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Abstract 

Although the technology of expert systems has 
been developed substantially during the past decade, 
there still seems to be relatively little application to 
time-critical problems because of their extensive 
computational requirements. One application area of 
particular interest is that of process control. Because this 
area requires real-time operation, the expert system 
must operate within the time scale of the process 
involved. Here we present techniques which have been 
used to implement PAMEL,A, a language suitable for 
building time-critical expert systems. We discuss 
substantial optimizations of the well known RETE 
algorithm and present run-time measurements based on 
these optimizations. Despite the critics on RETE’s real- 
time behaviour we show that the presented optimizations 
and extensions will cover the demands of many real-time 
applications. In order to eflciently support process 
control applications, some useful language constructs 
concerning interrupt handling and rule interruption are 
discussed. 

I Motivation 

PAMELA (PAttern Matching Expert system LAnguage) 
was born out of frustration. After having examined many AI- 
languages and tools, it became apparent that most of them 
were unable to handle time-critical problems efficiently. 
Here we raise some of the problems which we tackled with 
PAMELA. 

It came to our attention that although several other 
inference algorithms were developed [MC Cracken, 1978; MC 
Dermott et. al. 19781, most of the declarative languages with 
reasonable performance use the RETE algorithm [Forgy, 
1979; Forgy, 19821 as an indexing scheme. Consequently, we 
concentrated our study on this algorithm and others which 
have been derived from it [Miranker, 1987; Scales, 19861. 

It became clear that a pure production system is not fully 
applicable to process control applications, since asynchronous 
peripheral events may influence the recognize-act cycle 
during operation. Interrupt-handling facilities 
fundamental for creating timely and elegant solutions to re$z 
time problems. Being able to interrupt the recognize-act 
cycle and to modify an existing working memory element 
(WME) within a interrupt routine would be a nice feature. 
However, two problems arise when incorporating such a 
feature. Firstly, consistency of the RETE network cannot be 
guaranteed when the CHANGE1 command is performed 

1 This command is used to modify a Wh5E. 

immediately during an interrupt. Secondly, in most of today’s 
production systems it is impossible to access a WME outside 
the scope of a rule. 

Although several proposals for RETE run-time 
improvements have been made [Schor et. al., 1986; Scales, 
19861, there remain some parts worthy of optimization. For 
the following discussion it is assumed that the reader is 
familiar with the RETE algorithm and the vocabulary 
normally used in reference to OPS [Brownston et. al., 1986; 
Forgy, 19791. 

Every implementation of the RETE algorithm requires the 
sequentialization of the network except when employing 
parallel architectures [Gupta, 1986b; Gupta et. al., 1986~; 
Kelly and Seviora, 1987; Miranker, 1986; Tenorio, 19841. A 
well known method of implementation [Forgy, 19821 is 
designed specifically for interpreters. 

2.1 Eliminating the Explicit Token-Stack 

In PAMELA [Barachini, 19871 nodes are represented as 
procedures which receive a token as a parameter, thus 
eliminating the need for a token-stack. Instead of the token- 
stack, the processor’s stack is used. Procedures are called 
recursively when the network is traversed. The recursion 
depth depends on the complexity of the most specific left 
hand side of the rules (i.e. containing the greatest number of 
patterns ). 

PAMELA maintains node types (such as negative-join 
nodes, positive-compare nodes, negated nodes, etc.) for two- 
input nodes. Except for conditions and calls to successor 
nodes, each two-input node type uses the same code for 
determining the consistently bound tokens and for handling 
the token memories. For each node type there exists a specific 
node handler which receives the node-number of the node to 
be processed along with the token. For each individual node, 
the unique conditions and calls to successive nodes are 
executed within a particular part of the current node handler. 

2.2 Optimization During CHANGE and REMOVE 

Within two-input nodes PAMELA maintains two 
memories (the left counter memory and the right counter 
memory). For each incoming token, the counter memory 
indicates the number of consistently bound tokens in the 
opposite token-memory. 

Every two-input node produces a shared token-memorv 
(output-memory) accessed from the successors of the two: 
input node. As an extension to Forgy’s implementation 
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[ 19821, two backlink-pointers are stored for each token in the 
token-memory. The first backlink-pointer references the 
counter for that part of the token received from the left 
predecessor node. The second references the counter for that 
part of the token having arrived from the right predecessor 
node. 

