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Abstract 

We present a qualitative method for a mobile robot to 
explore an unknown environment and learn a map, 
which can be robust in the face of various possible 
errors in the real world. Procedural knowledge for the 
movement, topological modeI for the structure of the 
environment, and metrical information for geometrical 
accuracy are separately represented in our method, 
whereas traditional methods describe the environment 
mainly by metrical information. The topological 
model consists of distinctive places and local travel 
edges linking nearby distinctive places. A distinctive 
place is defined as the local maximum of some 
measure of distinctiveness appropriate to its immediate 
neighborhood, and is found by a hill-climbing search. 
Local travel edges are defined in terms of local control 
strategies required for travel. How to find distinctive 
places and follow edges is the procedural knowledge 
which the robot learns dynamically during exploration 
stage and guides the robot in the navigation stage. An 
accurate topological model is created by linking places 
and edges, and allows metrical information to be ac- 
cumulated with reduced vulnerability to metrical er- 
rors. We describe a working simulation in which a 
robot, NX, with range sensors explores a variety of 2-D 
environments and we give its successful results under 
varying levels of random sensor error. 

1 l Introduction 

Traditional approaches to the robot exploration, navigation 
and map-learning, based on the accumulation of accurate 
metrical descriptions of the environment, are highly vul- 
nerable to metrical inaccuracy in sensory devices and move- 
ment actuators [Brooks, 1985; Chatila and Laumond, 1985; 
Koch et al., 1985; Moravec and Elfes, 1985; Rao et al., 1986; 
Turchan and Wong, 1985; Kadonoff et al., 19861. Recent 
work taking a more qualitative approach [Kuipers and Byun, 
1987; Levitt et al., 19871 shows great promise of overcoming 
the fragility of purely metrical methods. 

Humans perform well at spatial learning in spite of sensory 
and processing limitations [Kuipers, 19791 and partial 
knowledge [Kuipers, 19831. Many cognitive scientists 
[Lynch, 1960; Piaget and Inhelder, 1967; Siegel and White, 
19751 observe that a cognitive map is organized into succes- 
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sive layers. These results suggest that the basic element of a 
useful and powerful description of the environment is a 
topological description. The layered model consists of the 
identification and recognition of landmarks and places, 
procedural knowledge of routes, a topological model of con- 
nectivity, order, and containment, and metrical information of 
shapes, distance, direction, orientation, and local and global 
coordinate systems. Our approach attempts to apply the 
method to the problem of robot exploration and map-learning. 

The central description of the spatial environment in our 
qualitative approach is a topological model as in the TOUR 
model [Kuipers, 19781. The model consists of a set of nodes 
and arcs, where nodes represent distinctively recognizable 
places in the environment, and arcs represent travel edges con- 
necting them. The nodes and arcs are defined procedurally in 
terms of the sensorimotor capabilities of the robot. Metrical 
information is added on top of the topological model. 

A place in the environment corresponding to a node in the 
topological model must be ZocalZy distinctive within its im- 
mediate neighborhood by one geometric criterion or another. 
We introduce locally meaningful “distinctiveness” measures 
defined on a subset of the sensory features, by which some 
distinctive features can be maximized at a distinctive place. 
We define the signature of a distinctive place to be the subset 
of features, the distinctiveness measures, and the feature 
values, which are maximized at the place. A hill-climbing 
search is used to identify and recognize a distinctive place 
when the robot is in its neighborhood. When exploring, both 
the signature and the local maximum must be found. When 
returning to a known place, a robot is guided by the known 
signature. 

Travel edges corresponding to arcs are defined by local 
control strategies which describe how the robot can follow the 
link connecting two distinctive places. This local control 
strategy depends on the local environment and there may be 
several possible strategies. For example, in one environment, 
following the midline of a corridor may be reasonable; in 
another environment, maintaining a certain distance from a 
single boundary on one side is appropriate. 

