
The Challenge of Real-time Process Control
for Productio

Franz Barachini, Norbert Theuretzbacher
ALCATEL Austria - ELIN Research Center

Floridusgasse 50 A- 12 10 Vienna, Austria

Abstract

Although the technology of expert systems has
been developed substantially during the past decade,
there still seems to be relatively little application to
time-critical problems because of their extensive
computational requirements. One application area of
particular interest is that of process control. Because this
area requires real-time operation, the expert system
must operate within the time scale of the process
involved. Here we present techniques which have been
used to implement PAMEL,A, a language suitable for
building time-critical expert systems. We discuss
substantial optimizations of the well known RETE
algorithm and present run-time measurements based on
these optimizations. Despite the critics on RETE’s real-
time behaviour we show that the presented optimizations
and extensions will cover the demands of many real-time
applications. In order to eflciently support process
control applications, some useful language constructs
concerning interrupt handling and rule interruption are
discussed.

I Motivation

PAMELA (PAttern Matching Expert system LAnguage)
was born out of frustration. After having examined many AI-
languages and tools, it became apparent that most of them
were unable to handle time-critical problems efficiently.
Here we raise some of the problems which we tackled with
PAMELA.

It came to our attention that although several other
inference algorithms were developed [MC Cracken, 1978; MC
Dermott et. al. 19781, most of the declarative languages with
reasonable performance use the RETE algorithm [Forgy,
1979; Forgy, 19821 as an indexing scheme. Consequently, we
concentrated our study on this algorithm and others which
have been derived from it [Miranker, 1987; Scales, 19861.

It became clear that a pure production system is not fully
applicable to process control applications, since asynchronous
peripheral events may influence the recognize-act cycle
during operation. Interrupt-handling facilities
fundamental for creating timely and elegant solutions to re$z
time problems. Being able to interrupt the recognize-act
cycle and to modify an existing working memory element
(WME) within a interrupt routine would be a nice feature.
However, two problems arise when incorporating such a
feature. Firstly, consistency of the RETE network cannot be
guaranteed when the CHANGE1 command is performed

1 This command is used to modify a Wh5E.

immediately during an interrupt. Secondly, in most of today’s
production systems it is impossible to access a WME outside
the scope of a rule.

Although several proposals for RETE run-time
improvements have been made [Schor et. al., 1986; Scales,
19861, there remain some parts worthy of optimization. For
the following discussion it is assumed that the reader is
familiar with the RETE algorithm and the vocabulary
normally used in reference to OPS [Brownston et. al., 1986;
Forgy, 19791.

Every implementation of the RETE algorithm requires the
sequentialization of the network except when employing
parallel architectures [Gupta, 1986b; Gupta et. al., 1986~;
Kelly and Seviora, 1987; Miranker, 1986; Tenorio, 19841. A
well known method of implementation [Forgy, 19821 is
designed specifically for interpreters.

2.1 Eliminating the Explicit Token-Stack

In PAMELA [Barachini, 19871 nodes are represented as
procedures which receive a token as a parameter, thus
eliminating the need for a token-stack. Instead of the token-
stack, the processor’s stack is used. Procedures are called
recursively when the network is traversed. The recursion
depth depends on the complexity of the most specific left
hand side of the rules (i.e. containing the greatest number of
patterns).

PAMELA maintains node types (such as negative-join
nodes, positive-compare nodes, negated nodes, etc.) for two-
input nodes. Except for conditions and calls to successor
nodes, each two-input node type uses the same code for
determining the consistently bound tokens and for handling
the token memories. For each node type there exists a specific
node handler which receives the node-number of the node to
be processed along with the token. For each individual node,
the unique conditions and calls to successive nodes are
executed within a particular part of the current node handler.

2.2 Optimization During CHANGE and REMOVE

Within two-input nodes PAMELA maintains two
memories (the left counter memory and the right counter
memory). For each incoming token, the counter memory
indicates the number of consistently bound tokens in the
opposite token-memory.

Every two-input node produces a shared token-memorv
(output-memory) accessed from the successors of the two:
input node. As an extension to Forgy’s implementation

Barachini and Theuretzbacher 70s

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

[19821, two backlink-pointers are stored for each token in the
token-memory. The first backlink-pointer references the
counter for that part of the token received from the left
predecessor node. The second references the counter for that
part of the token having arrived from the right predecessor
node.