When a token with a negative tag enters a two-input node 
(indicating the deletion of a specific WME) within OPS83, it 
is subject to the same tests applied to the token, which had 
previously arrived with a positive tag. These tests are not 
repeated in PAMELA. Let us consider a token X entering a 
two-input node during a remove operation. The output 
memory below the two-input node contains one or more 
tokens that are the result of concatenating X with another 
token from the opposite token memory. Such tokens may be 
identified and removed by scanning the output memory for all 
tokens which contain X as a left or right subpart. When we 
find such a token containing X the backlink pointer represents 
the number of consistently bound opposite tokens. Thus we 
know how far to search in the output memory in order to 
remove all tokens containing X. We have to decrement the 
counters which implies an algorithmic overhead but we don’t 
have to recheck the inter-element conditions. 

Note that a counter with value zero avoids PAMELA 
having to search the output memory (Gupta’s and Forgy’s 
measurements [ 19831 show that this occurs frequently). Even 
for counters greater than zero, search time may be reduced 
significantly since the search for tokens can be terminated 
once the last element has been found. 

2.3 Node Reduction 

In addition to the algorithm described above, node 
reduction of the network may be an efficient run-time 
optimization in PAMELA. The following PAIvlELA rule- 
fragments serve as an example for the discussion. The right 
hand sides are not relevant and therefore omitted. 

RULE 1 : RULE; 
Pl locomotive 

(thrust > 100; in-use = false; 
type = electric; track w = WEU) 

P2 railroad car 
(weight-< Pl.thrust; height < Pl.height; 
track-w = Pl.track-w) 

==> 
/* attach action in RHS */ 

END RULE-l; 

RULE 2 : RULE; 
Pl locomotive 

(track w = EEU; type = diesel; - 
in use = false; thrust > 100) - 

P2 railroad car 
(weight < Pl.thrust; track w = Pl.track w) 

==> 
/* attach action in RHS */ 

END RULE-2; 

The conventional network established by the RETE algorithm 
for these rules is illustrated in Figure-l. 

2.3.1 Sorting, Compressing and Sharing of Nodes 

The RETE algorithm has the advantage that one-input 

1 thrust 

weight< 
P 

1 .thrust 
trackw.=P .trackw. 

I 
rule2 

Figure-l : Conventional RETE-Network 

nodes are shared as far as possible. Two equal chains of one- 
input nodes having different successor nodes are replaced by 
only one chain of one-input nodes. The last node of this new 
chain now contains more than one successor node. To obtain 
optimal one-input node sharing, the sequence of the one- 
input nodes within the equal chains has to be the same. 
Therefore PAMELA sorts the inns-element conditions 
before the network is constructed. In addition, one-input 
nodes are compressed by reducing one-input node chains to a 
single one-input node if each of the nodes has only one 
successor. 

Since two-input node processing requires an excessive 
amount of run-time, it is desirable to reduce the number of 
these nodes as much as possible. Two-input nodes with the 
same left predecessors, right predecessors and conditions can 
be combined into one node with two successors2. The 
requirement that both nodes have the same predecessor can 
be artificially satisfied by placing all the different intra- 
element conditions between the nodes and their identical 
predecessors behind the shared two-input node. We call these 
nodes placed behind shared two-input nodes special one- 
input nodes. They are treated like one-input nodes, except 
that they maintain one associated token-memory. 

This “aggressive” algorithm is performed recursively over 
the whole network. The newly generated special one-input 
nodes are sorted in order to allow optimal special one-input 
node sharing. Compared to the original network there is a 
node reduction of more than 40% in our example (see 
Figure-2). 

Although the described method yields a minimal 
networks, it is not clear in advance whether this method 
always improves run-time performance. It can be shown that 
the improvements due to the proposed aggressive two-input 
node sharing depends heavily on world data (working 
memory content). Thus the run-time behaviour turns out to 
be problem dependent. If we assume that on the average 10% 
will pass successfully from the cross-product of the tokens at 
two-input nodes in our example, then run-time will decrease. 

2 Sharing is also done if only sub-parts of two-input nodes 

3 
are equal. 
The discriminating network is minimal in that it contains 
the minimum number of nodes. 
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in-use =o false 

weight < PI Ahrust 
I trackw.=Pl .trackw. 

&,l rule2 
Figure-2 : Reduced Network 

But if we 
increase. 

assume 50% passing tokens* the run-time will 

There are several possibilities for two-input node sharing 
available within PAMELA. Actually PAMELA offers 10 
sharing levels. Some Sharing levels represent sure cases e.g. 
when they are applied mn-time will always decrease. The 
other levels don’t always yield a decrease in run-time. 

3 Uniprommew based 

Currently, PAMELA code can only be executed on 
INTEL-286 processors. ALCATEL-Austria develops its 
own specially tailored hardware and software - it would be 
unfair to peIfOITll run-time measurements on this 
architecture. The absolute performance measurements are 
therefore made on an IBM-PC/AT. 

