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Abstract 
We motivate and describe an implementation of the 
MINDS* speech recognition system. MINDS uses 
knowledge of dialog structures, user goals and focus in a 
problem solving situation. The knowledge is combined 
to form predictions which translate into dynamically 
generated semantic network grammars. An experiment 
evaluated recognition accuracy given different levels of 
knowledge as constraints. Our results show that speech 
recognition accuracy improves dramatically, when the 
maximally constrained dynamic network grammar is 
used to process the speech input signal. 

1. ~~tr~duct~~~: The Need to Integrate Speech 
and Natural Language 

For many years, speech recognition efforts have focused on 
recognizing individual sentences. Natural language processing 
research has always assumed its input consists of a typed 
representation of text, with perhaps some typing mistakes. The 
work done on dialogs, user goals and focus for typed natural 
language has never been applied to speech. This is surprising 
since current speech technology is far from perfect and could 
benefit from more knowledge of constraints. 

The main problem in speech recognition is the enormous 
complexity involved in analyzing speech input. The value of a 
reduced search space and stronger constraints is well known in 
the speech recognition community [Kimball et. al. 861. To 
illustrate the complexity, consider that the ANGEL speech 
recognition system at CMU [Adams and Bisiani 861, currently 
generates several hundred word candidates for every word ac- 
tually spoken. When processing an utterance, many choices 
need to be evaluated and assigned a likelihood. Reducing the 
search to only the most promising word candidates by pruning 
often erroneously eliminates the correct path. By applying 
knowledge-based constraints as early as possible, one can trim 
the exponential explosion of the search space to a more 
manageable size without eliminating correct choices. 

To demonstrate a new approach in speech recognition, we 
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have built MINDS, a Multi-modal, INteractive Dialog 
System, It allows a user to speak, type and point during a 
problem solving session with the system. MINDS works in a 
resource management domain, featuring ships deployed by the 
navy. The basic problem situation involves a damaged ship 
performing a task, which needs to be replaced by a different 
ship with similar attributes. The solution should have minimal 
impact on other mission operations. For the purposes of this 
paper, MINDS can be viewed as a speaker-independent con- 
tinuous speech recognition system that uses dialog knowledge, 
user goals and focus to understand what was said in its naval 
logistics problem solving domain. The system uses this higher 
level knowledge of dialogs and users to predict what the cur- 
rent user will talk about next. The predictions drastically 
reduce the search space before the sentence and word detec- 
tion modules even begin to analyze the speech input. 

1.1. FOCUS, Dialogs, Goals, and Problem-Solving Strategies 
There has been much research on dialog, discourse, focus, 

goals and problem solving strategies in the natural language 
processing community. We will only briefly mention the key 
issues which influenced the design of the MINDS system. 

Grosz [Grosz 771 found that natural language communica- 
tion is highly structured at the level of dialogs and problem 
solving. She showed how the notion of a user focus in 
problem solving dialogs is related to a partitioning of the 
semantic space. Focus can also provide an indication how to 
disambiguate certain input. Additional work by Sidner 
[Sidner 811 confirmed the use of focus as a powetil notion in 

natural language understanding. She used focus to restrict the 
possibilities of referent determination in pronominal anaphora. 

Schank and Abelson [Schank and Abelson 771 point out the 
power of scripts in representing and predicting sequences of 
events. While they applied their scripts to stories, it is clear 
that the same mechanism can be applied to dialog and dis- 
course, as Robinson [Robinson 861 demonstrated. 

Newell and Simon [Newell and Simon 721 were key in- 
fluences in the study human problem solving. Among other 
things, ‘they showed how people constantly break goals into 
subgoals when solving problems. Their findings, as well as 
much of the other research done in this area [Litman and Allen 
871 illustrate the function of user goals represented as goal 
trees, and traversal procedures for goal trees. 

1.2. Current Speech Recognition Research 
The speech recognition literature shows several different 

approaches to limiting the search space. We will only review 
how other speech systems apply constraints to sentences, 
dialogs and user goals. Surprisingly, almost none of them use 
dialogs, user goals or user focus to aid speech recognition. 
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One approach to increasing constraints and reducing search 
space uses Markov modelling techniques [Bahl et. al. 
83, Stem et al. 87, Ward et al. 881. These systems rely on 
empirically derived transition probabilities between words to 
process the input. The systems are trained on large amounts of 
data, where conditional transition probabilities are computed 
between pairs or triplets of words, also known as bigram or 
trigram grammars. There is no notion of dialog structure, 
focus of attention or goals incorporated into the transition 
probabilities. 

