
Automatic Construction of User-Interface 
Displays* 

Uigal Arens Lawrence Miller Stuart C. Shapiro Norman K. Sondheimer 
USC/Information Sciences Institute 

4676 Admiralty Way 
Marina Del Rey, CA 90292 

(213) 822-1511 

Abstract 

Construction of user interfaces for most computer 
applications remains time consuming and diffi- 
cult. This is particularly true when the user inter- 
face system must dynamically create displays in- 
tegrating the use of several interface modes. This 
paper shows how Artificial Intelligence knowledge 
base and rule technology can be used to address 
this problem. 
NIKL is used to model the entities of the appli- 
cation domain and the facilities of the user inter- 
face. Rules are written connecting the two mod- 
els. These rules range from application specific 
to general rules of presentation. The situation to 
be displayed is asserted into a PENN1 database. 
A Presentation Designer interprets this data 
using the domain model, chooses the appropriate 
rules to use in creating the display, and creates a 
description of the desired display in terms of the 
interface model. 
A system, Integrated Interfaces, using this de- 
sign for an integrated multi-modal map graphics, 
natural language, menu, and form interface has 
been created and applied to a database reporting 
application. 

1 Introduction 
In spite of the development of user interface tool kits, con- 
struction and enhancement of user interfaces for most com- 
puter applications remains time consuming and difficult. 
Estimates of user interface code as a percentage of appli- 
cation code run as high as 60%. Among the most difficult 
interfaces to build are those that dynamically create dis- 
plays. Such systems must automatically choose between 
multiple media (hardware), multiple modes (software sys- 
tems), and multiple methods (choices with software sys- 
tems). 

Simply having several modes available is not enough - 
their use must be integrated. By this we mean that differ- 
ent items of information must be distributed to appropri- 
ate modes, the amount of redundancy should be limited to 
the amount needed to establish co-reference, and the dif- 
ferent presentation modes must all work from a common 

*This research is supported by the Defense Advanced Re- 
search Projects Agency under Contract No. N0014-87-K-0130. 
Views and conclusions contained in this report are the authors’ 
and should not be interpreted as representing the official opin- 
ion or policy of DARPA, the U.S. Government, or any person 
or agency connected with them. 

meaning representation to assure accurate presentation. 
Further, the interface system integrating a set of modes 
must be capable of dynamically producing displays. Fixed 
multi-modal displays are not sufficient for rapidly chang- 
ing environments. Finally, the techniques employed must 
support generalization and enhancement since the initial 
interface is certain to require enhancement over time. Ex- 
isting systems do not and cannot achieve these objectives. 

Artificial intelligence knowledge base and rule technol- 
ogy can be used as a basis for automatic display con- 
struction. Information to be displayed can be recognized 
and classified, and display creation can then be performed 
based on the categories to which information to be pre- 
sented belongs. Decisions can be made based on given 
rules. This approach to developing and operating a user 
interface allows the interfaces to be more quickly created 
and more easily modified. We call such a system a model- 
driven presentation design system. 

In the Integrated Interfaces project at IS1 we have be- 
gun to address the problem of constructing integrated user- 
interface displays. We have produced a design that sup- 
ports integration of display modes, dynamically produces 
multi-modal displays, and supports generalization and en- 
hancement. It does all this through a system of models and 
rules. The interface model brings together the different 
modes in a single uniform way. Another model describes 
the application, providing a uniform meaning representa- 
tion. The rules explicitly state how information described 
in application terms relates to presentation modes. These 
rules take advantage of the model of interface capabilities 
to integrate the modes. Given information to display, a 
Presentation Designer applies these rules to dynami- 
cally produce display descriptions. Device drivers interpet 
such descriptions to create the actual displays. 

Employing this design, our Integrated Interfaces system 
is able to present retrieved information using a combina- 
tion of output modes - natural language text, maps, ta- 
bles, menus, and forms. It can also handle input through 
several modes - menus, forms, and pointing. As a demon- 
stration, we have implemented an interface to an existing 
Naval database reporting application. Our presentation 
designer creates displays similar to those being prepared 
manually for the Navy on a daily basis. 

Section 2 of this paper discusses knowledge bases and 
rules in more detail. Section 3 describes the knowledge 
representation systems we are depending on. Section 4 
gives examples. Section 5 compares Integrated Interfaces 
to the two systems most like ours. Section 6 summarizes 
our conclusions, and Section 7 discusses some of our plans 
for the future. The paper concludes with a description of 
our current status. 

