
Comparison of the Rete an
Matchers for Soar (A Summary)*

Pandurang Nayak Anoop Gupta
Knowledge Systems Lab. Computer Systems Lab.

Stanford Univ. Stanford Univ.
Stanford, CA 94305 Stanford, CA 94305

au1
Information Sciences Inst.

Univ. of Southern California
Marina de1 Rey, CA 90292

m

Abstract

RETE and TREAT are two well known algorithms
used for performing match in production systems
(rule-based systems). In this paper, we compare the
performance of these two algorithms in the context
of Soar programs. Using the number of tokens pro-
cessed by each algorithm as the performance metric,
we show that the RETE algorithm performs better
than the TREAT algorithm in most cases. Our re-
sults are different than the ones shown by Miranker
for OPS5. The main reasons for this difference are
related to the following: (i) fraction of times no joins
need to be done; (ii) the long chain effect; (iii) match-
ing of static structures; and (iv) handling of combi-
natorial joins. These reasons go beyond Soar in their
applicability, and are relevant to other OPS5-based
production systems that share some of Soar’s prop-
erties. We also discuss several implementation issues
for the two algorithms.

1 Introduction
Soar is a cognitive architecture that provides the foundations
for building-systems that exhibit general intelligent behavior
[Laird et o1., 19871. S oar uses an OPS5-like production system
[Brownston et ad., 19851 to encode its knowledge base and it pro-
vides a vision of how future expert systems may be constructed.
It has been exercised on many different tasks, including some
of the classic AI toy tasks such as the Eight Puzzle, and the
Missionaries and Cannibals problem, as well as on large tasks
such as the Rl computer configuration task [Rosenbloom et oI.,
19851, the Neomycin medical diagnosis task [Washington and
Rosenbloom], and the Cypress algorithm design task [Steier,
19871. It exhibits a wide range of problem-solving mechanisms - -

- and has a general mechanism for learning.
RETE and TREAT are prominent algorithms that have been

designed to perform match in production systems. The RETE
algorithm [Forgy, 19821 was proposed by Forgy and is currently
used in almost all implementations of OPS5-like oroduction
systems. The TREAT algorithm [Miranker, 19843 has been
proposed more recently by-Miranker. In his recent study [Mi-
ranker, 19871, Miranker presents empirical evidence, based on
five OPS5 programs, that seem to show that the TREAT match

*This research was sponsored by the Hughes Aircraft Com-
pany, by Digital Equipment Corporation, and by the Defense
Advanced Research Projects Agency (DOD) under contracts
N00039-86-C-0133 and MDA903-83-C-0335. Computer facili-
ties were partially provided by NIH grant RR-00785 to Sumex-
Aim. The views and conclusions contained in this document
are those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or-implied, of-the
Hughes Aircraft Company, Digital Equipment Corporation, the
Defense Advanced Research Projects Agency, the US Govern-
ment, or the National Institutes of Health.

Nayak, Gupta and Rosenbloom 693

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

the tests specified
condition element

condition element. For example, the

(goal fid <g> tattr state tvalue <s>)

specifies that the class of a matching working memory element
should be goal, and its attribute field should be state. The
variables <g> and <s> are bound to the identifier and value
fields of the working memory element, respectively.

We now define the notion of a production instantiatior+ A
production instantiation is a list of working memory elements
such that each condition element in the production is matched
by a working memory element, with the added restriction that
the variable bindings induced by the working memory elements
must be consistent.’ For example, consider the following pro-
duction, named joe-production, which consists of of three
condition elements and one action?

(p joe-production
(goal fid <g> fattr state fvalue <s>)
(state fid <s> fattr hole fvalue <x>)
(state tid <s> fattr peg tvalue <x>)

&kke state fid <s> fattr fits? tvaIue yes))

The list of working memory elements

((goal tid gl tattr state tvalue s2)
(state fid s2 fattr hole fvalue square)
(state tid s2 tattr peg fvalue square))

Constant test

Figure 1: A RETE network.

the working memory elements satisfying the condition elements
induce consistent variable bindings.

is an instantiation of the production since each condition ele-
ment has a matching working memory element and the vari-
ables have consistent bindings (<g> is consistently bound to
gl, <s> to s2, and <x> to square).