In order to cover a broad range of different expert system 
bench-marks we selected the widely referenced applications 
MAB, EMAB, COMBI, RUBIK and TOURNEY as test 
cases. They already have been used as bench-marks by Gupta 
[1986c] and Miranker [ 19871. We didn’t check larger expert 
systems because of limited PC resources5. 

We concentrate on the most run-time efficient sharing 
level denoted by SHARING and on the worst level denoted by 
REDUCING. Table-l represents the standard PAMELA 
implementation already including the optimizations discussed 
in chapters 2.1 and 2.2 (elimination of the token-stack, 
optimization during CHANGE and REMOVE). The 
measurements are given in seconds. The conflict set 
resolution strategy is identical to OPS83. 

The last column in Table-l contains the number of mle- 
firings. Positions indicated with *)6 couldn’t be tested 
because of memory restrictions of the PC. It would be unfair 
to include run-time of input/output routines when comparing 
two inference engines. Thus we didn’t add the run-time of 
the output routines to the overall run-time of the inference 
engines. Hence OPS83’s run-time is not exactly the same as 
indicated by Forgy. 

Gupta’s and Forgy’s measurements [1983] show that, in 
practice, this very high inlet/outlet ratio occurs very 
rarely. 
PAMELA is certainly applicable for large Expert 
Systems. ALCATEL-Austria is currently implementing 
an Expert system with PAMELA for monitoring railway 
stations, which consists of hundreds of rules. 
Dynamic memory overflow occurs for these examples. 

Table-l : Run-time Measurements 

Analyzing the results, we recognize that careful two-input 
node sharing is about 22% better than the unshared version of 
MAB-NASA. Although this is not of an order of magnitude 
we proved that two-input node sharing is an advantage for 
certain examples. 

The most efficient MAB-NASA version of PAMELA 
performs only twice as good as OPS83. The reason for that 
behaviour is that the token-memories ate rather small-sized 
and there is only a limited number of rule-firings. To 
overcome this disadvantage we insignificantly modified the 
world data in order to have more than one monkey searching 
for the bananas. This modified version yields 903 rule-firings 
instead of 81. 

Table-l presents the largest COMBINATION example 
not exceeding the memory limits of the PC. This example 
evaluates all possible combinations of terms of the sum 
yielding the number 14. The terms of the sum may be 
numbers between 1 and 5. Experiments showed, that 
PAMELA’s high performance could also be demonstrated 
with lower numbers yielding less rule-firings. 

The number of rule-firings in the RUBIK’s example 
depends on the initialized scrambled position of the cube. 
Because of memory limits we chose a very simple 
initialization. The run-time difference between OPS83 and 
PAMELA is not an order of magnitude for this example. 

Neither PAMELA nor OPS83 are able to solve the 
TOURNEY problem on the PC. There are too many MAKE 
and CHANGE statements within this bench-mark causing a 
memory overflow. The PAMELA bench-mark was 
performed on our own hardware. Since we reject comparing 
bench-marks running on different architectures the numbers 
for the TOURNEY bench-mark shouldn’t be taken to 
literally. 

In general we observed a better run-time behaviour of 
PAMELA compared to OPS83 when token-memory size was 
increased. 

Obviously, comparing our run-time measurements with 
XC rPIJuutila et. al., 19871 we are able to reject most criticisms 
of the RETE algorithm. We showed that substantial run-time 
optimizations of this algorithm enhance its real-time 
capabilities. 

e Recognize-Act Cycle 

Current inference engines have not been designed with 
interrupt-handling facilities in mind. Such facilities are 
however essential for solving real-time problems. During the 
“normal” recognize-act cycle (match-select-act), no 
modifications or deletions of a WME can be performed 
within interrupts. Variable-binding outside the scope of a 
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rule is essential for a completely interrupt-driven expert 
systems. 

PAMELA offers the possibility to stimulate the 
recognize-act cycle within interrupt handlers with the aid of 
the following functions: 

SCAN( wme-type; property-l, . . . 
property-N) 

This function searches for a specific WME. The type and its 
properties are given as parameters. The function substitutes 
the variable binding mechanism of patterns and provides 
another view of the working memory. 

Q-MAKE( wme-type; assignment-l, . . . 
assignment-N, priority) 

This function allows the creation of a WINE within an 
interrupt routine. The priority parameter reflects the priority 
of the action. 

Q-CHANGE(SCAN(...); assignment-l, 
. s . assignment-N, priority) 

This function allows the modification of a WME outside the 
scope of a rule (e.g. within an interrupt routine). 

