-
spectively. Note that these are adjacencies in the in-
put graphs, not in the constraint graph. For all possi-
ble (i,.i>(G Y) P airs, wire one flip-flop from the (i, j) array
and one flip-flop from the (x:, y) array to a gate comput-
ing the equality function ZOf. Then the output of the
((i, j), (x, y))‘th gate represents Qij(z, y). Then the net-
work will have only O(n2) flip-flops to load prior to the
computation.

Analogous special purpose circuitry to compute P,(X)
from the vertex/label sets of each graph can easily be imag-
ined as well. In the case, the equality gate must check
equality of the labels, so is likely comparing more than
just a single bit.

In any case, it is clear that actually computing the con-
straint tables Pi(x) and Qij(z, y) may be a significant part
of the overall computation. In many specialized cases, it
is clearly possible to actually build parallel circuitry to
assist in computing the constraint tables, rather than seri-
ally computing the predicates beforehand and then loading
them into the parallel hardware.

Symrnet ric Mat thing
Graph matching need not be simply isomorphism, as many
vision applications emphasize [Shapiro and Haralick, 19811.
If we restrict ourselves to pure isomorphism however, the
graph matching problem is symmetric. In terms of the
constraint satisfaction formulation, the symmetry means
that the vertices of graph A have to be possible labels for
graph B as well as vice versa. Therefore for a flip-flop
(i, Z) to stay, one may require it to be consistent regarding
2 as the label and i as the vertex and vice versa. So in
addition to the and-or network described for the general
constraint satisfaction problem the graph matching circuit
has a complementary network in the opposite direction.
The two circuits are anded together before the inverter
at the K input of the JK latch. Together these circuits
compute

--I cc /1 \j twti Y> A Qij(“,
j=l,j#iy=l

i;\ \j (wti Y) A Q&,
y=l,y#zj=l

The circuit which implements this equation finds all pos-
sible labelings that are pairwise consistent both for match-
ing graph A to graph B and for matching graph B to graph
A.

4.1 Complexity
If no special purpose circuitry is used to computePa and
it is input as a table of an or n2 entries (in this case, a = n),

then the complexity is as follows. The node array requires
n2 JK-flip-flops. The reduced arrays representing the input
graphs require a total of n(n - 1) flip-flops. To replace the
arc array, there are n2(n - 1)2 x01’ gates. Analogous to
the earlier design n(n - 1) 2-input and gates are required,
n2(n - 1) OF gates, and n2 nand gates. There are O(n*)
wires, as for the general constraint satisfaction network.

The worst case time complexity for the graph matching
network is the same as for the constraint satisfaction net-
work, O(n2) ignoring propagation time and O(n2 log2 n)
taking it into account. Loading and unloading the network
takes O(n2) sequential time, and so does not affect the
worst-case performance of the network. Since the expected
time of the constraint satisfaction step could be much less
than the worst-case performance, sequential loading and
unloading is still likely to be the performance bottleneck.

4.2 Comparison with Connectionist
Network

Cooper [1988] g ives a connectionist network design for solv-
ing the same labelled graph matching problem addressed
here. Interestingly, although the two networks were devel-
oped from completely different heritages, and for different
reasons, they are remarkably alike. In particular, the cen-
tral aspect of both designs - the representation of the unary
and binary constraint predicates as completely filled-in ta-
bles - is exactly the same. This reflects the adoption of the
unit/value design principle, which is useful for obtaining a
very high degree of parallelism, no matter what the primi-
tive units of computation. In fact, it is straightforward to
realize our current design as a connectionist network with
simple unit functions such as and and or. We describe
a connectionist simulation of this network implementation
in Swain and Cooper [1988].

Unlike the chip design, a connectionist network is never
intended to interface with sequential processes, so the in-
put constraint tables can be filled by parallel spreading
activation. As a result, the I/O bottleneck does not occur.
Of course, if the digital network were to receive parallel
input, the same would be true.

5 iscussion and Conclusions
The utility of constraint satisfaction methods in the solu-
tion of many AI problems suggests that efficient implemen-
tations might be widely useful. Furthermore, constraint
satisfaction methods have an obvious parallel character.

In this paper, we have given a massively parallel de-
sign which provably implements one classic constraint sat-
isfaction algorithm. Our implementation thus inherits the
correctness characteristics of the original formulation. We
have also shown how this design is easily specializable for
particular problems. This specialization process provides
a desirable alternative to designing and proving a new par-
allel network for each particular problem.

As might be expected, the highly parallel implementa-
tion runs very fast. Although worst case running time is
linear in the number of variables and labels, it is more
reasonable to expect that the network runs in a small con-
stant number of time steps. Overall, if I/O time is not
included, the performance of the network can be expected

Swain and Cooper 485

to be much better than that of the best sequential imple-
mentations.