A production may have more than one instantiation, cor-
responding to the different sets of working memory elements
matching its condition elements in a consistent way. Each in-
stantiation of a production causes it to fire. Firing a production
instantiation is the process of executing its action part with
variables being replaced by the bindings induced by the instan-
tiation. Usually, the action of Soar productions is to add new
working memory elements, though other kinds of actions are
available for tracing and interfacing.

Different algorithms may be used to solve the production
match problem. In this paper we discuss the relative merits
of two of them-the RETE match algorithm, and the TREAT
match algorithm. Only some of the details are provided here.
More complete descriptions can be found in [Nayak et a2.1.

ETE matcher for Soar
The RETE matcher [Forgy, 19821 is the most commonly used
matcher for OPS5-like systems (Soar being one of them). For
a production with condition elements Cl, . . . , C&, and associ-
ated relations RI, . . . , R,, respectively, the RETE matcher cre-
ates a data flow graph like the one shown in Figure 1 (where
n = 5). The tuples of the relations RI,. . . , R, are stored in

2.2 Database formalism for t
The matcher of a production system must keep track of the pro-
duction instantiations based on the contents of working mem-
ory. Efficient match algorithms are very important since the
matcher often dominates all other computations and determines
the speed of execution. To facilitate the discussion of the match
algorithms, it is convenient to use terminology borrowed from
database theory.

With each condition element of a production, we associate

alpha memories, the tuples of the relations RIZ, . . . , RI...,,-I
(called intermediate relat%‘ons) are stored in beta memories, and
the tuples of the relation RI ...n are stored in the conjiict set.
Each alpha memory has an associated constant test node that
contains the tests necessary to decide whether or not a working
memory element matches, in isolation, the condition element
corresponding to that alpha memory. Join nodes contain the
tests necessary to join two input relations and produce an out-
put relation. The network specifies the order in which the joins
are done.

a relation (in the database sense). The attributes of the rela-
tion are the field names of the condition element. The tuples

New working memory elements that satisfy the tests in a

of the relation are the working memory elements that match
constant test node are added to the relation in the correspond-

the condition element. Using this formalism, it is easy to see
ing alpha memory. Any change to a relation (stored either in

that the set of all instantiations of a production with condi-
an alpha or a beta memory) is propagated down the network

tion elements Cl,. . . , Cn, and associated relations RI,. . . , R,,
by joining the changed part of the relation with the opposite

respectively, is the same as the join of the relations RI,. . . , R,
relation (the relation that it shares the join node with), pos-

(written either as RI..., or RI W . . . W Rn). The join tests cor-
sibly adding tuples to the output relation. This propagation

respond exactly to the tests that need to be done to check that
stops when either the conflict set is updated, or when no new
tuples result from a join. Removal of working memory elements

‘Soar also allows negated condition elements. While the re-
sults take into account the effect of negated condition elements,
for brevity we shall not talk about them in this paper. The in-
terested reader is referred to [Nayak et al.], a longer version of
this paper.

2Productions are actually input to Soar in a more compact
form.

is handled in an analogous fashion. The only difference is that
the addition of tuples to the relations is replaced by the removal
of tuples.

2.4 The TREAT matcher for Soar
TREAT stores the relations RI,. . . , R, in alpha memories
(with associated constant test nodes as above) and the relation

694 Machine Architectures and Computer Languages fix AI

Legend:

Constant test
q Alpha memory

q Conflict set

Table 1: Program information.

~If

Computation of

R: W RI W s -. W Ri-1 W Ri+l W s - a W Rn

using some join order

R l...tl

Figure, 2: A TREAT network.

RI..., in the conflict set. However, unlike RETE, the intermedi-
ate relations are not stored, but parts of them are recomputed
as and when required (see Figure 2).