808 User Interfaces 

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved. 



Figure 1: Fragment of Application Model 

2 

Presentation design is achieved in our system by the ap- 
plication of a system of antecedent-consequent rules. The 
rules classify the information that needs to be presented 
and map types of information to appropriate types of pre- 
sentations. 

2.1 Models 
Our models characterize or define the categories of entities 
our user interface can deal with. 

The application model identifies the categories of ob- 
jects and actions in the application’s view of the world. 
We indicate subclass relations present among categories, 
as welI as relationships between objects and actions. For 
the Naval database application, for example, we have a 
class of ships, which has subclasses categorized by opera- 
tional status. (See Figure 1 for a small fragment of this 
model.) 

The interface model describes the categories of objects 
and actions of the interface world. The objects here include 
windows, tables, maps, text strings, and icons. The actions 
include creation, deletion, movement, and structuring of 
displays. Describing all interface modes together in a single 
model is a necessary basis of integration. (See Figure 2 for 
a small fragment of this model.) 

Only the application model needs to be created for each 
new application interface. 

2.2 Rules 
The presentation rules are simple in essence: they map 
objects from the application model into objects in the in- 
terface model. For example, a daily status report may be 
mapped into a map. A position report may be mapped 
onto a point on the map. A ship’s planned future activi- 
ties may be mapped onto a text string. The following is a 
paraphrase of part of a rule for the naval briefing applica- 
tion: “To display a Ship whose Mission is Mobile, use an 

Figure 2: Fragment of Interface Model 

Arrow, with its Course establishing the arrow’s Qrienta- 
tion, and Text as a Tag presenting its Schedule.n As can 
be seen, this rule takes its condition from the application 
model and the rest of its vocabulary from the application 
and interface models. 

It is the rules in conjunction with the interface model, 
that allow integration. They can be used to distribute in- 
formation among modes, minimize redundancy, and coor- 
dinate presentations. For example, the above rule creates 
an mixed graphic and natural language text display. 

These rules are arranged according to the class subsump- 
tion hierarchy of the models. For example, the rules appli- 
cable to all ships are further up the hierarchy than those 
applying only to ships on exercises. 

We allow both ‘low-level,” application-specific rules, 
and “high-level,” application-independent rules. The 
above rule is an example of the first type. The follow- 
ing is an example of the second: “To request a Choice 
Among Alternatives when the Cardinality is Large, use a 
Fill-in-the-Blank From; otherwise use a Menu.” 

2.3 ule Application 

Presentation design can now be described as the task of 
realizing the application domain categories within which 
a request for information presentation falls, selecting the 
appropriate rules that apply to those categories, and re- 
describing the application terms in the request into appro- 
priate presentation terms. 

Realization relates the facts about instances to the ab- 
stract categories of the model. For example, the concrete 
facts about Sprite, a ship with a malfunctioning radar, 
must lead to the realization that it is a Disabled Ship. 
Selection works by allowing for the appropriate mapping 
rules to be chosen, allowing for additivity. Selection also 
assures that all aspects of the demand for presentation are 
met by some rule. Redescription applies the rules, map- 
ping each aspect of a common-sense view of a presentation 
into an equivalent presentation form. 

The forms produced by rule application are not actually 
the commands to the output subsystems (i.e., the map 
graphics system, text generator, and the forms system). 
Instead, they are interpretable by device drivers that con- 
trol these systems. 

Arens, Miller, Shapiro and Sondheimer 809 



3 Knowledge epresentation 

TQOlS 

Our implementation of presentation design depends on two 
knowledge representation systems: NIKL and KL-TWO. 
NIKL holds our models. KL-TWO automatically carries 
out realization. KL-TWO also holds the demands for pre- 
sentation and receives the forms read by the device drivers. 
This section provides a brief introduction to these tools. 

NIKL [Kaczmarek et al., 19861 is a network knowledge- 
base system descended from KL-ONE [Brachman and 
Schmolze, 19851. This type of system supports descrip- 
tion of the categories of entities that make up a domain. 
The central components of the notation are sets of concepts 
and roles, organized in IS-A hierarchies. These hierarchies 
identify when membership in one category entails mem- 
bership in another. The roles are associated with concepts 
(as role restrictions), and identify the relationships that 
can hold between individuals that belong to the categories. 
The role restrictions can also hold number restrictions on 
the number of entities that can fill these roles. 