For sufficiently small problems it would be straightfor-
ward to construct our arc consistency chip, even for the
general case. If, however, the parallel machine is forced
to interface with sequential processes, the run-time com-
plexity becomes similar to that expected from standard
sequential implementations of arc consistency. This I/O
bottleneck can be overcome by supplying parallel input or
by specializing the chip to solve a particular problem, as
we showed in the graph matching example.

Specialization also helps address the issues that arise in
solving larger problems. It is easy to see that the limits of
current VLSI technology arise quickly when O(n2a2) space
is required. But in some current work, we have discovered
that it is possible to reduce these resource requirements
by as much as three or four orders of magnitude for some
classes of problems, even using the same basic design[Swain
and Cooper, 19881.

Constructing special-purpose hardware is effective in en-
vironments where classes of problem instances are well-
understood and repeat frequently. (For example, a robot
vision system designed for industrial application). An al-
ternative to using special purpose hardware is to imple-
ment a parallel algorithm on a general purpose paral-
lel computer, such as the Connection Machine. This al-
ternative becomes especially interesting if it yields run-
time complexity comparable to our current design. We
have been investigating this possibility [Swain and Cooper,
19881, as have other researchers [Henderson and Samal,
19881.

Acknowledgements
This work was supported by a Canadian NSERC post-
graduate scholarship, by the Air Force Systems Command,
Rome Air Development Center, Griffis Air Force Base,
New York 13441-15700 and the Air Force Office of Sci-
entific Research, Bolling AFB, DC 20332 under Contract
No. F30602-85-C-0008. The latter contract support the
Northeast Artificial Intelligence Consortium (NAIC). We
thank the Xerox Corporation University Grants Program
for providing equipment used in the preparation of this
paper.

References
[Cooper, 19881 Paul R. Cooper. Structure recognition by

connectionist relaxation: Formal analysis. In Proceed-
ings of the Canadian Artificial Intelligence Conference:
CS’CSI-88, Edmonton, Alberta, June 1988.

[Davis and Rosenfeld, 19811 L. S. Davis and A. Rosenfeld.
Cooperating processes for low-level vision: A survey.
Artificial Intelligence, 17~245-263, 1981.

[Feldman and Ballard, 19821 J. A. Feldman and D. H. Bal-
lard. Connectionist models and their properties. Cogni-
tive Science, 6:205-254, 1982.

[Freuder, 19781 Eugene C. Freuder. Synthesizing con-
straint expressions. Communications of the ACM,
21:958-966, 1978.

[Gu et al., 19871 J un Gu, Wei Wang, and Thomas C. Hen-
derson. A parallel architecture for discrete relaxation
algorithm. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-9:816-831, 1987.

[Henderson and Samal, 19881 Tom Henderson and Ashok
Samal. Parallel consistent labeling algorithms. Interna-
tional Journal of Parallel Algorithms, 1988.

[Hinton et al., 19841 G. E. Hinton, T. J. Sejnowski, and
D. H. Ackley. Boltzmann machines: Constraint satisfac-
tion networks that learn. Technical Report CMU-CS-84-
119, Department of Computer Science, Carnegie-Mellon
University, 1984.

[Hinton, 19771 Geoffrey E. Hinton. Relaxation and Its
Role in Vision. PhD thesis, University of Edinburgh,
1977.

[Hummel and Zucker, 19831 Robert A. Hummel
and Steven W. Zucker. On the foundations of relaxation
labeling processes. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, PAMI-5:267-287, 1983.

[Kasif, 19861 S’ imon Kasif. On the parallel complexity of
some constraint satisfaction problems. In Proceedings of
AAAI-86, pages 349-353, 1986.

[Kitchen and Rosenfeld, 19791 Les Kitchen and Azriel
Rosenfeld. Discrete relaxation for matching relational
structures. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-9:869-874, 1979.

[Mackworth and Freuder, 19851 Alan K. Mackworth and
Eugene C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satisfac-
tion problems. Artificial Intelligence, 25:65-74, 1985.

[Mackworth, 19771 Alan K. Mackworth. Consistency in
networks of relations. Artificial Intelligence, 8:99-118,
1977.

[Mead, 19871 C arver Mead. Silicon models of neural com-
putation. In Proceedings of the First IEEE International
Conference on Neural Networks, Vol. 1, pages 93-106,
1987.

[Mohr and Henderson, 19861 R. Mohr and T. C. Hender-
son. Arc and path consistency revisited. Artificial In-
telligence, 28~225-233, 1986.

[Shapiro and Haralick, 19811 Linda G. Shapiro
and Robert M. Haralick. Structural descriptions and
inexact matching. IEEE-PAM& 3(5), 1981.

[Swain and Cooper, 19881 Michael J. Swain and Paul R.
Cooper. Parallel constraint satisfaction. Technical Re-
port TR 255, Department of Computer Science, Univer-
sity of Rochester, June 1988.

[Waltz, 19751 D. Waltz. Understanding line drawings of
scenes with shadows. In P. H. Winston, editor, The
Psychology of Computer Vision, pages 19-91. McGraw-
Hill, 1975.

686 Machine Architectures and Computer Languages for AI