When a token with a negative tag enters a two-input node
(indicating the deletion of a specific WME) within OPS83, it
is subject to the same tests applied to the token, which had
previously arrived with a positive tag. These tests are not
repeated in PAMELA. Let us consider a token X entering a
two-input node during a remove operation. The output
memory below the two-input node contains one or more
tokens that are the result of concatenating X with another
token from the opposite token memory. Such tokens may be
identified and removed by scanning the output memory for all
tokens which contain X as a left or right subpart. When we
find such a token containing X the backlink pointer represents
the number of consistently bound opposite tokens. Thus we
know how far to search in the output memory in order to
remove all tokens containing X. We have to decrement the
counters which implies an algorithmic overhead but we don’t
have to recheck the inter-element conditions.

Note that a counter with value zero avoids PAMELA
having to search the output memory (Gupta’s and Forgy’s
measurements [19831 show that this occurs frequently). Even
for counters greater than zero, search time may be reduced
significantly since the search for tokens can be terminated
once the last element has been found.

2.3 Node Reduction

In addition to the algorithm described above, node
reduction of the network may be an efficient run-time
optimization in PAMELA. The following PAIvlELA rule-
fragments serve as an example for the discussion. The right
hand sides are not relevant and therefore omitted.

RULE 1 : RULE;
Pl locomotive

(thrust > 100; in-use = false;
type = electric; track w = WEU)

P2 railroad car
(weight-< Pl.thrust; height < Pl.height;
track-w = Pl.track-w)

==>
/* attach action in RHS */

END RULE-l;

RULE 2 : RULE;
Pl locomotive

(track w = EEU; type = diesel; -
in use = false; thrust > 100) -

P2 railroad car
(weight < Pl.thrust; track w = Pl.track w)

==>
/* attach action in RHS */

END RULE-2;

The conventional network established by the RETE algorithm
for these rules is illustrated in Figure-l.

2.3.1 Sorting, Compressing and Sharing of Nodes

The RETE algorithm has the advantage that one-input

1 thrust

weight<
P

1 .thrust
trackw.=P .trackw.

I
rule2

Figure-l : Conventional RETE-Network

nodes are shared as far as possible. Two equal chains of one-
input nodes having different successor nodes are replaced by
only one chain of one-input nodes. The last node of this new
chain now contains more than one successor node. To obtain
optimal one-input node sharing, the sequence of the one-
input nodes within the equal chains has to be the same.
Therefore PAMELA sorts the inns-element conditions
before the network is constructed. In addition, one-input
nodes are compressed by reducing one-input node chains to a
single one-input node if each of the nodes has only one
successor.

Since two-input node processing requires an excessive
amount of run-time, it is desirable to reduce the number of
these nodes as much as possible. Two-input nodes with the
same left predecessors, right predecessors and conditions can
be combined into one node with two successors2. The
requirement that both nodes have the same predecessor can
be artificially satisfied by placing all the different intra-
element conditions between the nodes and their identical
predecessors behind the shared two-input node. We call these
nodes placed behind shared two-input nodes special one-
input nodes. They are treated like one-input nodes, except
that they maintain one associated token-memory.

This “aggressive” algorithm is performed recursively over
the whole network. The newly generated special one-input
nodes are sorted in order to allow optimal special one-input
node sharing. Compared to the original network there is a
node reduction of more than 40% in our example (see
Figure-2).

Although the described method yields a minimal
networks, it is not clear in advance whether this method
always improves run-time performance. It can be shown that
the improvements due to the proposed aggressive two-input
node sharing depends heavily on world data (working
memory content). Thus the run-time behaviour turns out to
be problem dependent. If we assume that on the average 10%
will pass successfully from the cross-product of the tokens at
two-input nodes in our example, then run-time will decrease.

2 Sharing is also done if only sub-parts of two-input nodes

3
are equal.
The discriminating network is minimal in that it contains
the minimum number of nodes.

706 Machine Architectures and Computer Languages for AI

in-use =o false

weight < PI Ahrust
I trackw.=Pl .trackw.

