
Exploiting User Expertise in Answer Expression*

David N. Chin
Department of Information and Computer Sciences

University of Hawaii at Manoa
2565 The Mall

Honolulu, HI 96822

Abstract
Previous natural language help systems have not taken
into account the user’s knowledge when formulating
answers. Such pragmatic information is needed to for-
mulate more concise and helpful answers. By not
repeating things that the user already knows, a system
can provide more succinct answers that, because they
focus on pertinent new facts, are easier to understand.
A users’s prior knowledge also allows a system to util-
ize special teaching formats such as similes. This pro-
cess of refining answers using pragmatic information is
called answer expression. It has been implemented in
the UCExpress component of UC (UNIX Consultant), a
natural language system that helps users solve problems
in using UNIX. UCExpress separates answer expres-
sion into two phases: pruning and formatting. During
pruning, subconcepts of the answer are marked as not
needing generation when they are already known by the
user, or marked as candidates for generating anaphora
or ellipsis when they are part of the conversational con-
text. During formatting, UCExpress uses information
about the user’s prior domain knowledge to select
among specialized expository formats, such as similes
and examples, for expressing information to the user.
These formats allow UCExpress to present different
types of information clearly and concisely.

1. Introduction
Previous natural language help systems have not modeled
their user’s domain knowledge, so they have not been able to
take advantage of this pragmatic information when formulat-
ing answers. The first help system to use such information is
UC (UNIX Consultant) [Wilensky, Arens, Chin, 19841
Wilensky et al., 19861, a natural language consultation pro-
gram pt answers the user’s questions on how to use the
UNIX operating system. After other components of UC have
identified an answer to the user, the UCExpress component is
called to express this answer to the user. In deciding how to
do this, UCExpress must take into account the user’s prior
domain knowledge. To see why this is important, consider the
actual UC sessions shown in Figures I and 2.
In session I, UC gives an example of how to use the rm com-
mand whereas in session 2, UC does not give an example of
how to use Is -i. This is because in the first session, the user is
a novice, so UC cannot assume that the user knows the format

* This research was sponsored in part by the Defense Advanced
Research Projects Agency (DOD), under Arpa Order No. 4871, moni-
tored by Space and Naval Warfare Systems Command under Contract
N00039-84-C-0089; the Office of Naval Research, under grant N0014-
48-C-0732; the National Science Foundation under grant 85-I 4890.
’ UNIX is a trademark of Bell Laboratories.

How can I delete a file?
Use rm.
For example, to delete the file named foo,
tn= ‘rm foe’ .
What does ruptime do?
ruptime is used to list the uptime of all machines on
the network, list the number of all users on them and
list their load average.

Figure 1. UC session 1 with a novice user.

How can I find out the inode of a file?
Use 1s -i.
What does ruptime do?
ruptime is like uptime, except ruptime is for all
machines on the network.

Figure 2. UC session 2 with an intermediate user.

of the rm command. However, in session 2, the user is an
intermediate, so UC can assume that the user would know
how to use Is -i. Also, in session 2, UC uses a simile to
explain what r-uptime does in terms of what uptime does. This
simile is shorter and clearer than the full answer given by UC
in session 1. However, this simile is only useful if the user
already knows what uptime does. UC can assume this for the
intermediate user of session 2, but cannot do so for the novice
user of session 1.
Differences in answers such as those shown in Figures 1 and 2
can only be achieved through the interaction of answer
expression and user modeling. This paper will show how
UCExpress is able to exploit a model of the user’s expertise to
improve the quality of UC’s responses to the user.

