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A central problem inherent to autonomous systems 
is the absence of an external reference frame in which 
sensory inputs can be interpreted. It is hypothesized 
that, in natural systems, sensory information is 
transformed into a consistent internal representation 
that serves as an internal invariant reference frame. 
This paper presents a hierarchical connectionist 
network for learning coordinated motion in an 
autonomous robot. The robot model used in the 
adaptation studies consists of three subsystems: an 
eye-like visual receptor, a head, and an arm. The 
network contains a hierarchy of adaptive subnetworks 
for processing sensory information. 

The performance of the hierarchical system was 
observed to improve towards an asymptotic value. 
The performance was found to be one order of 
magnitude better than that of non-hierarchical 
systems. This suggests that the intermediate layers 
may be serving as an internal invariant reference 
frame for the robot. 

I. Introduction 

Autonomous systems is a research area of large practical 
importance. Autonomous robots have the potential to 
play an important role in factory automation as well as in 
unmanned missions for space and undersea exploration. 
Autonomous systems also provide a vehicle for the study 
of natural, i.e. human, systems. Such research has two 
potential benefits: increased insight into perception and 
control strategies used by humans, and the identification 
of subsets of those strategies that can be efficiently 
implemented in autonomous robots. 

A central problem inherent to autonomous systems is 
the absence of an external reference frame in which 
sensory inputs, such as positions, can be interpreted. In 
particular, an autonomous system must be able to 
interpret sensory information in a way which takes into 
account the relative positioning of sensory and motor 
components with respect to the system’s external 
environment. Sensory information must be transformed 
into a consistent internal representation that serves as an 
internal invariant reference frame. Furthermore, it is 
desirable that the system learn this representation in order 

to compensate for unforeseen changes in the environment 
or in the system itself following growth or damage. 

This paper reports on a hierarchical system of parallel 
distributed processing elements for producing coordinated 
motion in an autonomous robot. We consider it very 
important for an autonomous system to be able to “close 
the motor coordination loop” adaptively. Closing the 
loop involves two processes: Learning to form an internal 
reference frame on which sensory input can be 
consistently interpreted, and learning to use that internal 
interpretation to generate voluntary movement. 
Simulation studies demonstrate that the system learns an 
internal invariant reference frame and uses that internal 
reference frame to produce coordinated motion 

2. 

Most of the research work in adaptive control techniques 
for robotic applications (Koivo and Guo, 1983; 
Leininger, 1984; Dubowsky and Kornbluh, 1985; 
Atkeson and McIntyre, 1986; Slotine and Li, 1987) is 
based on the use of some external reference frame to 
measure performance errors of the system and therefore 
not directly applicable to the study here. 

Networks of parallel distributed processing elements, 
i.e. “neural networks”, possess a number of useful 
computational properties (Grossberg, 1988; Hopfield, 
1982; Kohonen, 1984; Rumelhart, 1986). Several 
preliminary studies have partially shown that these 
networks have the potential to accomplish adaptation in 
autonomous systems (Barto, 1984; Bullock, 1988; 
Grossberg and Kuperstein, 1986; Kawato, 1987; 
Kuperstein, 1987; Pabon and Gossard, 1987b; Psaltis, 
1987). 

Kuperstein (1987) presented a connectionist model that 
adaptively controls a visually guided robot arm to reach 
target spots in three dimensions. The visual input in his 
model, however, was produced by two cameras 
preprogrammed to point at the target. This, in essence, 
provided an external reference frame for the system. The 
camera orientations were subsequently encoded into the 
activation of two two-dimensional arrays of units. These 
activation maps were then used as the input to the 
adaptive network that sent signals to the arm actuators to 
move the arm endpoint to the desired position. 
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Kuperstein makes reference to his previous work 
(Grossberg and Kuperstein, 1986) on adaptive control of 
saccadic eye movements as a possible mechanism to close 
the loop, -but no model of the complete process was 
presented. In addition, no mathematical support for 
convergence of the adaptation method was presented. 

the 

3. Neural Networks: A Short Review 
Connectionist networks are arrays of simple, neuron-like, 
highly interconnected computing elements. One of the 
basic network architectures is the two-layer feed-forward 
network. Figure 1 shows the topology of this network. 
The network consists of a set of input units, x , 
connected to a set of output units, y , through a set of 
weights, w. The activation of the output units in the 
network is given by 

yi = f& Wij Xj) 
j=l 

where xi is the activation of unit j connected to unit yi, 
wii is the strength (weight) of the connection from unit 
xj io yip and f is an output activation function. 