As in RETE, working memory elements that satisfy a con-
stant test are added to the relation in the corresponding al-
pha memory. Suppose that a working memory element is
added to a relation Ri. This working memory element is
called the seed. Clearly, any new instantiation of the pro-
duction resulting from this addition must contain the seed.
If we let R: represent a relation with the same attributes as
Ri, but having only one tuple-the seed working memory ele-
ment, then it is easy to see that the relation corresponding to
the new instantiations of the production is exactly the relation
R{ W RI W . . . W Ri-1 W Ri+l W . . . W RD. TREAT computes
precisely this relation by joining one relation at a time, start-
ing with the seed relation, R:. The tuples of this relation are
added to the conflict set, RI,..~, to complete the update. One
thing to note is that since the join operation is commutative,
the relations may be joined in any order.

The removal of a working memory element from a relation
Ri results in the removal of those tuples of RI..., that contain
the removed working memory element (recall that the tuples of
RI..., are sets of working memory elements).

ts an

The order in which relations are joined in either the RETE or
the TREAT algorithm is very important for good performance.
A bad join order can generate large intermediate relations, mak-
ing the matcher very inefficient. Since we wanted to compare
the RETE and TREAT matchers, factoring out the effect of
poor join orders was very important. In generating good join
orders, various heuristics (especially domain dependent ones)
are very important.

The RETE ordering algorithm for Soar orders the condition

Experimental results for the three production matchers for
Soar described above (RETE, TREAT with dynamic ordering,
and TREAT with static ordering) are now presented. Miranker
uses the number of comparisons required to compute variable
bindings as the metric in his studies. This metric is dependent
on the actual implementations of the algorithms. For example,
the use of hashing in the alpha memories can cut down the num-
ber of comparisons by as much as a factor of 10 [Gupta, 19871.
Similarly, using execution time alone is not a good idea due to
the differing levels of optimization of the various matchers.

The metric that we have chosen is the total number of token
elements statically. The interested reader is referred to [Scales,
19861 for the exact details of the algorithm. The key idea in
the RETE ordering algorithm is to join condition elements that
are linked to the already joined condition elements. A condi-
tion element is said to be linked to the already joined condition
elements if the variable in the identifier field of the condition
element is bound in the already joined condition elements (the
identifier field of a condition element is always a variable). Since
the identifier of an object is unique, only the augmentations of
that object can match. Furthermore, most condition elements
in Soar have constant attribute fields, with one value per at-

changes. A token is merely a synonym for a tuple, and we use
it to be consistent with other literature on this subject. The
number of token changes is the sum of the number of tokens
generated and the number of tokens removed from the various
relations. In TREAT, this includes the tokens generated in the
recomputation of intermediate relations. This metric is clearly
independent of details of implementation, and depends only
on the match algorithm and the ordering algorithm. Given

3The complete algorithm also takes into account some spe-
cial cases and is described in [Nayak et al.]

Nayak, Gupta and Rosenbloom 695

Table 2: Total token changes.

Algorithm EP M&C Rl-Soar NM
Rete 28,293 53,982 125,151 79,905

Treat (Dynamic Order) 31,692 158,432 136,456 134,472
Treat (Static Order) 27,390 138,093 292,046 181,164

the amount of experimentation we have done with the ordering
algorithms, we are fairly sure that close to optimal orders are
being generated. This means that the number of token changes
will in fact reflect the differences in the basic match algorithms.

The experiments were run on four different Soar programs-
the Eight Puzzle (EP), the Missionaries and Cannibals (M&C),
Rl-Soar, and Neomycin-Soar (NM). EP and M&C are the stan-
dard toy tasks. Rl-Soar is an implementation of a subset of the
expert system Rl in Soar [Rosenbloom et c;aZ., 19851. Rl con-
figures computer systems for DEC. Neomycin-Soar is an imple-
mentation of a portion of the expert system Neomycin in Soar
[Washington and Rosenbloom]. Neomycin diagnoses infectious
diseases like meningitis. For each program, Table 1 shows the
number of productions, the average number of condition ele-
ments per production, the total number of production firings,
and the number of working memory elements added and re-
moved during the run. It is interesting to note that there are,
on the average, about 9 condition elements per production com-
pared to an average of a little over 3 in OPS5 programs [Gupta,
19871.

