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Abstract 
Planning a product assembly requires that we determine 
the order in which the product subparts are to be assem- 
bled. One constraint on this ordering is that the subas- 
sembly must be stable at each stage under the 
gravitational force and the insertion force of the next part 
to be assembled. In this paper, we discuss the stability 
problem for the case where the subassembly sits on a ta- 
ble. A program has been written to solve this problem for 
a class of subassemblies. The input to the program con- 
sists of a model of the subparts and their interconnections, 
and a set of external insertion forces. The program tests 
whether the total disturbance force is contained in the set 
of all stable forces between each subpart and the table. A 
linearized model of friction in six dimensions is used in the 
computation. 

1 .O Introduction 
In recent years, attention has focused on the need for an 
automatic system for planning product assemblies 
(Lozano-PErez 1976, Taylor 1976, Lieberman and Wesley 
1977, Lozano-PJrez et al 1987). Planning an assembly 
requires that we determine the order in which the product 
parts are to be assembled. In general, this is a difficult 
problem, because of the large number of possible sol- 
utions (Hornem de Mello and Sanderson 1986). One 
constraint on this ordering is that the subassembly must 
be stable at each stage under the gravitational force and 
the insertion force of the next part to be assembled. In this 
paper, we discuss this stability problem for the case where 
a three-dimensional subassembly sits on a table, and the 
insertion force is given. We will assume that the parts of 
the subassembly can be accurately modeled by rigid 
polyhedra. 

Fahlman (1973) investigated the stability of a subassem- 
bly of blocks (bricks and right triangular wedges), using 
an iterative numerical method which propagates forces 
through the subassembly. The correctness and computa- 
tional complexity of his method have not been estab- 
lished. 

Blum, Griffith, and Neumann (1970) implemented a 
subassembly stability test based on linear programming. 
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For each part, force balance equations are written in terms 
of point contacts with adjacent parts and gravitational 
forces. Friction at each contact point is approximated by 
four linear inequalities. The program searches for a si- 
multaneous solution to the force balance equations in 
which the forces acting on each body are either zero or 
internal to the body. 

Palmer (1987) established the computational complexity 
of the subassembly stability problem for rigid polygons in 
the plane. He showed that guaranteed stability is 
NP-hard, under assumptions similar to what we call 
‘limited superposition” in “2.2 Multi-Point Friction” on 
page 2. He also showed that potential stability is in I’, and 
that for a special class of subassemblies, guaranteed sta- 
bility without friction is in P. 

This paper is organized as follows. “2.0 Friction” dicusses 
our representation for friction. Our stability algorithm is 
then described in “3.0 Algorithm” on page 3. “4.0 
Experiments” on page 5 presents some of our exper- 
imental results. “5.0 Conclusions” on page 5 summarizes 
our contributions. 

2.0 Friction 

Consider Figure 1, which shows an insertion force ap- 
plied to a two-dimensional block on a table. To compute 
the stability of the block with respect to the table, we 
must take friction into account. 

INSERTION FORCE 

INVERTED FRICTION CWE 

Figure 1. An insertion force applied to a 
two-dimensional block on a table. 
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The friction cone of the table with respect to the block is 
defined as the set of possible reaction forces that the table 
can exert in response to an applied force from the block 
(Coulomb, see Baumeister 1978). The angle of the friction 
cone is equal to ~rctan(p), where p is the coefflcicnt of 
friction between the block and the table. Coulomb made 
the following empirical observation about friction cones: 
if an applied force opposes a possible reaction force in the 
friction cone, then an equal and opposite reaction force will 
be generated, and no relative motion witI OCCUY. The in- 
verted friction cone of the table with respect to the block 
thus contains the set of stable forces that can be exerted 
on the block at the point of contact. 

2. I Point Fviction 
In this subsection, we present a mathematical formulation 
of the inverted friction cone for a point contact in three 
dimensions. Our formulation is taken directly from 
Erdmann ( 1984). 

For a point contact in three dimensions, the number of 
degrees of freedom is six. However, only the three 
translational degrees of freedom are subject to friction. 
Thus, the friction cone is a three-dimensional subset of 
six-dimensional space. The inverted friction cone can be 
derived by writing down the equations for static equilib- 
rium of an applied force/torque f at the contact point. 
The following constraints hold: 

1. The applied torque must be zero. 
2. The applied force must be interior to the contact 

surface. 
3. (Coulomb’s Law) The tangential component of the 

applied force must be less than or equal to p times 
the normal component of the applied force. 