Adaptation in these networks is achieved by regulating 
the strength of the connections (weights) among the 
network units. One well-known adaptation method is that 
of backpropagation (Rumelhart, 1986). During the 
learning process, the weights wij, are modified so as to 
minimize the difference between the output activation yi, 
and a reference output ri. This is achieved by using the 
expression: 

6Wij = a xj(ri-yi) (f ‘) 

where 6wij is the change in the wei ght wij, CY+ is the 
learning rate parameter, and (f) is the derivative of the 
output-activation function. This adaptation law is 
frequently referred to as the delta rule. The learning 
parameter, a, determines the rate and performance of the 
adaptation process. It should be emphasized that this 
network is- just one building block in the control 
structure, and that the reference signal, ri, although 
external to the network, is produced by components 
internal to the autonomous system that form part of the 
same structure. 

Two-layer feed-forward networks are useful as building 
blocks in applications involving adaptive mappings. The 
application in question question here is that of Learning 
Motion Control. In this application, the input units 
encode commands and sensory signals; the output units 
produce motor signals that are fed to plant actuators to 
generate motion; and the reference signals represent 
desired plant responses. 

4. Model and Control 
Figure 2 presents the robot model used for our 

adaptation studies. It consists of three hierarchical 
subsystems: an eye-like visual receptor, a head, and an 

arm. Each subsystem has two degrees of freedom: the eye 
subsystem can rotate in two directions, the head 
subsystem can translate in two directions, and the (planar) 
arm has two links with rotational joints. 

In each degree of freedom, the position is controlled by 
an antagonist pair of muscle-like actuators, i.e. opposing 
springs whose stiffness is regulated by control 
(activation) signals. In the eye, for example, changing the 
activation signals to a pair of actuators causes a rotation 
of the eye to a new position where the spring forces are in 
equilibrium. See Figure 3. 

The eye contains a population of light receptor units 
arranged in a two-dimensional array, called here the retina. 
The level of activation of each receptor is determined by 
the amount of light incident upon it. Thus a target light 
spot impinging upon the retina generates a distribution of 
activations across the units in which the most active 
units will be those closest to the point where the light 
strikes the receptor array. This distribution of activation 
is called the retinal map. In this study a decaying 
exponential (gaussian) distribution was assumed and is 
described in the Appendix. An on-center off-surround 
receptive field similar to those in human retinal receptors 
could also be used and would produce similar results. 

The set of activation signals sent to the eye and head 
actuators were similarly encoded into 2D arrays of units. 
Thes,e arrays are called the eye position map and the head 
position map respectively. 

The protocol for the learning experiments was the 
following. During the learning phase, the current 
endpoint of the arm is used as the target. A random signal 
generator is used to supply activation signals to the arm 
actuators so as to span the complete arm workspace. The 
system’s goal is to use the sensory information (retinal 
map, eye position map, and head position map) to 
generate command signals to the arm actuators which 
match those produced by the random generator, so as to 
keep its endpoint in the original position. The distance 
between desired and actual arm endpoint positions is taken 
as the error, a measure of the system performance. 
Learning is assumed to be complete when the average 
error over the arm’s workspace is sufficiently small (e.g., 
less than 5% of the characteristic length of the 
workspace). After this, a testing phase can be carried out 
with visual targets presented to the system in the form of 
light spots on the viewing plane. 

The adaptive control scheme used is presented in 
Figure 4. The thick lines denote that the given signal is 
encoded onto a population of units (a 2D array). 

Given current eye and head positions (centered at the 
beginning of the learning process), the target generates a 
retinal map on the visual receptor array. The retinal map 
and the current eye position map are input to a first 
adaptive network (number 1 in Figure 4). The output of 
this first network evolves, during learning, into a 
representation of the target that is invariant with respect 
to eye orientation, i.e. given a fixed target and head 
position, this signal remains constant independent of 
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changes in orientation of the eye. This signal is called 
TPME (for Target Position Map invariant with respect to 
Eye orientation). The TPME is then input to a second 
adaptive network (number 2 in Figure 4) which generates 
the motor commands to the eye actuators. 

After the eye reaches its new orientation, an error 
signal is generated by the retinal unbalance decoder, which 
weighs the eccentricity of the retinal map. The error 
signal is used to modify the connectivity matrix of 
network 2 using the delta rule. Backpropagation is then 
used to modify the connections in network 1. A simple 
network architecture to measure the eccentricity of an 
activation map is described in (Pabon, 1987a). 

The TPME and the head position map, are used as 
input to a third network (number 3 in Figure 4). The 
output of this network evolves, during learning, into a 
representation of the target that is invariant with respect 
to head position, i.e. given a constant target, this signal 
remains constant independent of changes in orientation of 
the eye or position of the head). This signal is called 
TPMH (Target cosition Map invariant with respect to 
Head position). The TPMH is then input to a fourth 
adaptive network (number 4 in Figure 4) which generates 
the motor commands to the head actuators. After the head 
reaches its new position, an error signal, obtained by 
weighing the eccentricity of the eye position, is used to 
modify the connectivity matrix of network 4 according to 
the delta rule. Backpropagation is again used to modify 
the connections in network 3. 