Several speech recognition systems claim to have dialog, 
discourse or pragmatic components ba 801. However, all of 
these systems only use this knowledge above the sentence 
level like any typed natural language system would. The input 
is transformed into appropriate database queries, anaphora are 
resolved, and elliptic utterances are completed, but the 
knowledge is not used to constrain the speech input process- 
ing. 

The speech recognition systems which use syntactic and 
semantic constraints employ some form of a semantic network 
[Lea 80, Kimball et. al. 86, Borghesi et al. 821. This network 

is the basis for a parsing module, but does not change Tom 
one utterance to the next. All reasonable constraints about the 
structure and content of single sentences are embedded into 
the networks. 

Some other speech recognition systems emphasized seman- 
tic structure over syntactic constraints @ayes et aZ. 861. 
These approaches leave too much ambiguity in the syntactic 
combination possibilities, with poor recognition results due to 
lack of constraints. The level of analysis of the semantic 
systems also stops with single sentences. Restrictions involv- 
ing several sentences in sequence are not considered. 

While none of the above speech recognition systems ac- 
count for constraints beyond the sentence level, two systems 
do use some knowledge beyond single sentences. 

1.3. Speech Recognition with Dialog Knowledge 
Bamett [Barnett 731 describes a speech recognition system 

which uses a “thematic” memory. It predicts previously men- 
tioned content words as highly likely to re-occur. In addition, 
he refers to a dialog structure, which limits possible sentence 
structures in the different dialog states. No actual results am 
mentioned in this report. 

Fink and Biermann [Fink and Biermann 861 implemented a 
system that used a “dialog” feature to correct errors made in 
speech recognition. Their system was strictly history based. It 
remembered all previously recognized meanings (i.e. deep 
structures) of sentences as a dialog. If the currently analyzed 
utterance looked similar to one of the stored sentence mean- 
ings, the stored meaning was used to correct the recognition of 
the new utterance. Significant improvements were found in 
both sentence and word error rates when a history prediction 
could applied. The history constraint was only applied after a 
word recognition module had processed the speech, in an at- 
tempt to correct possible errors. 

1.4. Innovations of the MINDS System 
The MINDS system represents a radical departure from the 

principles of most other speech recognition systems. We 
believe that we can exploit the knowledge about users’ 
problem solving strategy, their goals and focus as well as the 
general structure of a dialog to constrain speech recognition 
down to the signal processing level. In contrast to other sys- 

tems, we do not correct misrecognition errors after they hap- 
pen, but apply our constraints as early as possible during the 
analysis of an utterance. Our approach uses predictions 
derived from the problem-solving dialog situation to limit the 
search space at the lower levels of speech processing. At each 
point in the dialog, we predict a set of concepts that may be 
used in the next utterance. This list of concepts is combined 
with a set of syntactic networks for possible sentence struc- 
tures. The result is a dynamically constructed semantic net- 
work grammar, which reflects all the constraints derived from 
all our knowledge sources. When the parser then analyzes the 
spoken utterance, the dynamic network allows only a very 
restricted set of word choices at each point. This reduces the 
amount of search necessary and cuts down on the possibility 
of recognition errors due to ambiguity and confusion between 
words. 

In the next sections we will describe the use of dialog and 
problem-solving strategy knowledge within the MINDS sys- 
tem in more detail. We also present results of an evaluation of 
the system using the different levels of knowledge. 

2. Tracking Dialog, Goals and 
The MINDS system maintains information on what has 

been talked about and what is likely to be talked about next. 
To do this, the dialog module has information about goal trees, 
which describe the individual goals and subgoals at each point 
in a problem solving session. A goal tree contains the concepts 
whose values the user will need to know about to solve the 
problem. The goal trees are indexed to a dialog script [Schank 
and Abelson 771, which determines the sequences of goal trees 
a user could visit. 

The following aspects of a dialog and goals are used by the 
MINDS system. 