We have been experimenting with a naval assets domain 
model for the naval database reporting application men- 
tioned above. It has a concept Disabled-Ship that is meant 
to identify the ships that are unable to carry out their mis- 
sions. Disabled-Ship IS-A type of Ship distinguished from 
Ship by having a role restriction Readiness that relates 
Disabled-Ship to NonOperational-Status, i.e., all ships with 
nonoperational status are disabled. All Ships can have ex- 
actly one filler of the Readiness role restriction. The con- 
cept of NonOperationaLStatus is partly defined through 
the IS-A relation to a concept Readiness-Status. This sit- 
uation is shown graphically in Figure 1 in the typical net- 
work notation used for KL-ONE knowledge bases. 

KL-TWO is a hybrid knowledge representation system 
that takes advantage of NIKL’s formal semantics [Vilain, 
1985). KL-TWO links another reasoner, PENNI, to NIKL. 
For our purposes, PENN1 can be viewed as managing a 
data base of propositions of the form (P a) and (Q a b) 
where the forms are variable free. The first item in each 
ordered pair is the name of a concept in an associated 
NIKL network and the first item in each ordered triple is 
the name of a role in that network. So the assertion of any 
form (P a) states that the individual a is a kind of thing 
described by the concept P. The assertion (Q a b) states 
that the individuals a and b are related by the abstract 
relation described by Q. 

NIKL adds to PENN1 the ability to do taxonomic rea- 
soning. Assume the NIKL database contains the concepts 
just described in discussing NIKL. Assume that we as- 
sert just the following three facts: (Ship Sprite), (Readi- 
ness Sprite C4) and (NonOperationaLStatus C4); C4 is 
a U.S. Navy readiness code. using the knowledge base, 
PENNI is able to deduce that (Disabled-Ship Sprite) is 
true. 

PENN1 also provides a truth maintenance system that 
keeps track of the facts used to deduce others. When 
our rules are used to determine aspects of a presentation 
from facts about the world, the truth maintenance sys- 
tem records the dependencies between the application do- 
main and the presentation. For example, (Readiness Sprite 
C4) triggers a rule which asserts (Disabled-Ship Sprite). If 

810 User Interfaces 

(Readiness Sprite C4) is retracted, PENNI’s truth mainte- 
nance system will automatically retract the assertion that 
Sprite is disabled. 

4 Examples 

The power of a model-driven presentation design is in its 
flexibility. The designer of a system does not specify rigidly 
in advance in what form information will be requested from 
the user, and how data and results will be displayed. In- 
stead, our models contain descriptions of the types of in- 
formation the application programs deal with, and of the 
types of graphical tools and instruments available. The 
rules for presentation enable the system to generate on- 
demand displays appropriate for given needs. Here are 
some concrete examples. 

4.1 Construction of a Visual 
Representation of an Object 

Consider the knowledge about ships and about graphical 
instruments encoded in the NIKL models in Figure 1 and 
Figure 2. Let us assume that the user wishes to show ships 
engaged in a Mobile mission with a special Icon, and that 
the icon should be oriented in a direction identical to the 
ship’s course. In addition, assume that Disabled-Ships are 
to be shown with Red icons and that the Schedule of a ship 
is to be shown in the natural language Tug of the Icon 
representing it. A version of the rules that we would use 
to achieve this is shown in Figure 3. The antecedent con- 
siders the categories of one or more individuals and their 
relationships, all in NIKL terms. The consequents provide 
assertions about the graphic representation of objects for 
the PENN1 database. These rules are asserted into PENN1 
so that the truth maintenance system may keep track of 
the dependencies between antecedent facts and their resul- 
tant consequents, as explained in the previous section. 

The functions Image and Textual-Description map the 
constants of the common sense world into constants of the 
visual and textual world, respectively. For example, Rule 
5 states that if some individual, x, is a Ship and another 
individual, y, is its Schedule, then the Tug of the image of 
x is the textual-description of y. The textual-description of 
y will be created by the invocation of our text generator. 

1. IF (Operational-Ship x) or (NonDeployed-Ship x) 
THEN (Coloration Image(x) Green) 

2. IF (Disabled-Ship x) 
THEN (Coloration Image(x) Red) 

3. IF (Ship x) and (Course x y) 
THEN (Orientation Image(x) y) 

4. IF (Ship x) and (Mission x y) and (Mobile y) 
THEN (Icon-Type Image(x) Arrow) 

5. IF (Ship x) and (Schedule x y) 
THEN (Tag Image(x) Textual-Description(y)) 

Figure 3. Sample Presentation Rules. 