&,l rule2
Figure-2 : Reduced Network

But if we
increase.

assume 50% passing tokens* the run-time will

There are several possibilities for two-input node sharing
available within PAMELA. Actually PAMELA offers 10
sharing levels. Some Sharing levels represent sure cases e.g.
when they are applied mn-time will always decrease. The
other levels don’t always yield a decrease in run-time.

3 Uniprommew based

Currently, PAMELA code can only be executed on
INTEL-286 processors. ALCATEL-Austria develops its
own specially tailored hardware and software - it would be
unfair to peIfOITll run-time measurements on this
architecture. The absolute performance measurements are
therefore made on an IBM-PC/AT.

In order to cover a broad range of different expert system
bench-marks we selected the widely referenced applications
MAB, EMAB, COMBI, RUBIK and TOURNEY as test
cases. They already have been used as bench-marks by Gupta
[1986c] and Miranker [19871. We didn’t check larger expert
systems because of limited PC resources5.

We concentrate on the most run-time efficient sharing
level denoted by SHARING and on the worst level denoted by
REDUCING. Table-l represents the standard PAMELA
implementation already including the optimizations discussed
in chapters 2.1 and 2.2 (elimination of the token-stack,
optimization during CHANGE and REMOVE). The
measurements are given in seconds. The conflict set
resolution strategy is identical to OPS83.

The last column in Table-l contains the number of mle-
firings. Positions indicated with *)6 couldn’t be tested
because of memory restrictions of the PC. It would be unfair
to include run-time of input/output routines when comparing
two inference engines. Thus we didn’t add the run-time of
the output routines to the overall run-time of the inference
engines. Hence OPS83’s run-time is not exactly the same as
indicated by Forgy.

Gupta’s and Forgy’s measurements [1983] show that, in
practice, this very high inlet/outlet ratio occurs very
rarely.
PAMELA is certainly applicable for large Expert
Systems. ALCATEL-Austria is currently implementing
an Expert system with PAMELA for monitoring railway
stations, which consists of hundreds of rules.
Dynamic memory overflow occurs for these examples.

Table-l : Run-time Measurements

Analyzing the results, we recognize that careful two-input
node sharing is about 22% better than the unshared version of
MAB-NASA. Although this is not of an order of magnitude
we proved that two-input node sharing is an advantage for
certain examples.

The most efficient MAB-NASA version of PAMELA
performs only twice as good as OPS83. The reason for that
behaviour is that the token-memories ate rather small-sized
and there is only a limited number of rule-firings. To
overcome this disadvantage we insignificantly modified the
world data in order to have more than one monkey searching
for the bananas. This modified version yields 903 rule-firings
instead of 81.

Table-l presents the largest COMBINATION example
not exceeding the memory limits of the PC. This example
evaluates all possible combinations of terms of the sum
yielding the number 14. The terms of the sum may be
numbers between 1 and 5. Experiments showed, that
PAMELA’s high performance could also be demonstrated
with lower numbers yielding less rule-firings.

The number of rule-firings in the RUBIK’s example
depends on the initialized scrambled position of the cube.
Because of memory limits we chose a very simple
initialization. The run-time difference between OPS83 and
PAMELA is not an order of magnitude for this example.

Neither PAMELA nor OPS83 are able to solve the
TOURNEY problem on the PC. There are too many MAKE
and CHANGE statements within this bench-mark causing a
memory overflow. The PAMELA bench-mark was
performed on our own hardware. Since we reject comparing
bench-marks running on different architectures the numbers
for the TOURNEY bench-mark shouldn’t be taken to
literally.

In general we observed a better run-time behaviour of
PAMELA compared to OPS83 when token-memory size was
increased.

Obviously, comparing our run-time measurements with
XC rPIJuutila et. al., 19871 we are able to reject most criticisms
of the RETE algorithm. We showed that substantial run-time
optimizations of this algorithm enhance its real-time
capabilities.

e Recognize-Act Cycle

Current inference engines have not been designed with
interrupt-handling facilities in mind. Such facilities are
however essential for solving real-time problems. During the
“normal” recognize-act cycle (match-select-act), no
modifications or deletions of a WME can be performed
within interrupts. Variable-binding outside the scope of a

Barachini and Theuretzbacher 707

rule is essential for a completely interrupt-driven expert
systems.