2. KNOME
KNOME (KNOledge Model of Expertise) is the component of
UC that models what the user knows about UNIX. More
details can be found in [Chin, 1986, 1987, 19881, so this sec-
tion will only give enough information so that the reader can
understand how KNOME is used by UCExpress.
KNOME uses a stereotype approach [Rich, 19791 where the
characteristics of classes of users are organized under stereo-
types. KNOME separates users into four levels of expertise
(stereotypes): novice, beginner, intermediate, and expert.
Individual users are classified as belonging to one of the above
stereotype levels and inherit the characteristics of the stereo-
type. However, particular facts about the particular user over-
ride inheritance, so individual users differ from their stereo-
types, which serve as reference points Bosch, 19781.
Besides stereotypes for users, KNOME also has stereotype
levels for UNIX facts. This feature is termed a double stereo-

756 Natural Language

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

type system [Chin, 19861. Stereotype levels for UNIX facts
include simple, mundane, complex, and esoteric. Examples of
simple information are the rm, Is, and cat commands, the
technical term “file,” and the simple file command format
(the name of the command followed by the name of the file to
be operated upon). The mundane category includes the vi, diff
and spell commands, the technical term “working directory,”
and the -1 option of Is, while the complex category includes
the grep, chmod, and tset commands, the term “inode,” and
the fact that write permission on the containing directory is a
precondition for using the rm command for deleting a file.
The esoteric category consists of information which is not in
the mainstream usage of UNIX, but instead serves special
needs. A good example is the spice program, that is useful
only for people interested in semiconductor circuit simula-
tions.
Thanks to the additional stereotype classification of UNIX
information, it becomes extremely easy and space efficient to
encode the relation between user stereotypes and their
knowledge of UNIX. The core of this knowledge is shown in
Table 1.

4. Pruning
When UCExpress is passed a set of concepts to communicate
to the user, the first stage of processing prunes them by mark-
ing any extraneous concepts, so that the generator will not
generate them. Pruning is done by marking rather than actual
modification of the conceptual network, because information
about the node may be needed to generate appropriate ana-
phora for the pruned concept.
The guiding principle in pruning is to not tell the user anything
that the user already knows. Currently UC models two classes
of information that the user may already know. The first class
of information is episodic knowledge from a model of the
conversational context. The current conversational context is
tracked by marking those concepts that have been communi-
cated in the current session. The second class of information
concerns the user’s knowledge of UNIX related facts. Such
user knowledge is modeled by KNOME. Thus any concept
that is already present in the conversational context or that
KNOME indicates is likely to be known to the user is marked
and is not communicated to the user.

4.1. An Example Trace
To see how pruning works in detail, consider the trace of a UC
session shown in Figure 3.

How can I print a file on the laser printer?
The parser produces:
(ASK10 (listener10 = UC)

Table 1. Relation between user stereotypes and knowledge
difficulty levels.

(speaker10 = *USER*)
(asked-for10 =
(QUESTION10

Table 1 indicates that the novice user in session 1 (see Figure (what-is10 = (ACTION14?

1) likely does not know the format for the rm command, which
(actor14 = *USER*))))))

is a simple fact, and definitely does not know the uptime com-
(PRINT-ACTIONO? (pr-effect0 = PRINT-EFFECTO?)

(actoro-1 = *USER*)
mand, which is a mundane fact. On the other hand, the inter- (causeO-0 = (ACTION14? &)))

mediate user in session 2 (see Figure 2) definitely knows the (HAS-PRINT-DESTO (pr-dest0 = LASER-PRINTERO)

format for the Is -i command, which is a simple fact, and is (pr-dest-obj0 = PRINT-EFFECTO?))

likely to know the uptime command.
(HAS-PRINT-OBJECT1 (pr-object1 = FILE3?)

(pr-obj-objl = PRINT-EFFECTO?))
The planner is passed:

3. UCExpress
After other components of UC have identified a response to
the user, this is passed to UCExpress, which decides how
much of the response to present to the user and how to format
it. The separation of this process of deciding how much of the
answer to express from the process of figuring out the answer

(PRINT-EFFECTO?)
The planner produces:
(PLANFOR
(goals260 = PRINT-EFFECTO?)
(plan260 = (UNIX-LPR-Plz-COMMANDO

(lpr-plz-file0 = FILE3?)
(UNIX-LPR-Plz-COMMAND-effect0 =
PRINT-EFFECTO?))))

was first suggested by kuria, 19821 who applied this distinc- (HAS-FILE-NAME18 (named-file18 = FILE3?)
tion to a question answering system for story understanding. (file-name18 = (lisp= nil)))