To complete the example, suppose that the follow- 
ing set of facts was asserted into the PENN1 database: 
(Ship Sprite), (R ea iness Sprite C4), (NonOperational- d 
Status C4), (M is&on Sprite X87), (Patrol X37), (Sched- 
uZe Sprite U46), (Course X.??7 2,!?0), and (Employment- 



Figure 4: Model Fragment 

Schedule U46). Suppose further that the NIKL model 
defined Patrol to be a subclass of Mobile missions. Re- 
alization would recognize the ‘Sprite’ as a Disabled Ship 
and one engaged in a Mobile mission on a course of 220 
degrees. Selection would identify that Rules 2, 3, 4 and 5 
apply. Redescription would result in the addition to the 
PENN1 database of the description of the image of the 
‘Sprite’ as a red arrow with an orientation of 220, and 
with a textual representation of its schedule as its label. 

Due to the use of KL-TWO’s truth maintenance system, 
if any of the facts pertaining to Sprite is retracted, an 
automatic change in the description of its graphic image 
will occur. 

4.2 Classifying Collections of 
For many requests for information encountered in our 
application domain the design of a presentation requires 
global considerations that rules of the kind listed above 
cannot provide for. It would therefore be hopeless, at this 
point, to try to write rules that would attempt to derive an 
elaborate presentation entirely from low-level information 
about the objects to be described. Our approach provides 
us with a partial solution to this problem. 

The availability of models of the application and of dis- 
plays to our Presentation Designer gives it the advantage 
of being able to recognize collections of data as represent- 
ing information of a certain known type. The Presentation 
Designer can then make use of presentation techniques spe- 
cialized for this type of data to provide the user with more 
appropriate displays. 

For example, Figure 4 provides portions of our model 
that include the class Pacific Situation, a collection of data 
about ships and ports in the Pacific Region, which includes 
certain specific information from the ships’ employment 
schedules. 

When provided with data about ships in the Pacific re- 
gion and their employments, the Presentation Designer 
would classify the data in its model of the application, rec- 
ognizing that it has received a collection of data belonging 
to the class Pacific Situation. Then the Presentation De- 
signer can use specific presentation rules appropriate for 
displaying the information. In the application domain we 

have considered there is a preferred way for presenting this 
information, to which we try to conform. This preferred 
presentation has developed in the Navy in the course of 
years of handcrafted situation briefing presentations. 

The specific presentation rules appropriate only for Dis- 
play Pacific Situation will combine the entities created by 
more general rules, of the kind described in the previous 
section, to produce the final presentation. 

4.3 Generation of an isphy 
A presentation design system must also deal with the 
preparation of displays for the purpose of soliciting nec- 
essary information from the user. Here, again, the models 
of all aspects of the task and the application are valuable. 

At some point the user may indicate a desire to view data 
concerning one or more ships in some region. In terms of 
our model (see Figure 4), that would mean indicating a 
preference for Display a Situation. As it turns out, the 
Presentation Designer does not have any rules that can be 
used to redescribe this general request into a presentation, 
but there exist ways of satisfying more specific requests. 
For example, there exist ways to satisfy a request for dis- 
playing a single ship’s situation or the situation of all ships 
in a region. 

In this case, the system collects all options the user can 
choose among to construct an executable request. A rule 
of the Presentation Designer is used to compose a display 
form that will present these options to the user. The re- 
sult of this design is a set of assertions in PENNI that 
the device driver for a separate form management pack- 
age (QFORMS) [K aczmarek, 19841 will use to prepare the 
input form. 

The form below, presented to the user, 
to make one of several specific choices: 

allows the user 

Pacific JXegions: 
Western Pacific cl 
South China Sea 
Indian Ocean is 
Eastern Pacific cl 
Pacific Command Region cl 

Ship: 
It is instructive to examine precisely how this form is cre- 

ated. The concept Display a Situation has two subclasses 
of actions, namely Display Ship Situation and Display Pa- 
cific Situation. Our system considers the possibility of 
generating an intermediate two item submenu, something 
like: 

Situation in Pacific Region 
Situation of Ship 

Such a small menu is unsatisfactory from a human fac- 
tors standpoint. We therefore formulated a general condi- 
tion stated in the rule used here, saying that -if the number 
of choices is less than N, and if the choices can be fur- 
ther subdivided, then the proposed menu should not be 
displayed. Instead, a more detailed form should be gener- 
ated, one based on the subchoices. Our prototype uses the 
value 3 for N, so in this case the rule causes the Presen- 
tation Designer to immediately generate the more specific 
form. A user is free to change the value of N, thus modify- 
ing the design of forms the system generates in situations 
like the one above. 