We have implemented and tested successfully our ap- 
proach with a working simulator. We will discuss our method 
in detail, simulation results, and further extension. 
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Model wit roeedural and 
ation 

The basic structure of a map, in our approach, is the topologi- 
cal model of which nodes are distinctive places and arcs are 
travel edges. We discuss how to define distinctive places and 
travel edges, and their procedural and metrical descriptions 
with a robot instance, NX. 

2-l A Robot Instance NX 
We hypothesize that our approach is supported by any sen- 
sorirnotor system that provides sufficiently rich sensory input, 
and takes sufficiently small steps through the environment. 
For simplicity and concreteness, we currently define a specific 
instance of a robot NX which has sixteen sonar-type distance 
sensors covering 360 degrees with equal angle difference be- 
tween adjacent sensors, two tractor-type chains for move- 
ment, and an absolute compass for global orientation. Thus 
the input to NX is a vector of time-varying, real-valued func- 
tions [S,(t), S,(t), . . . . . S,,(t), Compass(t)]. Although we use 
NX to test our qualitative method, our approach does not 
depend critically on the choice of sensors and movement ac- 
tuators. 

2.2 Distinctive Places 

Figure 1. Distinctive points in a neighborhood 

In order to have the nodes of the network-structured 
topological model we need to look for distinctive places 
(DPs). If we consider the geometry of a simple 2-D local 
neighborhood in Figure 1, we can argue that the dotted lines 
define a set of places that are qualitatively distinctive for one 
reason or another. There is clearly a place which is the most 
distinctive compared to its surroundings. Our approach at- 
tempts to find a suitable criterion for defining a maximally 
distinctive place in any given neighborhood. In environments 
dominated by obstacles and extended landmarks, we believe 
that a map based on DPs and connecting edges provides a 
more robust topological representation than, for example, 
regions related by adjacency. In an environment dominated 
by remote, point-like landmarks, the reverse may be true 
[Levitt et al., 19871. 

In order to formulate locally meaningful “distinctiveness” 
measures, we need to determine which sensory characteristics 
provide the distinguishing features by which a place becomes 
locally distinctive. We hypothesize that any reasonably rich 
sensory system will have distinctiveness measures that can be 
defined in terms of low level sensory input. Note that it is not 
necessary for a place to be globally distinctive; it is only 
necessary to be distinguished from other points in its im- 
mediate neighborhood. 

A set of production rules is used to decide whether NX is 

in the neighborhood of a DP and what distinctive features can 
be maximized in that neighborhood. Each rule consists of 
assumptions and a decision for the distinctive features. Here 
is an example: 

(d&rule DP-I210 
(if (>= (number-of-objects) 3) 

(not (all-objects-far-away)) 
(not (there-is-wide-open-space))) 

(then (am-I-in-neighborhood-DP is 
'DP-syrnm-equal))) 

Once NX knows what distinctive features can be max- 
imized locally in the neighborhood of a DP, NX performs a 
hill-climbing search around the neighborhood looking for the 
point of maximum distinctiveness (e.g., minimizing dif- 
ferences of distances to near objects, if DP-RlO is true). 
When a DP is identified, it is added to the topological model 
with its distinctiveness measures, connectivity to edges, and 
metrical information. 

The individual distinctiveness measures are an open- 
ended, domain- and sensor-specific set of measures. For our 
current robot, the measures we can define include the follow- 
ing. 

Q Extent of distance differences to near objects. 

Q Extent and quality of symmetry across the center of the 
robot or a line. 

a Temporal discontinuity 
small step. 

in one or more sensors, given a 

* Number of directions of 
spaces around the robot. 

reasonable motion into open 

e Temporal change in number of directions of motion 
provided by the distinct open spaces, with a small step. 

that minimizes or maximizes 0 The point along a path 
lateral distance readings. 

We summarize the levels of description of DPs: (An ex- 
ample is given in Section 3.) 

ge for a DP: Ability to recognize 
the neighborhood, knowledge of what features can be 
maximized in the neighborhood, and ability to perform 
the hill-climbing search to get to the DP. Learned in the 
exploration stage and used in the navigation stage. 