His system first found the causal chain that represented the (LPR-Plz-HAS-FORMAT0

answer, then used answer expression to decide how much of
(LPR-Plz-HAS-FORMAT-command0 =

the causal chain to express to the user.
(UNIX-LPR-Plz-COMMANDO &))

(LPR-Plz-HAS-FORMAT-format0 =

The response passed to UCExpress is in the form of a concep-
tual network in the KODIAK representation language [Wilen-
sky, 19871. UCExpress, operates on this input in two phases,

(LPR-Plz-FORMAT1
(lpr-plz-file-argl =
(file-name18 = aspectual-of (HAS-FILE-NAME18 &))I

(LPR-Plz-FORMAT-step1 =
pruning and formatting. During pruning, UCExpress prunes (SEQUENCE10 (step10 = lpr)

common knowledge from the answer using information about (next10 = (CONCATOO

what the user knows based on the conversational context and a
(concat-step00 = -P)

model of the user’s knowledge. Next the answer is formatted
(concat-next00 = 1~)))))) 1)

(HAS-COMMAND-NAME30
using specialized expository formats for clarity and brevity. (HAS-COMMAND-NAME-named-obj30 =

The final result is an augmented KODIAK conceptual network (UNIX-LPR-Plz-COMMANDO &))

that is ready for direct generation into natural language using a (HAS-COMMAND-NAME-name30 = (SEQUENCE10 &)))

tactical level generator such as KING [Jacobs, 19851.
UCExpress: now expressing the PLANFOR:

Chin 757

(PLANFOR &)
UCExpress: not expressing the format of the command,
UNIX-LPR-Plz-COMMANDO, since the user already knows it
UCExpress: not expressing PRINT-EFFECTO?,
since it is already in the context.
The generator is passed:
(TELL7 (listener7-0 = *USER*)

(speaker7-0 = UC)
(proposition7 = (PLANFOR &))
(effect7 = (STATE-CHANGE1

(final-state1 = (KNOW-gaO? &))I))
Use lpr -Ph.

Figure 3. UC session with an intermediate user showing trace
of UCExpress.

The above example traces UCExpress’ processing of the ques-
tion, “How can I print a file on the laser printer?” The
answer given by UC is, “Use lpr -Plz.” The actual KODIAK
conceptual network that is passed to UCExpress, shown in
Figure 4, is not nearly as succinct, because it contains all of
the details of the command that are needed for planning.

Figure 4. KODIAK representation of the Ipr -Plz plan for
printing.

If the KODIAK network passed to UCExpress were to be gen-
erated directly into English, it might look like the following:

To print a file on the laser printer, use the Ipr -Plz com-
mand. The command-format of the lpr -Plz command is
“lpr” followed by concatenating “-P’) with’ “lz” fol-
lowed by the name of the file to be printed on the laser
printer.

This literal paraphrase is harder to understand than UC’s more
concise answer. To see how UCExpress prunes the network
to arrive at the actual answer, consider the division of the con-
cepts into the following three subnetworks:

PLANFOR260: A plan for PRINT-EFFECT0 is
UNIX-LPR-Plz-COMMANDO

PRINT-EFFECTO: printing a file on the laser printer

LPR-Plz-HAS- the format of the UNIX-LPR-Plz-
FORMATO: COMMANDO is “lpr -Plz <the

name of the file to be printed>”

These three subnetworks are depicted in Figure 4 as regions
enclosed in double lines. In traversing this network, UCEx-
press prunes LAS-PRINT-EFFECTO, because “printing a file
on the laser printer” is already a part of the context (it is part
of the user’s question). Also, the command-format (LPR-
Plz-HAS-FORMATO) is pruned from UC’s actual answer
based on information from KNOME. In this case, KNOME
was able to deduce that, since the user was not a novice, the
user knows the UNIX-LPR-Plz-FORMAT, that is an instance
of the SIMPLE-FILE-FORMAT (the name of the command
followed by the name of the file to be operated upon), that all
non-novice users know. Finally what is left unpruned is the
plan part of PLANFOR260, UNIX-LPR-Plz-COMMANDO,
which is generated as “Use lpr -Plz.”
Pruning is similar to the “msg-elmt” realization stage of
MUMRLE lMcDona.ld, 19841 that was used to generate pro-
nouns when a concept had been previously mentioned by
MUMBLE. However, since MUMBLE did not have access to
a model of the user, it was not able to avoid expressing those
concepts which a user model would indicate that the user
already knows. Another approach is used by KAMI? [Appelt,
19851 in planning referring expressions. KAMP used mutual
knowledge as a criterion for planning pronominal and ana-
phoric noun phrases. It would be very difficult to adapt such
an approach to do pruning since KAMP does not deal with the
uncertainty that is inherent in user models like KNOME that
reason from stereotypes.