4.1 Experimental Results
The total number of token changes for each of these programs
using the three different match algorithms is displayed in Ta-
ble 2. Thus for Neomycin-Soar, the largest system, RETE gen-
erated 79,905 token changes, TREAT with dynamic ordering
generated 134,472 token changes, and TREAT with static or-
dering generated 181,164 token changes. It is clear from the
results that the RETE matcher outperforms both the TREAT
matchers in almost all the cases (EP is an exception in which
all the matchers perform approximately equally well).

4.2 Discussion
One of the advantages of TREAT is that no joins need to be
done when a working memory element is removed from a condi-
tion element. Even when working memory elements are added
to a condition element, no joins need to be done if there is a
condition element in the corresponding production that has no
working memory elements satisfying it. RETE has neither of
these advantages. Joins need to be done when working memory
elements are removed to keep the intermediate relations up to
date. When a working memory element is added to a condi-
tion element, joins may still need to be done even if a condition
element in the corresponding production has no working mem-
ory elements satisfying it. This is again needed to keep the
intermediate relations up to date.

However, RETE has an advantage that TREAT does
not have. Consider a production with condition elements
Cl, CZ, C’s, Cd, and CS with associated relations RI,. . . , Rg re-
spectively. Suppose that the RETE ordering of the condition
elements is as above. Further suppose that all the condition
elements have some working memory elements satisfying them,
but the relation RI W Rz is null. If we have a new working
memory element satisfying C’s, then clearly RETE will do no
work since the first step is to join the seed working memory
element with the relation RI W &, which is null. However,
TREAT will have to do some joins before discovering that no
production instantiation can be found. Thus RETE does no

Table 3: Percentage of time that no joins need to be done.

Algorithm EP M&C Rl-Soar NM
Rete 79% 66% 81% 76%
Treat 69% 60% 83% 81%

Table 4: Average length of chains.

Algorithm EP M&C Rl-Soar NM
Rete 1.87 1.21 1.26 1.30

Treat (dynamic) 2.31 2.32 1.78 1.84
Treat (static) 2.05 2.14 1.98 1.98

joins if the opposite memory is empty.
Table 3 shows the percentage of time that no joins need to

be done using RETE and TREAT (clearly the number for both
TREAT matchers is the same). Thus in Rl-Soar, RETE does
no joins 81% of the time (because of empty opposite memories),
and TREAT does no joins 83% of the time (because either a
working memory element was being removed or because there
was a condition element with no working memory elements sat-
isfying it). The numbers are reasonably close which means that
the competing advantages offset each other pretty well.

Since all three matchers need to do joins for about the same
percentage of times, the difference in the number of tokens gen-
erated points to the fact that the TREAT matchers generate
more tokens when they do joins, than does the RETE matcher.
To understand the reasons for this, we introduce the notion of
long chains.

Adding or deleting a working memory element from a condi-
tion element can result in a sequence of joins being performed
until either there are no more relations to join or a null rela-
tion results. The more the number of relations that need to
be joined, the more is the number of tokens generated. This
is called the Zopzg choira effect. As Table 1 shows, the aver-
age number of condition elements in a Soar production is fairly
large. This means that the long chain effect is probably quite
significant. Table 4 tabulates the average length of the chain of
joins in the three systems, given that at least one join needs to
be done. It is evident from the table that the TREAT match-
ers seem to generate longer chains on the average than does
the RETE matcher. This helps to explain the reasons for a
larger number of tokens being generated in the TREAT match-
ers than in the RETE matcher. The reasons for the longer
chains in TREAT are discussed next. .

Firstly, every time a production fires, TREAT joins in each
condition element to the seed working memory element. Given
the number of condition elements in a typical Soar production,
this is clearly a long chain. In RETE however, all the condi-
tion elements need not be joined every time a production fires.
This is because some of the condition elements (the ones before
the condition element that satisfies the seed working memory
element) would have already been joined in previous cycles.
Thus production firings lead to longer chains in TREAT than
in RETE. Figure 3 shows this pictorially. Figure 3a) shows a

6% Machine Architectures and Computer Languages For AI

Rl R2 R: RI

RlDa...wR, R: WRIW...WR~

(a) A long chain in RETE (b) A long chain in TREAT

Figure 3: Long chains when a production fires.

typical long chain in RETE resulting from a production firing.
Figure 3b) shows a long chain in TREAT resulting from a pro-
duction firing (the seed condition element has been promoted
to the top of the order in the diagram). Note how the TREAT
long chain is longer than the RETE long chain.