8 Topological descriptions of a DP: A node in the 
topological model, connected to edges and other DPs. 
Added to the topological model when it is found and 
possibly updated during the process of constructing the 
model. 

Q Metrical information about a DP: Local geometry like 
directions to OPEN-SPACE, shape of near objects, dis- 
tances and directions to objects, etc. Continuously ac- 
cumulated in the exploration and navigation stage and 
averaged to minimize metrical error. 

23 TsavelJ Edges 

Travel edges are defined in terms of local control strategies 
(LCS). Once a DP has been identified, the robot moves to 
another place by choosing an appropriate control strategy. 
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While following an edge with a chosen strategy, the robot 
continues to analyze its sensory input for evidence of new 
distinctive features. Once the next place has been identified 
and defined, the arc connecting the two DPs is defined 
procedurally in terms of the LCS required to follow it. 

The edges followed during exploration are defined by 
some distinctiveness criterion that is sufficient to specify a 
one-dimensional set of points. Therefore, following our con- 
trol strategies, the robot will follow the midline of a corridor, 
or walk along the edge of a large space, but will not venture 
into the interior of a large space, where the points have no 
qualitatively distinctive characteristics. 

As shown in Figure 2, when the robot is following a 
known edge from one node to another, it starts by using the 
hill-climbing algorithm to locate itself at the DP correspond- 
ing to the fast node. It then follows the LCS associated with 
the arc and ends up somewhere in the neighborhood of the 
second place. Then the hill-climbing algorithm brings it to the 
DP corresponding to the second node. This method uses con- 
tinuous sensory feedback to eliminate cumulative error. 

t ’ . 

hill-climbing 

edge-following 

Figure 2. Movement with Error 

A set of production rules to decide a proper LCS depend- 
ing on the current sensory information is given to NX. An 
example of a rule is given below. 

(defrule LCS-rule10 () 
(if (>= (number-of-objects) 2) 

(TwoWalls-near-to-each-other) 
(TwoWalls-almost-opposite-direction)) 

(then (proper-LCS is 
'pass-on-the-midline))) 

The current local control strategies are: 
0 Follow-Midline 

* Walk-along-Object-Right 

0 Walk-along-Object-Left 

0 Blind-Step 

In summary for edges: (An example is given in Section 3.) 
a Procedural knowledge: Ability to choose and perform 

a proper LCS and knowledge of which control strategy 
defines the edge. Learned in the exploration stage and 
used in the navigation stage. 

0 In the Topological model: An edge with direction, con- 
nected to two end-places. Added to the topological 
model when the second end-place is found. 

.S Metrical information: Curvature, distance, change of 
orientation, lateral width while traveling, etc. Con- 
tinuously accumulated in the exploration and navigation 
stage and averaged to minimize metrical error. 

2.4 Position Referencing Problem 

While NX explores the given environment, it needs to know 
the current position. The current position is described 
topologically rather than metrically. When NX is at a DP, the 
current position is described by the current place name, the 
current orientation in degrees, and a travel edge through which 
NX has come to the current place from the previous place. 
When NX is on an edge, the current position is described by 
the previous place name, the current orientation, and an in- 
dication “ON-EDGE”. 

2.5 Matching Process to Determine the Current 
Position 

When NX reaches a place during its exploration, the iden- 
tification of the place is the most important task. If a place has 
been visited before and NX comes back to that place, NX 
should recognize it. A new place must be recognized as new, 
even if it is very similar to one of the previously visited places. 
Our matching process is done topologically as well as metri- 
cally. 

While NX explores, it uses an exploration agenda to keep 
the information about where and in which direction it should 
explore further to complete its exploration. If (Place1 
Directionl) is in the exploration agenda, it means that 
Direction1 is a reasonable direction for travel (e.g., points to 
OPEN-SPACE) from Place1 and has not been explored. 
Therefore, in order to delete (Place1 Dircctionl) from the ex- 
ploration agenda, NX should either visit Place1 later and leave 
in the direction Directionl, or return to Place1 from the op- 
posite direction. 