5. Formatting
After pruning, UCExpress enters the formatting phase, during
which it tries to apply different expository formats to express
concepts in a clearer manner. This is similar in spirit to the
TAILOR system lParis, 19881 that used a simulated user
model to choose between two strategies for explanation:
describing the processes and describing the parts of an object.
Each expository format is used to express different types of
information. They are triggered by encountering particular
concept types in the answer network. After triggering, the
procedural component of the expository format is called to
transform the concept into the corresponding format. The for-
mats are not simple templates that can be filled in with readily
available information. A fair amount of additional processing
is needed to transform the information into the right format.
Due to space limitations, this paper will only describe two of
UCExpress’ expository formats: the example and simile for-
mats. These are most interesting fi-om the viewpoint of
answer expression using pragmatic information about the
user’s domain knowledge.

5.1. Example Format
The example format is used in expressing general knowledge
about complex (i. e. multi-step) procedures such as UNIX
commands. In UC’s representation of UNIX commands,
every command has an associated command format. When
expressing a command, UCExpress checks to see if it should
also express the command’s format. If KNOME believes that

758 Natural Language

the user already knows the format of the command, then there
is no need to express it. Next, UCExpress checks to see if the
format of the command is completely specified. If so, UCEx-
press collapses the command and format into a single state-
ment as shown in the UC dialog of Figure 5.

How can I add general write protection to the file
personal?
Type '&mod o-w personal'.

Figure 5. UC session
mand and format.

with an answer that combines the com-

An English rendition of the conceptual network passed to
UCExpress for the above example might be something like:

A plan for adding general read protection to the file per-
sonal is to use the chmod command with format
‘chmod’ followed by concatenating ‘0’ with ‘-’ with ‘r’
followed by ‘personal’.

Since the command is completely specified, the format of the
command is combined with the command to form a shorter
and more easily understood answer.
If the command is not completely specified, then UCExpress
uses an example format to express the format of the command
to the user. The key principle in producing examples is to be
explicit. UCExpress first steps through a copy of the general
procedure to transform any general information into specific
instances. In cases where the underspecified part of the pro-
cedure has a limited range of options, UCExpress selects an
arbitrary member that is compatible with the rest of the pro-
cedure and with previous choices. Next, the new, completely
specified copy of the format is combined with a copy of the
command, much as in the above UC dialog. Finally the new
plan is encapsulated in an example shell (which tells the gen-
erator to produce “For example,“).
To see the algorithm in more detail, consider the UC dialog of
Figure 6.

How can I change the read permission of a file?
UCExpress: now expressing the PLANFOR:
(PLANFOR &)
UCExpress: creating an example for the incomplete
plan, CHMOD-FORMAT0
UCExpress: choosing a name, foo, for an example file.
UCExpress: selecting USER-PROT -- print name, u,
to fill in a parameter of the example.
UCExpress: selecting ADD-STATUS -- print name, +,
to fill in a parameter of the example.
UCExpress: not expressing CHANGE-PROT-FILE-EFFECTO?,

since it is already in the context.
Use &mod.
For example, to add group read permission to the file
named foo, type \&mod g+r foe'.

Figure 6. UC session showing the example format.

The conceptual answer that is passed to UCExpress in the dia-
log can be paraphrased in English as:

A plan for changing the read permission of a file is to
use the chmod command with format ‘chmod’ followed
by concatenating <the protection-user-type> with <the
protection-value-type> with ‘r’ followed by <the name
of the file to be changed>.