Erdmann showed that these constraints can be written as 
the following system of linear equations: 

i’;=o I2 11 
- - 

f”E<klCfd ) P C2.21 
- - 

fG&k$.t ) P P31 
- - 

f+=O P-41 

where: 

torque at the contact point 
six-dimensional outward normal vector 
a pure sliding vector 
a pure sliding vector perpendicular to i, 
orthogonal projection onto the real space tangent 
plane 

XN- = orthogonal projection onto the real space normal. 

The constants Z, FP, and i; can be computed from ge- 
ometric models of the p<arts in contact. There arc many 
possible choices for iP and il. For a particular choice, 
Equations 2.1-2.4 defme a two-dimensional slice of the 
invcrtcd friction cone. A linearized three-dimensional 
cone can be obtained by taking the Minkowski sum of a 
-finite number of cone slices. In practice, WC’ found that 
eight slices give a fairly accurate approximation. Let 
3 . ..fp represent stable force/torques in the eight slices, 
where each j is defined similar to 7 in Equations 2.1-2.4. 
We can then write the linearized cone as 

r, =A +f2 + *-* +x. P51 
Equation 2.5 can be comb&d with all of the slice 
equations in a system of the form 

where X consists of x,x,fi, . . . ,f,, and l represents the 
forces in the inverted friction cone. 

2.2 Multi-Point Friction 
When two parts are in n-point contact, each possible re- 
action force can bc viewed as a nonncgativc linear com- 
bination of n forces, each of which comes from the 
friction cone of one of the contact points. We call this the 
full superposition assumption. Under full superposition, 
we can write the set of possible reaction forces of an 
n-point contact as 

n 
F composite = 0 4 I261 i=l 

where F, . . . F, are the friction cones at the contact points, 
and @ denotes Minkowski sum. FcOn,,,osite can be viewed 
as the composite. friction cone of the n-point contact. We 
will assume that Coulomb’s criterion for stability extends 
to composite friction cones under multi-point contact. 
Note that the composite inverted friction cone of an 
n-point contact can be computed using Equation 2.6 by 
fast inverting the point friction cones 1;1: . 

There is reason to b&eve that some of the reaction forces 
under full superposition are impossible, or at least unreli- 
able. If the applied force is exterior to some subset of the 
contact surfaces, then it is difficult to believe that these 
contact surfaces contribute to the reaction force. Let 
denote the set of outward normal vectors at the n contact 
points. Then we might write the composite friction cone 
as 

where 
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exterior(E) = (X I 2 0 E > 0). 

We calI this the limited superposition assumption. For 
example, consider the planar two-point contact shown in 
Figure 2. For simplicity, ignore rotations. Fl and F, rep- 
resent the friction cones of the contact points. If we as- 
sume full superposition, then the composite friction cone 
of B with respect to A is given by Fl@F,, which yields the 
entire plane. This implies that A may not slide at all. If 
we assume limited superposition, then the composite 
friction cone is equal to J’, U F,. (The applied force can 
never be strictly interior to both surfaces.) This implies 
that sliding wilI occur as long as the applied force is not 
in either of the inverted friction cones. 

Figure 2. A planar two-point contact. 

Ramifications of full and limited superposition on stabil- 
ity will be discussed later in this paper. 

3.0 Algorithm 
In this section, we will describe an algorithm which as- 
sumes full superposition. In general, the algorithm com- 
putes only potential stability. In “3.4 Guaranteed 
Stability” on page 5, we will discuss cases for which we 
conjecture that the algorithm computes guaranteed sta- 
bility. 

The input to the program is a geometric model of a sub- 
assembly and a set of disturbance forces. The modeler 
knows a set of basic bodies, namely cuboids, cylinders, 
cones and wedges, all represented as polyhedra. It also 
knows a basic set of contact situations: 

AGAINST (vertex, face) 
INSIDE (face 1, face2) 

TIED (partl, part2) 

A vertex against a face. 
Face 1 is contained in face 
2. 
Part 1 is rigidly attached to 
part 2. 

The output of the algorithm is the set of orientations for 
which the subassembly will be stable on a table. 

Figure 3. The structure of the program. 

Figure 3 depicts the structure of the program. “Subas- 
sembly Stability” is the block controlling the entire flow 
of the algorithm. It uses “Candidate Orientations”, 
“Makearc”, “Net Relation” and “Simplex” to fmd all stable 
orientations. 