Arens, Miller, Shapiro and Sondheimer 811 



Note that the geographic regions available were specified 
by name in the form created, while ships were not. Rather, 
the user is allowed to specify the desired ship by typing 
it on the form’. This distinction is a result of informa- 
tion concerning the cardinality of the relevant collections 
of objects - information encoded in our models. Since 
the number of possible choices for region is small, they are 
enumerated. However, the number of ships is larger, so the 
user is provided with a way to specify a choice explicitly 
instead. 

Finally, the result of an end user completing this form 
is also controlled by the model. QForms allows actions to 
be associated with menu choices and form fillings. In cre- 
ating a menu, the Presentation Designer adds an action to 
each field conditioned on the field being selected with the 
mouse. This action will result in an assertion in PENNI, 
indicating that the user is requesting the action described 
by the model category from which the menu choice origi- 
nated. Fill-in-the-blank forms work similarly. 

5 elated Work 
Perhaps the best known previous work dealing with the is- 
sue of Presentation Designer is that of Mackinlay [Mackin- 
lay, 19861. 

Much like part of our system, Mackinlay’s APT uses in- 
formation about characteristics of data provided to it, to 
produce a graphical representation of that data. The dif- 
ferences between the two systems become clear when we 
consider the variety of data each deals with and the vari- 
ety of presentations they produce. APT produces graphs 
of various kinds, and much of its effort goes into decid- 
ing which axes to choose, and how to indicate the values 
along each axis. Data dealt with is limited to what can be 
presented using such graphs. Consequently, Mackinlay has 
succeeded in producing a system which can generate graph- 
ical presentations automatically using only “low-level’ in- 
formation about the objects and their attributes. 

Our system is expected to generate a much wider variety 
of displays. Certain display layouts are often chosen simply 
to conform to pre-existing preferences of Navy personnel. 
Consequently, unlike Mackinlay, we must provide for the 
possibility of following pre-set sterectypical instructions in 
certain cases. We thus must devote considerable effort to 
recognizing which cases require these special displays. 

A further significant difference between the systems is 
the complexity of the data we are required to present. We 
needed a sophisticated knowledge representation language, 
NIKL - a facility which Mackinlay found unnecessary. 
Both systems make use of sophisticated reasoning facilities. 

The CUBRICON system [Neal and Shapiro, 19881 shares 
many of the same goals with our system, but differs in ini- 
tial focus. Like our system, CUBRICON uses a sophisti- 
cated knowledge representation/reasoning system to man- 
age an integrated, multi-modal interface, including maps, 
icons, tables, and natural language text. Whereas the 
CUBRICON project is trying to construct a unified com- 
municating agent, with multi-modal input/output melded 
within a natural language understanding/generation sys- 
tem, our system highlights the rules that map between the 

‘The actual form (Figure 5.) uses the title Report as opposed 
to Ship, since it allows other types of reports as well. 

application and interface models, and views natural lan- 
guage generator as a rather impermeable display agent. 
CUBRICON is more focused on producing the grammar 
and rules for a multi-modal language, we are more focused 
on producing an easily used, multi-modal user-interface 
management system. 

6 Conclusions 
We have realized the Integrated Interfaces design in a sys- 
tem that utilizes natural language, graphics, menus, and 
forms. Specifically, the Integrated Interfaces system can 
create maps containing icons with string tags and natu- 
ral language descriptions attached to them. It can further 
combine such maps with forms and tables presenting ad- 
ditional, related information. In addition, the system is 
capable of dynamically creating menus for choosing among 
alternative actions, and more complicated forms for spec- 
ifying desired information. 

We have constructed application models describing con- 
cepts in an important real-world domain - the naval situ- 
ation briefing. We have implemented rules that enable the 
creation of different types of integrated multi-modal out- 
put displays based on the Navy’s current manual practices. 
We have represented large enough portions of both the gen- 
eral and application specific domains to demonstrate that 
a model-driven presentation design approach is potentially 
useful in real-world situations. 