Even when the production does not fire, TREAT will tend to
have longer chains before the null relation results than RETE.
To see this, suppose that n condition elements have to be joined
before the null relation results. In TREAT all n will have to
be joined. In RETE however, only some of these n condition
elements will have to be joined, since the ones before the seed
would have already been joined in previous cycles.

The second major reason for the RETE matcher perform-
ing better than the TREAT matchers can be traced back to
the dichotomy of saving intermediate states versus recomput-
ing them.

Consider a production that fires only when the current state
of problem solving is equal to some desired state. Such a pro-
duction would have condition elements that match the cur-
rent state and condition elements that match the desired state.
Since the desired state is usually fixed for a given run of the
program, it is possible for RETE to match it just once when it
is initially set up in working memory. TREAT, however, must
rematch it (or at least a part of it) every time a change is made
to the current state. Thus any time that a production needs
to match a static structure (like the desired state), TREAT is
more expensive.

The matching of a certain class of dynamic structures also
favours RETE. This is the class of monotonic structures. We
say that a structure is monotonic if it is built in working mem-
ory without any component working memory element being re-
moved. The only time component working memory elements
are removed is when the whole structure is removed from work-
ing memory. Matching of such structures using the RETE
algorithm guarantees that each join is computed once when
the structure is built and once when the structure is removed.
However, since TREAT does not save the results of interme-
diate joins, it may have to recompute some of the joins each
time a working memory element was added to the structure.
This could happen when none of the alpha memories in the
production is empty (for example, if a similar structure had al-
ready been matched). This can become quite expensive, making
RETE perform better than TREAT.

Monotonic structures are quite common in Soar. This is due

to various special features of Soar (for example, Soar produc-
tions cannot remove elements from working memory). Any pro-
duction system in which monotonic structures are common (for
whatever reason) would tend to exhibit the above phenomenon.

The third reason for the difference in performance has to do
with the effect of combinatorial joins. A combinatorial join is
one which results in more tuples than are in either of the input
relations. A combinatorial join may occur either when one joins
an unlinked condition element or when one joins a linked condi-
tion element with multiple values for the specified attribute. A
combinatorial join penalizes both RETE and TREAT. However,
since TREAT prefers to recompute joins, it would recompute
the combinatorial joins as well. The recomputation of combi-
natorial joins is clearly quite expensive. RETE, on the other
hand, would save the result of a combinatorial join, thus saving
a significant amount of work.

An associated shortcoming of TREAT is the relatively high
frequency of unlinked condition elements in the join orders.
While it is the norm to write productions with condition el-
ements that can be ordered such that, starting with a goal
condition element, each condition element can be linked to the
previously joined condition elements (as is done in RETE), it
is not always possible to write productions with condition ele-
ments that are linked to previously joined condition elements
when starting with an arbitrary condition element in the pro-
duction (as is required in TREAT). This leads to TREAT join
orders having more unlinked condition elements than RETE
orders, leading to more combinatorial joins in TREAT.

4.3 Implementation Issues
The discussion so far has been purely in terms of token changes.
We now present some results that show that TREAT has some
other practical shortcomings.

Table 5 shows the time per token change in RETE and
TREAT with dynamic ordering. The time per token is clearly
smaller for RETE. While part of the difference can be at-
tributed to inefficiencies in our encoding of TREAT, the dif-
ference seems large enough that it seems highly unlikely that
more optimization would make TREAT with dynamic ordering
perform better than RETE. Part of the reason for TREAT’s
poor performance in this case is due to the time spent in dy-
namically creating the join orders. Table 6 shows the fraction
of time that TREAT spends in dynamically ordering the joins.
This table clearly shows that a significant fraction of the time

Nayak, Gupta and Rosenbloom 697

Table 5: Match time per token change (in ms).

Algorithm EP M&C Rl-Soar NM
Rete 1.77 2.77 3.11 2.98

Treat (dynamic) 4.94 8.06 4.82 5.72

Table 6: Fraction of total match time spent in dynamic
ordering in TREAT.