“Candidate Orientations” determines all orientations in 
which the subassembly is stable on a table, assuming that 
the parts are rigidly attached to each other. With a convex 
hull algorithm, all “first guess” orientations are found. 
Then, orientations in which the center of gravity of the 
complete subassembly is not supported are pruned, leav- 
ing the set of orientation candidates. 

Next, we relax the assumption that the parts are rigidly 
attached. In “Makearc”, the geometric model is translated 
into a network of parts. A relation is created in the net- 
work for each pair of parts in contact. Then, for each part 
in the network, the network is reduced to a single relation 
between the part and the table in “Net Relation”. The 
fmal relation is tested for stability in “Simplex”. 

If for a particular orientation all parts are found to be 
stable, then the orientation is stable. If one or more parts 
are found to be unstable, then the orientation is unstable. 

3.1 Malceavc 
“Makearc” generates a relation for each contact point in 
the subassembly. A relation connects two parts, describ- 
ing the stable forces that one of the parts can exert on the 
other through the contact point (ignoring the rest of the 
subassembly). The stable forces at a contact point are 
given by the inverted friction cone at that point, which is 
represented by the system of linear equations described in 
“2.1 Point Friction” on page 2. 

3.2 Net Relation 
“Net Relation” reduces a network of part relations to a 
single relation between a part and the table. Similar to 
strategies described by Smith and Cheeseman (1986), the 
actions to reduce the network are merging and com- 
pounding. Merging is performed when there are two par- 
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Figure 4. A simple merge action. 

allel relations between two parts (see Figure 4). Assuming 
full superposition, merging is accomplished by computing 
the Minkowski sum of the two relations, and results in a 
single relation between the parts. In a compound action, 
a chain of two relations is reduced to a single relation by 
intersecting them, thereby eliminating the middle part in 
the chain (see Figure 5). 

Consider Figure 6, which represents an abstract network 
of three parts. We are interested in determining the net 
relation of part A relative to part C. Network reduction 
is accomplished by iteratively repeating the following 
steps until a single relation remains: 

1. Merge until no longer possible. 
2. Compound until no longer possible. 

In Figure 6, a compound action is performed fast, elimi- 
nating part B. Then, the two remaining relations are 
merged to produce a single relation between A and C. 

Sometimes, neither compounding nor merging is possible 
during the reduction of a network. Two possible causes 
for this are bidirectional relations and loops. Assume that 
we are interested in the stability of a part A with respect 
to the table. A bidirectional relation is a relation between 
two parts in which forces can propagate in either direction 
on the way from A to the table. A loop is a circular path 
of relations on the way from A to the table, but not in- 
cluding A or the table. When these structures occur, 
transformations must be performed on the network so 
that reduction can continue. We are investigating algo- 
rithms to perform these transformations. 

Each initial relation in the network represents an inverted 
friction cone, represented by a system of linear equations. 
Let FI represent an initial relation, given by the following 
linear equations: 

Figure 5. A sirnplc compound action. I 

I Figure 6. An assembly requiring merging and 
compounding. 

Let 1 represent the stable disturbance forces in this sys- 
tem. Let F, represent another initial relation, given by the 
following linear equations: 

CjkO 
RjQO 

Let x represent the stable disturbance forces in this sys- 
tem. During the reduction of a network, several merge and 
compound actions are performed, each adding new con- 
straints to the initial system of equations. In the case of a 
merge action involving F, and I’$, the following six con- 
straints are introduced: 

2=X +fi 
jj represents stable disturbance forces in the merged re- 
lation. It can bc seen that merging is the Minkowski sum 
of the two relations. In the case of a compound action, 
the following six constraints are introduced: 

“s=fi 
3 represents stable disturbance forces in the compounded 
relation. It can be seen that compounding is the inter- 
section of the two relations. This is a simplified version, 
without disturbance forces acting on the part to be climi- 
nated. Disturbance forces can be added to the framework 
fairly easily. 

Previous constraints remain undisturbed during network 
reduction. When the reduction is complete, one set of six 
variables represents the net relation of the part relative to 
the table. The test for stability is accomplished by as- 
signing the disturbance force on the part in question to 
the final set of six variables, resulting in six additional 
equations. The complete system of equations is then 
passed to a Simplex program, which detcrmincs their fea- 
sibility. 