PAMELA offers the possibility to stimulate the
recognize-act cycle within interrupt handlers with the aid of
the following functions:

SCAN(wme-type; property-l, . . .
property-N)

This function searches for a specific WME. The type and its
properties are given as parameters. The function substitutes
the variable binding mechanism of patterns and provides
another view of the working memory.

Q-MAKE(wme-type; assignment-l, . . .
assignment-N, priority)

This function allows the creation of a WINE within an
interrupt routine. The priority parameter reflects the priority
of the action.

Q-CHANGE(SCAN(...); assignment-l,
. s . assignment-N, priority)

This function allows the modification of a WME outside the
scope of a rule (e.g. within an interrupt routine).

Q-REMOVE(SCAN (...); priority)

This function allows the removal of a WME outside the scope
of a rule.

Consistency problems may occur when applying these
functions. Suppose that an interrupt occurs during the match
phase of the RETE algorithm. The task stops, although the
network is not fully updated (e.g. a MAKE action triggers
only 6 instantiations instead of 12). When exactly the inverse
action (Q-REMOVE) is performed within the interrupt
routine, it removes the 6 instantiations but 6 other
instantiations would enter the conflict set after returning from
the interrupt routine. This would probably not be the user
intended behaviour.

We therefore define the MAKE, CHANGE and REMOVE
actions as atomic indivisibEe actions. During the execution of
these actions no other action can be performed. Thus, actions
performed within the interrupt routine (i.e. Q-MAKE,
Q-CHANGE and Q-REMOVE) are queued. A priority level
is attached to every queue (the last parameter of the
&MAKE, QCHANGE and Q-REMOVE action), which is
associated with the interrupt level of the interrupt routine
currently initiating the action.

When the end of a right hand side is encountered,
PAMELA schedules the FIFO-queues according to their
priority level. The normal recognize-act cycle resumes after
all queues are empty - otherwise the actions in the queues are
performed.

It’s obvious that the scheduling method described above
may cause difficulties in the case of alarm-handling
problems. In process control applications, as those designed
at ALCATEL-Austria7, right hand sides may contain a
reasonable number of statements. If queue scheduling was

7 Currently an expert system monitoring a railway station is
being implemented.

708 Machine Architectures and Computer Languages for AI

only to be allowed at the completion of the right hand side.
significant delays would result, degrading real-time response.
Therefore, the user may define synchronization-slots within
right hand sides. When a synchronization-slot is
encountered, the queues are scheduled immediately.
Furthermore every MAKE, CHANGE or REMOVE action
serves as an implicit synchronization-slot.

At this point, one may ask if there is any difference
between scheduling the queues at the end or somewhere in
the middle of a right hand side. For OPS-like production
systems there is no difference, because the select algorithm of
the conflict set is performed after all the MAKES, CHANGES
or REMOVES are accomplished - regardless if they were
queued or not. For PAMELA programs there is a great
advantage in using synchronization-slots, since PAMELA
offers a real DEMON-Concept.

The DEiWON-Concept is completely different to the
concept defined by Lee Brownston et al. [1986]. They define
the demon as an instance of a rule, which enters the conflict
set as soon as it has matched the data that it requires, We
define the demon as a rule which is fired immediately after it
has matched the data that it requires. Hence, PAMELA
maintains a separate demon conflict set. A select algorithm is
applied on this special demon conflict set after every atomic
action. Consequently, right hand sides of rules may be
preempted when they include MARE, CHANGE or
REMOVE statements which trigger demons themselves.
Since demons are fired immediately, alarm-handling is
managed efficiently. Figure-3 shows the extended
recognize-act cycle.

An additional difficulty arises when an interrupt occurs
within a right hand side. Suppose that the demon deletes or
modifies a WMJ3 currently used in the right hand side of the
interrupted rule. When returning to the interrupted rule, the
WME previously bound may have vanished. To solve this
problem PAMELA provides the functions EXISTS
(Pattern) and MODIFIED (Pattern) in order to

allow the user to determine whether a WME was deleted or
modified by a demon. It is up to the programmer to use these
functions when sensitive data is processed within a right hand
side.