Q-REMOVE(SCAN (...); priority) 

This function allows the removal of a WME outside the scope 
of a rule. 

Consistency problems may occur when applying these 
functions. Suppose that an interrupt occurs during the match 
phase of the RETE algorithm. The task stops, although the 
network is not fully updated (e.g. a MAKE action triggers 
only 6 instantiations instead of 12). When exactly the inverse 
action (Q-REMOVE) is performed within the interrupt 
routine, it removes the 6 instantiations but 6 other 
instantiations would enter the conflict set after returning from 
the interrupt routine. This would probably not be the user 
intended behaviour. 

We therefore define the MAKE, CHANGE and REMOVE 
actions as atomic indivisibEe actions. During the execution of 
these actions no other action can be performed. Thus, actions 
performed within the interrupt routine (i.e. Q-MAKE, 
Q-CHANGE and Q-REMOVE) are queued. A priority level 
is attached to every queue (the last parameter of the 
&MAKE, QCHANGE and Q-REMOVE action), which is 
associated with the interrupt level of the interrupt routine 
currently initiating the action. 

When the end of a right hand side is encountered, 
PAMELA schedules the FIFO-queues according to their 
priority level. The normal recognize-act cycle resumes after 
all queues are empty - otherwise the actions in the queues are 
performed. 

It’s obvious that the scheduling method described above 
may cause difficulties in the case of alarm-handling 
problems. In process control applications, as those designed 
at ALCATEL-Austria7, right hand sides may contain a 
reasonable number of statements. If queue scheduling was 

7 Currently an expert system monitoring a railway station is 
being implemented. 
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only to be allowed at the completion of the right hand side. 
significant delays would result, degrading real-time response. 
Therefore, the user may define synchronization-slots within 
right hand sides. When a synchronization-slot is 
encountered, the queues are scheduled immediately. 
Furthermore every MAKE, CHANGE or REMOVE action 
serves as an implicit synchronization-slot. 

At this point, one may ask if there is any difference 
between scheduling the queues at the end or somewhere in 
the middle of a right hand side. For OPS-like production 
systems there is no difference, because the select algorithm of 
the conflict set is performed after all the MAKES, CHANGES 
or REMOVES are accomplished - regardless if they were 
queued or not. For PAMELA programs there is a great 
advantage in using synchronization-slots, since PAMELA 
offers a real DEMON-Concept. 

The DEiWON-Concept is completely different to the 
concept defined by Lee Brownston et al. [1986]. They define 
the demon as an instance of a rule, which enters the conflict 
set as soon as it has matched the data that it requires, We 
define the demon as a rule which is fired immediately after it 
has matched the data that it requires. Hence, PAMELA 
maintains a separate demon conflict set. A select algorithm is 
applied on this special demon conflict set after every atomic 
action. Consequently, right hand sides of rules may be 
preempted when they include MARE, CHANGE or 
REMOVE statements which trigger demons themselves. 
Since demons are fired immediately, alarm-handling is 
managed efficiently. Figure-3 shows the extended 
recognize-act cycle. 

An additional difficulty arises when an interrupt occurs 
within a right hand side. Suppose that the demon deletes or 
modifies a WMJ3 currently used in the right hand side of the 
interrupted rule. When returning to the interrupted rule, the 
WME previously bound may have vanished. To solve this 
problem PAMELA provides the functions EXISTS 
(Pattern) and MODIFIED (Pattern) in order to 

allow the user to determine whether a WME was deleted or 
modified by a demon. It is up to the programmer to use these 
functions when sensitive data is processed within a right hand 
side. 

5 Future Directions 

Many optimizations on the RETE algorithm have already 
been discussed and implemented by Gupta et al. [1986a], 
Shore et al. [1986], Miranker [1987] and Scales [1986]. Some 
optimizations proposed by these authors and the 
optimizations presented in this paper are certainly 
approaching the limit of the performance on uniprocessor- 
based systems. Concentrating all these optimizations within 
one product would certainly decrease run-time further. Yet 
we believe that additional run-time optimizations can only be 
achieved by switching to parallel architectures. 

6 Summary 

Implementation techniques especially suited for process- 
control applications applied in the AI-language PAMELA 
have been introduced. We discussed interrupt handling 
features reaching beyond the full set of constructs of current 
production system languages. 



Figure-3 : PAMELA’s Recognize-Act Cycle 

Based on the presented run-time measurements, we have 
every reason to believe that PAMELA is currently world- 
wide among the fastest uniprocessor based production system 
implementations. 
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