* Dialog Phase owledge. The problem-solving dialog 
is broken into certain phases, similar to a script. Each 
phase has an associated set of goal trees. These goal 
trees consist of domain concepts which are considered 
the individual goals. A goal tree is structured as an 
AND-OR tree. Thus, the tree defines the goals and 
subgoals as well as the traversal options a user has. The 
goal concepts can be optional or required, single use or 
multiple use. We expect these goal concepts to be men- 
tioned by the user during a particular dialog phase. 

In addition to the concepts, a dialog phase also has a set 
of predicted syntactic sentence structures. These are in 
the form of recursive transition networks and specify the 
kinds of sentences that will occur as a user utterance. 
For example, in a dialog phase directed at assessing a 
ship’s damage, we expect the ship’s name to appear 
frequently in both user queries and system statements. 
We also expect the user to refer to the ship’s 
capabilities. The predicted syntactic structures are ques- 
tions about the features of a ship like “Does its’ sonar 
still work”, “Display the status of all radars for the 
Spark” and “What is Badger’s current speed”. 

e Restrictions of Active Concepts. Some goal concepts 
which are active at a goal tree node during a particular 
dialog phase have been restricted by previous dialog 
states. These restrictions may come either from the users 
utterances or from the system responses. Each phase 
thus not only has a list of active goal concepts, but also 
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a list of goal concepts whose 
an earlier dialog phase. 

values were determined bY 

In our example, once we know which ship was 
damaged, we can be sure all statements in the damage 
assessment phase will refer to the name of that ship 
only. 

8 Ellipsis and Anaphora. In addition to the knowledge 
above, we also restrict at each dialog point, what kinds 
of anaphoric referents are available. The possible 
anaphoric referents are determined by user focus. From 
the current goal or subgoal state, focus selects 
previously mentioned dialog concepts and answers 
which are important a this point. These concepts are 
expectations of the referential content of anaphora in 
next utterance. 

Continuing our example, it does not make sense to refer 
to a ship as “it”, before the ship’s name has been men- 
tioned. We also do not expect the use of anaphoric “it”, 
if we are currently talking about several potential re- 
placement ships. 

Elliptic utterances are predicted when we expect the 
user to ask about several concepts of the same type, 
after having seen a query for the first concept. 

If the users have just asked about the damage to the 
sonar equipment of a ship, and we expect them to men- 
tion the radar, we must include the expectation for an 
elliptic utterance about radar in our predictions. 

ialog Predictions into 

After the dialog tracking module has identified the set of 
concepts which could be referred to in the next utterance, we 
need to expand these into possible sentence fragments. Since 
these predicted concepts are abstract representations, they 
must be translated into word sequences with that “conceptual 
meaning”. For each concept, we have precompiled a set of 
possible surface forms, which can be used in an actual ut- 
terance. In effect, we reverse the classic understanding 
process by unparsing the conceptual representation into all 
possible word strings which can denote the concept. 

In addition to the individual concepts, which usually ex- 
pand into noun phrases, we also have a complete semantic 
network grammar that has been partitioned into subnets. A 
subnet defines allowable syntactic surface forms to express a 
particular semantic content. For example, all ways of asking 
for the capabilities of ships are grouped together into subnets. 
The semantic network is further partitioned into subnets for 
elliptical utterances, and subnets for anaphora. All subnets are 
crossindexed with each dialog phase in which they could oc- 
cur. Subnets are pre-compiled for efficiency. The terminal 
nodes in the networks are word categories instead of words 
themselves, so no recompilation is necessary as new lexical 
items in existing categories am added to or removed from the 
lexicon. 

The final expansion of predictions brings together the par- 
titioned semantic networks that are currently predicted and the 
concepts in their surface forms. Through an extensive set of 
indexing, we intersect all predicted concept expressions with 
all the predicted semantic networks. This operation dynami- 
cally generates one combined semantic network grammar 
which embodies all the dialog level and sentence level con- 

straints. This dynamic network grammar is used by the parser 
to process an input utterance. 

To illustrate this point, let us assume that the frigate 
“Spark” has somehow been disabled. We expect the user to 
ask for its capabilities next. The dialog tracking module 
predicts the “shipname” concept restricted to the value “Spark” 
and any “ship-capabilities” concepts. Single anaphoric refer- 
ence to the ship is also expected, but ellipsis is not meaningful 
at this point. The current damage assessment dialog phase al- 
lows queries about features of a single ship. 