In achieving this result, we have done more than produce 
a system for constructing and controlling multi-modal ap- 
plication interfaces. We have shown that what would oth- 
erwise appear to be distinct communication mechanisms, 
viz., graphics, natural language, tables, etc., can be treated 
as part of an integrated whole, all relating to a common 
level of meaning representation. We have further shown 
that the decisions on the use of the appropriate mode can 
be represented straightforwardly by explicit rules relating 
information to be presented to the method of presentation. 
This work can serve as the basis of a comprehensive theory 
of multi-modal communication. 

7 ture ark 
Despite the successes illustrated in the previous examples 
outstanding problems remain. Our future plans include 
adding the following structures to our system. 

A User Model - A user model will enhance the Pre- 
sentation Designer by allowing it to tailor presenta- 
tions to individual user preferences. For example, it 
would enable the system to label only ports and re- 
gions unfamiliar to a user, thereby reducing screen 
clutter. 

A Dialogue Model - A dialogue model will allow the 
presentations to be more closely tailored to specific 
users’ requests. Currently, the Presentation Designer 
is simply provided with data to display. It is not aware 
of the purpose of the display. 
A Screen Model - A screen display is more than a 
bitmap; it is viewed by a user as containing icons 
and text which have real world denotations. The in- 
terface’s internal description of the display must be 

812 User Interfaces 



rich enough to allow a user to alternate between ref- 
erences to screen entities and their denotations. A 
screen model will make such relationships explicit. 

A demonstration version of the Integrated Interfaces sys- 
tem is now available at ISI. The current version models the 
domain of Navy ships in the Pacific Ocean. A user may 
use the system to access information about ships’ loca- 
tions, tasks, readiness status, and more. The resulting in- 
formation is displayed using combinations of maps, menus, 
tables, and natural language output (Figure 5). 

The system is written in Common Lisp and runs in the 
X windows environment under UNIX on HP 9000 Model 
350 workstations. Displays are presented on a Renaissance 
color graphics monitor. The map graphic modality is sup- 
ported by ISI’s Graphics Display Agent. Menus and forms 
are created using &FORMS [Kaczmarek, 19841. Natu- 
ral language output is produced by ISI’s Penman system 
[Sondheimer and Nebel, 19861. 

cknowledgements 
We wish to acknowledge the crucial help provided by others 
working on the Integrated Interface project. Paul Ravel- 
ing has developed the graphical interface and continues to 
maintain the GDA. Chin Chee has ported QFORMS and 
Penman to the HP workstation and is responsible for co- 
ordinating the various parts of the system. Jim Geller has 
contributed to the implementation of the spatial reasoner. 

[Brachman and Schmolze, 19851 Ronald J. Brachman and 
James 6. Schmolze. An Overview of the KL-ONE 
Knowledge Representation System. Cognitive Science 
9(2), 1985, pp. 171-216. 

[Kaczmarek, 19841 T om Kaczmarek. CUE Forms Descrip- 
tion. IS1 Internal Report. USC/ISI, Marina de1 Rey, CA, 
1984. 

[Kaczmarek et al., 19861 Tom Kaczmarek, Ray Bates, and 
Gabriel Robins. Recent Developments in NIKL. Proceed- 
ings, AAAI-86. Philadelphia, PA., August, 1986. 

[Mackinlay, 19861 Jock D. Mackinlay. Automatic Design of 
Graphical P resentations. Ph.D. Thesis, Department of 
Computer Science, Stanford University. Stanford, CA, 
December 1986. 

[McAllester, 19821 D. A. Mchllester. Reasoning Utility 
Package User’s Manual. Massachusetts Institute of Tech- 
nology, AI Memo 667. Cambridge, MA., April, 1982. 

[Neal and Shapiro, 19881 J. G. Neal and S. C. Shapiro. In- 
telligent Multi-Media Interface Technology. Proceedings, 
Architectures for Intelligent Interfaces: Elements and 
Prototypes, J. W. Sullivan & S. W. Tyler, Eds., Lock- 
heed AI Center, 1988, pp. 69-91. 

[Sondheimer and Nebel, 19861 Norman K. Sondheimer 
and Bernhard Nebel. A Logical-Form and Knowledge- 
Base Design For Natural Language Generation. Proceed- 
ings, AAAI-86, Philadelphia, PA., August, 1986, pp. 
612-618. 

[Vilain, 19851 Mark Vilain. The Restricted Language Ar- 
chitecture of a Hybrid Representation System. IJCAI- 
85: Proceedings of the Ninth International Joint Con- 
ference on Artificial Intelligence. Los Angeles, CA., Au- 
gust, 1985, pp. 547-551. 

Figure 5. 

Arens, Miller, Shapiro and Sondheimer 813 