EP] M&C 1 Rl-Soar 1 NM
41.29%] 21.10%] 25.96% 1 22.7%

having to do any joins when the opposite memory is empty.
Since the fraction of times that ioins are done in RETE and
TREAT is about the same, the longer chains of joins generated
in TREAT lead to a larger number of tokens being generated.

The fundamental difference between RETE and TREAT-
saving intermediate relations versus recomputing them-is the
second main reason for TREAT’s poorer performance. The
matching of static structures involves recomputation of joins
in TREAT, while RETE is able to match such structures just
once. RETE is also better at matching monotonic structures.

Finally, we noted that combinatorial joins tend to make
TREAT perform worse than RETE. In addition, TREAT tends
to have more combinatorial joins than does RETE.

We also showed that both dynamic and static ordering in
TREAT do not perform as well as RETE in practice. The
actual process of ordering the condition elements dynamically
takes a significant amount of time, making the system run very
slowly. Static ordering is not good either because the time to
load in productions can go up approximately 9 fold (i.e. by the
average number of condition elements in a production).

While RETE seems to be better than TREAT in most cases,
there are some situations under which TREAT is comparable to
RETE and may even be better. This leads to the possibility of
having hybrid match algorithms (TRETE?) which allow some
productions to be matched using the RETE algorithm and some
to be matched using the TREAT algorithm. An even closer
enmeshing of the two algorithms is possible in which parts of

698 Machine Architectures and Computer Languages for AI

one production are matched using the RETE algorithm while
other parts are matched using the TREAT algorithm. Deciding
which parts of the productions should be matched by which
algorithm is not an easy task, and is a possible direction for
future research.

eferenees
[Brownston et al., 19851 Lee Brownston, Robert Farrel, Elaine

Kant, and Nancy Martin. Programming Expert System
in OPS5: An Introduction to Rule-Based Prograwning.
Addison-Wesley, 1985.

[Forgy, 1982-J Charles L. Forgy. Rete : A fast algorithm for
the many pattern/many object pattern match problem.
Artijkial Intelligence, 19:17-37, September 1982.

[Gupta, 19871 Anoop Gupta. Parallelism in Production Sys-
tems. Morgan Kaufmann Publishers, Inc., 1987.

[L&d, 19861 John E. Laird. Soar User’s Manual (Version 4).
Technical Report ISL-15, Xerox Palo Alto Research Cen-
ter, 1986.

[Laird et al., 19871 John E. Laird, Allen Newell, and Paul S.
Rosenbloom. Soar : An architecture for general intelli-
gence. Artificial Intelligence, 33:1-64, September 1987.

[Miranker, 19841 Daniel P. Miranker. Performance estimates
for the DAD0 machine : A comparison of TREAT and
Rete. In Fifth Generation Computer Systems, ICOT,
Tokyo, 1984.

[Miranker, 19871 D aniel P. Miranker. TREAT : A better match
algorithm for AI production systems. In AAAI-87 Pro-
ceedings, American Association for Artificial Intelligence,
July 1987.

[Nayak et al.] P an d urang Nayak, Anoop Gupta, and Paul S.
Rosenbloom. Comparison of the Rete and Treat produc-
tion matchers for Soar. In preparation.

[Rosenbloom et al., 19851 Paul S. Rosenbloom, John E. L&d,
John McDermott, Allen Newell, and Edmund Orciuch.
Rl-Soar : An experiment in knowledge-intensive program-
ming in a problem-solving architecture. IEEE Traszs-
actions on Pattern Analysis and Machine Intelligence 7,
:561-569, 1985.

[Scales, 19861 Daniel J. Scales. Eficient Mutching Algorithms
for the Soar/OPS5 Production System. Technical Re-
port KSL 86-47, Knowledge Systems Laboratory, June
1986.

[Steier, 19871 David Steier. CYPRESS-Soar : A case study
in search and learning in algorithm design. In IJCAI-87
Proceedings, International Joint Conference on Artificial
Intelligence, 1987.

[Washington and Rosenbloom] Richard M. Washington and
Paul S. Rosenbloom. Neomycin-Soar : Applying search
and learning to diagnosis. In preparation.