The TPMH is also used as input to a fifth network 
(number 5 in Figure 4). The outputs from network 5 are 
the command signals to the arm actuators. The arm will 
then move, attempting to reach the target. During 
learning, the output from network 5 is compared to the 
random signal that originated the arm movement. The 
difference is then used to modify the connectivity matrix 
of network 5. 

5. Results 
A number of simulation studies was conducted to 
examine the qualitative and quantitative behavior of the 
model and its control. In the first study the eye 
subsystem alone was examined. The objective was to 
select appropriate values for the model parameters. The 
results from this study were presented in (Pabon and 
Gossard, 1987b), where it was found that the values of 
the learning rate parameter, a, proposed by the authors 
were always in reasonable agreement with the best values 
derived from the simulations. 

5.1 Entire System with Internal Layers 

The results from the eye simulations were used in a 
second study, where the eye, head and arm subsystems 
were examined working together as proposed in Figure 4. 
The parameter values used in the simulations of the entire 
system were the following (length values are normalized 
and therefore nondimensional: eye radius, 0.25; distance 
from eye center of rotation to the viewing plane, 3.0; 

head workspace, square of dimension 4*4 centered about 
the base joint of the arm; arm links length, 1.0; arm 
workspace, defined by the joint limiting angles (O’, 135”); 
retina composed of a square array of 5*5 receptor units; 
eye position encoded into a square array of 5*5 units; head 
position encoded into a square array of 5*5 units; 
encoding parameter, 30 for all maps; output activation 
function, (1-e-“)/(l+e-“); 

The error of the arm (i.e. the global error) is defined as 
the distance between the target point and the actual arm 
endpoint position, expressed as a percentage of the arm 
link length. The time history of the error of the arm 
position is shown in Figure 6(a)-(b). It can be seen that 
the performance of the system approaches an asymptotic 
value. The steady state error, defined as the average error 
over the last 10% of a run of lo4 iterations, was 8.4% of 
the arm link length 

5.2 Process Without Internal Layers 

Simulations were also carried out of an alternative 
adaptive controller with no internal layers, i.e. all the 
sensory information was fed directly into a two-layer 
network which generated the motor commands to the arm. 
This controller is shown in Figure 5. Using the same 
number of units per map and a similar number of 
iterations, the steady state error of the arm (global error) 
in the model without internal layers was on the order of 
50%. This is about one order of magnitude larger than 
the error observed in the model with internal layers. 

6. Conclusions 
The steady state error of the arm decreases asymptotically 
towards a small value (-8% of the arm’s length). The 
asymptotic value to which the system’s error tends is 
sensitive to several parameters: the number of units used 
in the encoding maps, n , the encoding parameter, s, and 
the learning rate parameter, a. 

The number and structure of internal layers play an 
important role in the efficiency of the adaptation process. 
Specifically, the fact that the performance of the system 
with internal layers is so much superior to the 
performance of the system without internal layers 
suggests that the system is using networks 1 and 3 as 
what amount to an internal invariant representation of its 
environment. 

The TPM-E described here (i.e. the output of adaptive 
network 1 in Figure 4) was inspired by experimental 
evidence that activation levels of certain cells in the 
posterior parietal cortex (of the monkey brain) are a 
function of both retinal maps and current eye position. 
The control system presented here is an extrapolation of 
this basic idea to handle additional degrees of freedom. 
The successful performance of the system studied here 
suggests that it is possible that a set of cells exists whose 
activity further correlates the activity of those cells in the 
posterior parietal cortex with current head position, 
corresponding to the TPM-H of the system here. 
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Parallel distributed controls for artificial systems 
would be very robust. The weights in the control system 
studied here were initialized to random values. Through 
learning, they eventually “encoded” the kinematics of the 
particular robot geometry. The same control system 
could, without modification, learn other robot geometries. 
Such systems could thus compensate for unforeseen 
changes in the environment or in the robot itself 
following growth or damage. The performance of these 
systems would also degrade gracefully with the loss of 
individual units. 

Appendix A. Encoding of Continuous 
Variables on a Population of Units 
A pair of continuous variables (0,~) in the ranges 
((J max’ omin) and (ymax,ymin) respectively can be 
encoded as the activation of a two-dimensional set of 
units Ixij } , i,j=l ,n, using the encoding function: 

X ij = exp(-s [ (z)2+(z)2] > 

where s is the encoding parameter; 80 = cmax - Omin; 
% = Ymax - Ymi* ; (oi ,Yj) are the characteristic values 
of unit ij (value of the pair (0,~) that produces a 
maximum activation of the unit). 

The encoding parameter, s, determines the degree to 
which the activation is distributed across the units. 
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Figure 1. A two-layer feed-forward network. 

794 Robotics 



retinal 
map 

eye 
position 

head 
position 

to arm 
actuators 

Figure 2. The Autonomous Robot. 
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Figure 3. The eye subsystem 

Figure 5. Adaptive Process without Internal Layers 
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Figure 6. Time evolution of the arm position error 

Figure 4. The adaptive control loop. 
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