When NX gets to a place in the exploration stage, the 
exploration agenda can be either empty or not empty. If the 
exploration agenda is empty, it means that there is no known 
place with directions which require further exploration. 
Therefore the current place must be new, unless NX has inten- 
tionally returned to a previously known place through a known 
edge. If the exploration agenda is not empty, the current place 
could be one of the places saved in the exploration agenda. 
This is only possible when the current place description is 
similar to that of a place saved in the exploration agenda, and 
the difference between the current orientation and the direc- 
tion savedon theagendais approximately 180 degrees. 

The current and stored place descriptions are compared 
metrically, allowing a certain amount of looseness of match to 
provide robustness in the face of small variations in sensory 
input. But mismatching is possible. If there is any possibility, 
the topological matching process is initiated. From the 
topological model and procedural knowledge of edges and 
nearby DPs, the rehearsal procedure [Kuipers 19851 is ac- 
tivated to test the hypothesis that the current place is equal to a 
previously known place. NX constructs routes between the 
known place and adjacent DPs. It then tries to follow the 
routes and return to the current place. If the routes performed 
as predicted, then the current place matches the previously 
known one, and NX has identified the current place. If not, 
then the current place must be a new place with the same 
sensory description as the old one (e.g., two intersections in 
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the first environment in Figure 5). 
For any fixed search radius of this topological match, it is 

possible to construct an environment that will yield a false 
positive match. However, if there is a reference place that is 
somehow marked so as to be globally unique (e.g., “home”), 
false positives can be eliminated. 

3. Simullator and Results 

We have developed a simulation system NX-SIM. Figure 3 is 
a copy of the simulation window. NX is represented as a 
triangle at P4 in Figure 3. The metrical lines in the “Measured 
Distances” box in the upper right comer show the 16 sensor 
readings at the current instant. The length of the line 
represents the sensor reading perceived by the robot. In this 
example, the sensor readings are subject to a 10% random 
error, so the true distance is indicated by an “x” (perceived 
only by the researchers). 

At the top left comer, the result of analysis of each distinc- 
tiveness measure considered currently is displayed. NX was 
located near Place1 initially. The first peak on the second row 
shows the symmetric and equal distance analysis while it tried 
to find Placel. The second, the third, and the fourth peaks 
correspond to Place2, Place3, and Place4, respectively. 

We show the graphic exploration results of three different 
error rates: 0% error in Figure 4a, 5% error in Figure 4b, and 
10% error in Figure 4c. NX starts near Pl in each case, 
marked S. Pi means Place-i and Ei means Edge-i. We will 
trace NX’s movement with Figure 4c very briefly. It con- 
structs the correct map successfully in all three cases, but care- 
ful examination of figures 4a-c reveals subtle differences. 

Starting from S in Figure 4c, NX chooses Pass-on-the- 
midline and moves downward. Because of sensory error, it 
does not initially recognize that it is in a neighborhood. But 

while continuing to perform Pass-on-the-midline, it recognizes 
a qualitative change, and so it performs a hill-climbing search 
to minimize the difference of distances to near objects. This 
search turns it around, converges on a local maximum, and 
defines the place Pl. If we look at Figure 4a and 4b, we do 
not see this kind of backtracking around Pl. NX recognizes 
the neighborhood sooner than in Figure 4c. 
Once NX finds Pl, it records Pi’s information in the map as 
follows. 