During the expansion of the concepts, we find the word nets 
such as “the ship”, “this ship”, “the ship’s”, “this ship’s”, “it”, 
“iC “Spark’ and “Spark’s”. We also find the word nets for 
the capabilities such as “all capabilities”, “radar”, “sonar”, 
“Harpoon”, “Phalanx”, etc. We then intersect these with the 
sentential forms allowed during this dialog phase. Thus we 
obtain the nets for phrases like “Does it/Spark/ 
this-ship/the-ship have Phalanx/Harpoon/radar/sonar”, “What 
capabilities/radar/sonar does the-ship/this-ship/it/Spark have”, 
and many more. This semantic network now represents a 
maximally constrained grammar at this particular point in the 
dialog. 

Parsing Speech Input with 
’ Networks 
When a user speaks an utterance, the ANGEL [Adams and 

Bisiani 861 front-end produces a network of phonetic labels 
from the input signal. In principle, any front end that produces 
a phoneme network could be used. The left-to-right parser we 
have implemented takes this network of phonemes produced 
by the acoustic-phonetic front-end as input and forms a set of 
phrase hypotheses. It builds phrases by starting at the begin- 
ning of an utterance and adding words to the end of current 
phrase hypotheses until the end of the utterance is reached. As 
each phrase hypothesis is extended, only words specified in 
the dynamic grammar network are even considered. A lexicon 
contains a network of phonemes that represent allowable 
pronunciations of each word. These word models am 
generated by applying a set of rules to the base form phonemic 
transcription of the word pudnicky 871. 

If sufficient evidence is found for a grammatically correct 
word, that word is appended to the phrase hypothesis. Phrase 
hypotheses are ranked according to a plausibility score which 
reflects the cumulative scores of the component words. These 
word scores in turn are based on the scores for individual 
phoneme matches and the overall match of the word model. A 
beam search is used to limit the number of possibilities, so that 
only phrases within a predefined range of the current best- 
scoring phrase are retained. Thus the parser produces a rank- 

What does the integration of dialog, goals and focus 
knowledge buy in our speaker-independent, continuous speech 
recognition system? To test the effectiveness of the use of this 
knowledge in MINDS, 5 speakers (3 male, 2 female) spoke to 
the system. To assure a controlled environment for these 
evaluations, the subjects only spoke the sentences prepared in 
three sample dialog scripts, which contained 30, 21 and 10 
sentences each. The three dialogs differed in the number and 
specificity of the questions asked. Each speaker spoke all 
sentences in all three dialogs. An excerpt of a dialog sequence 
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can be found in Figure 1. 
To prevent confounding of the experiment due to misEcog- 

nized words, the system did not use its own speech recognition 
result to change state. Instead, after producing the speech 
recognition result, the system read the correct recognition 
from a file which contained the complete dialog script. Thus 
the system always changed state according to a correct 
andlysis of the utterance. 

The Badger is disabled. 

What capabilities did it have? 

What was Badger's speed? 
Show me its mission area ratings. 

Which frigates have harpoons? 

Phalanx? 

What are their other capabilities? 
What is the speed of the Kirk? 
What are the mission ratings for Kirk? 

Figure 1: An excerpt of a dialog used to evaluate the 
MINDS system 

The system was only tested with a vocabulary of 205 
words, even though the complete vocabulary is 1029 words. 
Since we were using an older, experimental version of the 
ANGEL front-end [Adams and Bisiani 861, our recognition 
results where substantially worse than for the current official 
CMU speech system. However, the point we wish to make 
concerns the relative improvement due to our knowledge 
sources, not the absolute recognition performance of the total 
speech system. We compare two levels of constraints: using 
sentential knowledge constraints only and using all the power 
of the dialog predictions. Thus each utterance was parsed with 
two different levels of constraint. 

0 The “sentential level” constraints used the grammar in 
its most general form, without partitioning. The con- 
straints found in the combined semantic network of all 
possible sentence structures were used. The network 
grammar was the same for all utterances in all dialogs. 
This only allowed recognition of syntactically and 
semantica.Uy correct sentences, but ignored any user 
goals, focus or dialog knowledge. In addition, we used 
alI the word level constraints. These include knowledge 
of word pronunciation and coarticulation rules. The 
sentential level is the equivalent of all the knowledge 
employed by most existing speech systems, as discussed 
earlier. 