5 Future Directions

Many optimizations on the RETE algorithm have already
been discussed and implemented by Gupta et al. [1986a],
Shore et al. [1986], Miranker [1987] and Scales [1986]. Some
optimizations proposed by these authors and the
optimizations presented in this paper are certainly
approaching the limit of the performance on uniprocessor-
based systems. Concentrating all these optimizations within
one product would certainly decrease run-time further. Yet
we believe that additional run-time optimizations can only be
achieved by switching to parallel architectures.

6 Summary

Implementation techniques especially suited for process-
control applications applied in the AI-language PAMELA
have been introduced. We discussed interrupt handling
features reaching beyond the full set of constructs of current
production system languages.

Figure-3 : PAMELA’s Recognize-Act Cycle

Based on the presented run-time measurements, we have
every reason to believe that PAMELA is currently world-
wide among the fastest uniprocessor based production system
implementations.

Acknowledgements

We are especially grateful to Bill Barabash for providing
us with all the Production System bench-marks. Without
these bench-marks a serious comparison with QPS83 could
not be performed. We owe thanks to the members of the
PAMELA group - Ernst Bahr, Uwe Egly, Reinhard Granec,
Konrad Mayer, Eduard Mehofer, Brigitte Ruzicka, Norbert
Schindler, Gabriele Schmidberger, Manfred Twrznik,
Dietmar Weickert and Istvan Zsolnay - who contributed to
the ideas that have evolved into PAMELA.

References

Barachini F., 1987 : “PAMELA - Eine Deklarative
Programmiersprache fiir Echtzeitanwendungen”,
Austrian Conference on Artificial Intelligence.

Brownston L., Farrell R.G., Kant E., 1986 :
“Programming Expert Systems in OPSS’, Addison
Wesley.

Forgy C.L., 1979 : “On the Efficient Implementation of
Production Systems”, Ph.D. Thesis, Carnegie-Mellon
University.

Forgy C.L., 1982 : “RETE : A Fast Algorithm for the
Many Pattern/Many Object Pattern Matching Problem”,
Artificial Intelligence, Vol. 21, pp. 21-37.

Gupta A., Forgy C.L., 1983 : “Measurements on
Production Systems”, Technical Report, Carnegie-
Mellon University.

Gupta A., Forgy C.L., Kalp D., Newell A., Tambe M.,
1986a : “Results of Parallel Implementation of OPS5 on
the Encore Multiprocessor”, Draft Report, Department
of Computer Science, Carnegie-Mellon University.

Gupta A., 1986b : “Parallelism in Production Systems”,
Ph.D. Thesis, Carnegie-Mellon University.

Gupta A., Forgy C., Newell A., Wedig R., 1986~ :
“Parallel ’ Algorithms and Architectures for Rule-Based
Systems”, in the 13th Annual International Symposium
on Computer Architectures, IEEE & ACM.

Kelly M.A., Seviora R.E., 1987 : “A Multiprocessor
Architecture for Production System Machine”,
Proceedings of the AAAI-87, Voll, pp. 36-41.

McCracken D., 1978 : “A Production System Version of
the Hearsay-2 Speech Understanding System”, Ph.D.
Thesis, Carnegie-Mellon University.

McDermott J., Newell A., Moore J., 1978 : “The
Efficiency of Certain Production System
Implementations”, Waterman D.A. and Hayes-Roth F.,
Ed., Pattern-Directed Inference System, Academic
Press, New York, pp.165-176.

Miranker D. P., 1986 : “The performance Analysis of
TREAT : A DAD0 Production System Algorithm”,
International Conference Fifth
Computing, Tokyo 1984, revised’zicle.

Generation

Miranker D. P., 1987 : “TREAT : A New and Efficient
Match Algorithm for AI Production Systems”, Ph.D.
Thesis, Columbia University.

Nuutila E. et al, 1987 : “XC - A Language for Embedded
Rule Based Systems”, S&plan Notices V22 #lo.

Schor I. M., Daly P. T., Lee H. S., Tibbits B. R., 1986 :
“Advances in RETE Pattern Matching”, Proceedings of
the AAAI-86, Philadelphia, 226-232.

Tenorio M. F. M., 1984 : “Parallelism in Production
Systems”, Ph.D. Thesis, University of California.

Scales D. J., 1986 : “Efficient Matching Algorithms for
the SOAR/OPSS Production System”, Report No. KSL
86-47, Stanford University.

Barachini and Theuretzbacher 709