In stepping through the above format, <the protection-user-
type> is underspecified. In order to give an example, a partic-
ular value is needed, so UCExpress arbitrarily chooses a value
from the list of possible fillers (user, group, other, or all). The
same is done for <the protection-value-type>. In the case of
‘r’, this is already a fully specified value for protection-
access-type, so UCExpress maintains the selection. However,
with <the name of the file to be changed>, there is no list of
possible fillers. Instead, UCExpress calls a special procedure
for selecting names. This naming procedure chooses names
for files starting with ‘foo’ and continuing in each session with
‘foo2’, ‘foo3’, etc. Other types of names are selected in order
from lists of those name types (e. g. machine names are
chosen from a list of local machine names). By selecting the
names in order, name conflicts (e. g. two different files with
the same name) can be avoided.
Another consideration in creating examples is that new names
must be introduced before their use. Thus ‘foo’ should be
introduced as a file before it appears in ‘chmod g+r foo’. This
is done implicitly by passing the entire PLANFOR as the
example, so that the generator will produce ‘to add group read
permission to the file named foo’ as well as the actual plan.

5.2. Simile Format
The simile format is used by UCExpress to provide explana-
tions of what a command does in terms of other commands
already known to the user. This format is invoked when
UCExpress attempts to explain a command that has a sibling
or a parent in the command hierarchy that the user already
knows (as modeled in KNOME). An example is explaining
what ruptime does in terms of uptime. A trace of UC’s pro-
cessing is shown in Figure 7.

What does z-uptime do?
UCExpress: Found a related command, so comparing
UNIX-RUPTIME-COMMAND2 and UNIX-UPTIME-COMMANDO
z-uptime is like uptime, except ruptime is for all
machines on the network.

Figure 7. UC session showing the simile format.

The processing involves comparing the effects of the two
commands and noting where they differ. In the above exam-
ple, the effects of uptime are to list the uptime of the user’s
machine, list the number of all users on it, and list its load
average. The effects of ruptime are similar except it is for all
machines on the user’s network. The comparison algorithm
does a network comparison of the effects of the two com-
mands. A collection of differences is generated, and the cost
of expressing these differences (measured in number of con-
cepts) is compared with the cost of simply stating the effects
of the command. If expressing the differences is more costly,
then the simile format is not used. On the other hand, if
expressing the differences is less costly, then the differences
are combined into a shell of the form “<CommandA> is like
<CommandB>, except [<CommandA> also . ..I [and] [<Corn-
mandA> does not . ..I [and] . ..”

Chin 759

5.3. A Comparison
The TEXT system [McKeown, 19851 is perhaps the closest in
spirit to UCExpress. TEXT used a compare and contrast
schema to answer questions about the differences between
objects in a database. This is similar to UCExpress’ simile
format except that the compare and contrast schema was not
used for giving descriptions of an object in terms of another
that the user already knew. Since TEXT did not have a com-
plete model of the user, it was unable to determine if the user
already knew another object that could be contrasted with the
requested object. This lack of a user model was also evident
in the fact that TEXT did not provide anything like the prun-
ing phase of UCExpress. Pruning is probably more relevant in
a conversational context such as UC as contrasted with a para-
graph generation context such as TEXT.
Other related research include work on using examples for
explanation and for legal argumentation lRissla.nd et al.,
19841. The difference between those examples and the exam-
ples created by UCExpress is that Rissland’s examples are
preformed and stored in a database of examples whereas
UCExpress creates examples interactively, taking into account
user provided parameters. Rissland’s HELP system dealt only
with help about particular subjects or commands rather than
arbitrary English questions like UC, so HELP did not have to
deal with questions such as how to print on a particular
printer. Also by using prestored text, HELP was not con-
cerned with the problem of transforming knowledge useful for
internal computation in a planner to a format usable by a gen-
erator.