PLACE : 
Name=Pl 
Procedural: Symm-Equal (i.e., Symmetry & Equal distance) 
Topological: Nil 
Metrical: 

Direction-requiring-more-exploration: 345 & 282 deg. 
Angle and Distance to Objects: (70 deg. 46 units) 

(317 38) 
(160 51) 

There is no topological information for Pl at this time. 
There are two directions in which NX can go from Pl. If 
there is no particular reason to choose an indicated direction, it 
chooses the direction which requires the least rotation. It 
rotates to the direction toward P2 and keeps the other direction 
on the agenda This selection rule, of course, would cause NX 
to lose badly in an infinite environment. An alternate rule, 
selecting the direction requiring the most rotation, would cause 
the explored region to grow roughly concentrically. While 
NX is moving ahead from Pl, it chooses Pass-on-the-midline 
and gathers metrical information about the edge such as dis- 
tance, shape, width of the edge, change of the width, and so 
on. Then NX finds the second DP, P2, which is characterized 
by Temporal-discontinuity. 

Status indicators; 
NBD: a neighborhood of a DP 
EDG: on an edge 
EXP: Exploration 
REN: Rehearsal 
NAV: Navigation 
Am : a current place 
Was : a previous place 
TO : a destination place 

(Values of several distinctive 
measures are shown on the 
left top, and measured dis- 
tances with error are shown 
on the right top.) 

Figure 3. NX-SIM Window 
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Figure 4-a. Exploration result with 0 % sensor error 

Figure 4-b. Exploration result with 5% sensor error 

Figure 4-e. Exploration result with 10% sensor error 

EDGE : 
Name=El 
Procedural: Pass-on-the-Midline 
Topological: from Pl to P2 
Metrical: 

Travel-history 
Distance 

; ;U$+ (8 10) 05 6)(119) (18 18))) 

Lateral-width : ((DIR+ (81 ALMOST-STD 43))) 
Minimum-width: 80 
D-Orientation : ((DIR+ -8)) 

Once P2 has been defined, the above is recorded in the 
map for El. Travel-history is a record of the number of rota- 
tions of each chain. DLR+ specifies the topological direction 
from Pl to P2. (81 ALMOST-STD 43) means that the dis- 
tance between the two walls is approximately 81 units and 
almost steady while it moves approximately 43 steps. The 
minimum distance between the two walls along E2 is 80 units. 
D-Orientation gives the net change of orientation in degrees 

along edges. It also updates the topological information of Pl 
at this moment, since El is connected to Pl. 

While NX leaves P2, NX thinks that Pass-on-the-midline 
is the appropriate LCS. You can see a line stretching to the 
direction between E2 and E6. But it soon realizes that Move- 
along-object-on-left or Move-along-object-on-right are more 
appropriate. Because it prefers smaller rotation angles, it 
chooses Move-along-object-on-left. We can see a significant 
difference between this and what happens in Figure 4a and 4b, 
as the result of the different amount of errors. However, the 
exploration process recovers from temporary errors, and is 
successful in all three cases. 

Then NX finds P3, E3, P4, E4, P5, E5, and P6. It moves 
along E6 and finds a place which looks similar to P2. The 
rehearsal procedure is activated for topological matching. 
Notice here that NX does not make the same trace stretching 
to the middle direction between E2 and E6 as before, because 
it already knows that if the current place is P2, Move-along- 
object-on-left-side is the proper LCS. We need to emphasize 
that a place visited several times does not need to be exactly 
the same location in the environment. Accumulated metrical 
information and the rest of exploration are discussed in detail 
in [Kuipers and Byun, 19881. We present more results with 
various environments in Figure 5. 

1 

Figure 5. More expbation results 
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4. Summary and Future Work 

We have demonstrated a successful, robust, qualitative robot 
exploration and mapping method. The results show that our 
method can solve several of the problems of traditional ap- 
proaches. The major achievement of our approach is the 
elimination of cumulative metrical error. Key development 
tasks developed currently or in the near future are listed 
below. 

m Handling of systematic error (e.g., the acoustic 
peculiarities of sonar). 

e Use of metrical information for optimizing routes, edge- 
following procedures, and correction of topological er- 
rors. 

* Dynamic world (e.g., 
moving pedestrians). 

doors opening and closing; 

0 Removal of dependence on global compass, and 
local orientation frames and their connections. 

Q Hierarchical representation of complex maps. 

use of 
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