0 Using all “dialog knowledge” constraints, we applied 
all the knowledge built into the system at every level. In 
particular all applicable dialog knowledge was added to 
improvepetiormance ofthe system. The grammarwas 
dynamically reconstructed for each utterance, depending 
on the dialog situation, user focus and goals. Thus the 
grammar was different for almost every utterance. Of 
course, the word and sentential level knowledge was 
also used. 

Table 1 shows how the the dialog scripts compare in 
terms of their “difficulty” for speech recognition. A standard 
measure of “difficulty” is the average branching factor of the 

I Complexity of the Recognition Task 1 

I Constraints used: 1 sentence 1 dialog 1 

1 Dialog 1 Test Set B.F. I 66.0 I 14.1 I 

1 Dialog 2 Test Set B.F. I 61.0 I 14.4 / 

1 Dialog 3 Test Set B.F. 1 63.21 14.41 

Dialog 1 Test Set Perpl. 33.0 9.0 

Dialog 2 Test Set Perpl. 29.1 9.7 

I Dialog 3 Perpl. ) 32.0 ) 10.7 1 

I Combined Test Set B.F. I 63.8 / 14.2 I 

Combined Test Set Perpl. 31.5 9.5 

Table 1: Average test set branching factor and 
perplexity for the actual utterances used in the 
evaluation dialogs 

grammar. This indicates how many choices the speech recog- 
nition system is faced with when trying to identify a word. 
Generally, a lower branching factor indicates higher constraint 
and better recognition because the system has fewer choices to 
make. This results in fewer errors in the speech recognition 
process. Perplexity is another related measure obtained by 
taking 2 raised to the power of the entropy of the grammar. 
The test set branching factor is computed by tracing the path 
of each utterance through the nets and averaging the actual 
branching possibilities encountered during a correct parse. 
Test set perplexity is the perplexity for the nodes actually 
traversed during a particular utterance. 

The dialog scripts had 14.1, 14.4 and 14.4 test set branching 
factor and 9.0,9.7 and 10.7 test set perplexity, respectively for 
the combined dialog constraints. For the sentence level con- 
straints, the dialog scripts showed 66.0, 61.0, 63.2 as the test 
set branching factor and 33.0, 29.0 and 32.0 as test set 
perplexity. While the three dialogs show roughly equivalent 
difficulty for speech recognition, we see a drastic reduction in 
complexity from our dialog knowledge sources. The branch- 
ing factor is cut to less than one fourth its unrestricted value 
and the perplexity measure shows a reduction by more than a 
factor of three. 

Speech Recognition Accuracy Improvements 

Constraints sentence level dialog knowledge 
Accuracy semantic word semantic word 

Dialog 1 31.2 43.9 58.1 66.6 

Dialog 2 38.0 49.7 61.9 68.8 

Dialog 3 22.0 36.3 52.0 60.1 

Combined 32.1 44.6 58.4 66.3 

Table2: Recognition results are shown as percent- 
age of words correct and percentage of sentence 
meanings correct for each of 3 dialog scripts and un- 
der 3 levels of constraint 
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Table 2 shows the actual parsing results for each dialog in 
each mode. Word accuracy refers to the percentage of spoken 
words which were recognized by the system. Semantic ac- 
curacy refers to the percentage of utterances to which the sys- 
tem reacted as if all words had been understood correctly. 
These often contained misrecognized small words, but the 
resulting meaning representation was correct. The dialog con- 
straints yield a significant increase in accuracy for words from 
44.6 to 66.3 percent and meanings from 32.1 to 58.4 percent 
overall, This increase in accuracy is also reflected in all in- 
dividual dialogs. While the actual numbers are dependent on 
the particular recognition system used, the increased mcog- 
nition accuracy due to the higher level constraints would be 
noticeable in any system. 

6. Conclusions ancil Future 
We have shown how one can apply various forms of dialog 

level knowledge to reduce the branching factor in a speech 
recognition task. An experiment demonstrated the effective- 
ness of this added constraint on the recognition accuracy of 
the speech system. Especially semantic accuracy improved 
due to these constraints. 

For this domain, we hand-coded the dialog structures and 
the higher level knowledge into the system. For larger 
domains and even larger vocabularies, it would be desirable to 
automate the process of deriving the dialog structures and goal 
trees during interactions with initial users. 

A strategy for backing off when the dialog expectations am 
violated should also be added to this mechanism. We are cur- 
rently implementing such a procedure. 
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