6. Conclusion
UC separates the realization of speech acts into two processes:
deciding how to express the speech act in UCExpress, and
deciding which phrases and words to use in UC’s tactical level
generator. Through this separation, the pragmatic knowledge
needed by expression is separated from the grammatical
knowledge needed by generation. UCExpress makes deci-
sions on pragmatic grounds such as the conversational con-
text, the user’s knowledge, and the ease of understand of vari-
ous expository formats. These decisions serve to constrain the
generator’s choice of words and grammatical constructions.
Of course, it is sometimes impossible to realize all pragmatic
constraints. For example, UCExpress may specify that a pro-
noun should be used to refer to some concept since this con-
cept is part of the conversational context, but this may not be
realizable in a particular language because using a pronoun in
that case may interfere with a previous pronoun (in another
language with stronger typed pronouns, there may not be any
interference). In such cases, the generator needs to be able
relax the constraints. By passing the generator all of the con-
ceptual network along with addition pragmatic markings on
the network UCExpress allows the generator to relax con-
straints as needed. This way, the generator has access to any
information needed to relax the constraints added by UCEx-
press.

Acknowledgements
The work described in this paper was done at the University of
California, Berkeley as part of my Ph.D. thesis. I wish to
thank Robert Wilensky who supervised this work. I also wish
to thank the members of BAIR (Berkeley Artificial Intelli-

gence Research) who have contributed to the UC project.

References
Appelt, D. E. (1981). Planning Natural Language Utterances

to Satisfy Multiple Goals. Doctoral dissertation, Com-
puter Science Department, Stanford University. Also
available as SRI International AI Center Technical Note
259.

Chin, D. N. (1986). User modeling in UC, the UNIX consul-
tant. In Proceedings of the CHI-86 Conference, Boston,
MA, April 1986.

Chin, D. N. (1987). Intelligent Agents as a Basis for Natural
Language Interfaces. Doctoral dissertation, Computer
Science Division, University of California, Berkeley.

Chin, D. N. (1988). KNOME: Modeling What the User
Knows in UC. To appear in A. Kobsa and W. Wahlster
(Eds.), User Models in Dialog Systems, Berlin:
Springer.

Jacobs, P. S. (1985). A Knowledge-Based Approach to
Language Production. Doctoral dissertation, University
of California, Berkeley. Also available as Computer
Science Division, University of California, Berkeley,
Report No. UCB/SCD 86/254.

Luria, M. (1982). Dividing up the Question Answering Pro-
cess. In Proceedings of the National Conference on
Artificial Intelligence, pp. 71-74. Pittsburgh, PA,
August.

McDonald, D. D. 1984. Natural Language Generation as a
Computational Problem: an Introduction. In Computa-
tional Models of Discourse, edited by M. Brady and R.
C. Berwick. MIT Press. Cambridge, MA. 1984.

McKeown, K. R. (1985). Discourse Strategies for Generating
Natural-Language Text. In Artificial Intelligence, 27,
pp. l-41.

Paris, C. L. (1988). Tailoring Object Descriptions to a User’s
Level of Expertise. To appear in Kobsa, A. and Wahl-
ster, W. (Eds.), User lwodels in Dialog Systems. Berlin:
Springer.

Rich, E. (1979). User Modeling via Stereotypes. In Cogni-
tive Science, 3, pp. 329-354.

Rissland, E. L., Valcarce, E. M., and Ashley, K. D. (1984).
Explaining and Arguing with Examples. In Proceed-
ings of the National Conference on Artificial Intelli-
gence, pp. 288-294. Austin, TX, August.

Rosch, E. (1978). Principles of Categorization. In Rosch, E.
and Lloyd, B. B. (Eds.), Cognition and Categorization.
Hillsdale, NJ: Lawrence Erlbaum.

Wilensky, R., Arens, Y., and Chin, D. N. (1984). Talking to
UNIX in English: An Overview of UC. In Communica-
tions of the ACM, 27 (6), pp. 574-593. June.

Wilensky, R., Mayfield, J., Albert, A., Chin, D. N., Cox, C.,
Luria, M., Martin, J., and Wu, D. (1986). UC -A Pro-
gress Report. Computer Science Division, University
of California, Berkeley, Report No. UCB/CSD 87/303.

Wilensky, R. (1987). Some Problems and Proposals for
Knowledge Representation. Computer Science Divi-
sion, University of California, Berkeley, Report No.
UCB/CSD 87/35 1.

760 Natural Language