3.4 Computational Compl&ty 

This subsection gives the average running time of the 
stability algorithm. Our analysis assumes full supcrposi- 
tion, and dots not necessarily hold if bidirectional re- 
lations and loops exist in the subassembly. 
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Let m be the number of parts in the subassembly, and n 
the number of vertices. Then there are O(n) initial re- 
lations in the subassembly network. Since each merge and 
compound action eliminates one relation from the net- 
work, network reduction can be performed in O(n) steps. 
The output of network reduction is a system of O(n) 
equations in O(n) variables. These equations are passed 
to the Simplex program, which is known to run in time 
O(n3) on the average. Thus, it takes O(n3) steps on the 
average to determine the stability of a single part. Fur- 
thermore, it takes Q(mn3) steps on the average to deter- 
mine the stability of an entire subassembly at a given 
orientation. 

In extreme cases, it is possible for the Simplex algorithm 
to take exponential time. Polynomial worst-case time can 
be guaranteed by substituting Karmarkar’s algorithm 
(Karmarkar 1984). 

3.4 Guaranteed Stability 

Palmer (1987) proved that for subassemblies of polygons 
in the plane without friction, if no contact points have an 
interior angle of less than 7c on both sides of the contact, 
then the problem of guaranteed stability is in P, and can 
be solved by linear programming. We conjecture that this 
result extends to three dimensions by taking the minimum 
interior angle on both sides of each contact point. If so, 
then our algorithm computes guaranteed stability for a 
class of frictionless subassemblies, including all subas- 
semblies that consist of stacked rectangular parts. 

Another conjecture is that an algorithm based on limited 
superposition will compute guaranteed stability in the 
presence of friction. In many cases, limited superposition 
and full superposition yield the same result (the next sec- 
tion presents one such case). In these cases, we conjecture 
that our current algorithm computes guaranteed stability 
in the presence of friction. 

We are attempting to establish these conjectures. In addi- 
tion, we are investigating algorithms to: 

0 identify cases where limited and full superposition are 
equivalent. 

e compute guaranteed stability for cases where limited 
and full superposition arc not equivalent. 

Although the latter problem is in general NP-hard, we 
anticipate that many practical cases can be solved by effr- 
cient search procedures. 

4.0 Experiments 
The described algorithm has been implemented in 
AML/X, linked to a Fortran Simplex routine. It has been 
tested on a number of geometric models. Figure 7 sum- 
marizes one of our tests. In this test, p was equal to 0.1. 

Figure 7. The right hand cases are unstable. 

5.0 Conclusions 
An algorithm to determine the static stability of a subas- 
sembly on a table has been developed. It converts a ge- 
ometric model into a network of parts, and represents the 
relations between the parts as linear equations. A 
linearized model of friction in six dimensions is used to 
represent the contact situations in the subassembly. After 
reducing the network to a net relation between a part and 
the table, linear programming is used to determine the 
stability. 

In general, the algorithm computes potential stability. 
We conjecture that it computes guaranteed stability in the 
absence of friction when no contact points exist which 
have minimum interior angles of less than z on both sides 
of the contact. We also conjecture that the algorithm 
computes guaranteed stability for cases where limited and 
full superposition are equivalent. We are investigating 
algorithms to recognize these cases, and to compute 
guaranteed stability for cases where limited and full 
superposition are not equivalent. 

Our method is similar to that of Blum, Griffith, and 
Neumann (BGN), in the sense that we too USC linear 
progra mming. However, we have gone beyond the BGN 
results in the following ways: 

1. When a subassembly is unstable, the BGN algorithm 
does not indicate which parts arc unstable. Since this 
information is useful to an assembly planner, we 
compute the stability of each part individually. 

2. We address the issue of external insertion forces, 
while BGN limits its scope to gravitational forces. 
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Our method for linearizing friction is based on 
Erdmann’s equations, rather than the BGN method. 
Erdmann’s equations allow an arbitrary number of 
faces in a linear&cd friction cone, while the BGN 
method appears to be limited to four faces. 
The BGN paper implicitly assumes full superposi- 
tion. We have identified the alternative concept of 
limited superposition, and we are investigating an ef- 
ficient algorithm which uses it to compute guaranteed 
stability. 
We are investigating an algorithm to compute the 
robustucss of a stable insertion force; that is, the 
“closeness” of a stable insertion force to an unstable 
force. 

We would like to acknowledge contributions from the 
following people: Bela Musits, for valuable comments 
on the work; John Forrest, for advice on the Simplex 
program; Mike Erdmann, for advice on friction; Wally 
Dietrich and Lee Nackman, for advice on AML/X; V.T. 
Rajan, for advice on friction and linear progamming; and 
Bob Wittrock, for advice on linear programming. 
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