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We present a closed-form solution to the prob- 
lem extracting shape information from image shading, 
given standard assumptions and oblique illumination. 
Neither integration nor iterative propagation of infor- 
mation is required. An improved method for estimat- 
ing the illuminant direction is also presented.’ 

Introduction 

The extraction of shape from shading has a relatively 
long history within the field of computer vision. There 
have been two general classes of algorithm developed: 
Local algorithms, which attempt to estimate shape 
from local variations in image intensity, and informa- 
tion propagation algorithms, which attempt to propa- 
gate contour information across a shaded surface. 

Local algorithms, such as Pentland [I] or Ferric 
and Levine [2], use shading information within a small 
region to estimate surface orientation. Thus a subse- 
quent integration step is required to obtain surface 
shape. These local methods of estimating surface ori- 
entation have been shown [2,3] to produce accurate 
estimates whenever z(z, g), the imaged surface, has 
derivatives that obey: 

%; - %,” &u - &Jv ------= (1) 2, GJ GA, 

Examples of surfaces which satisfy this condition ev- 
erywhere are surfaces of revolution whose axis is par- 
allel to the z axis and cylinders whose axis lays in the 
image plane [4], however on more general surfaces this 
condition holds only at infrequent, isolated points 
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The global algorithms, principally developed by 
Horn and his students [5], makes use a smoothness as- 
sumption to relate adjoining points. This enables the 
strong information available at smooth occluding con- 
tours to be iteratively propagated across the surface. 
The assumption of smoothness is perhaps the primary 
limitation to the applicability of these algorithms; for 
instance, the smoothness constraint adopted in [5] im- 
plies that the algorithm will converge to the correct 
surface only when the condition in Eqn. (1) holds [6]. 
Integration is normally required to obtain the surface 
shape. 

In this paper we develop a novel formulation of 
the shape-from-shading problem, one that permits a 
direct, closed-form solution for the surface. Neither 
integration nor iterative propagation of information 
is required to solve for the height field, however low- 
frequency shape information cannot be recovered. This 
formulation also permits us to develop an improved es- 
timator of illuminant direction. 

maging of Surfaces 

Let z = ~(5, y) be a surface, and let us assume that: 
(I) the surface is Lambertian, 
(2) the surface is illuminated by (possibly several) 

distant point sources, 
(3) the surface is not self-shadowing. 
We will also take z < 0 within the region of inter- 

est, and assume orthographic projection onto the x, y 
plane. 

We will let k = (5~) ye , 2~) = (cos 7 sin 0, sin r sin 0, cos 0: 
be the unit vector in the mean illuminant direction, 
where r is the tilt of the illuminant (the angle the im- 
age plane component of the illuminant vector makes 
with the s-axis) and B is its slant (the angle the illu- 
minant vector makes with the z-axis). 
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Under these assumptions the normalized image in- 
tensity I(%, y) will be 

where m, (f, 8) is the magnitude at position (f, 0) on 
the Fourier plane, and qSlr is the phase. 

%, Y) = 
pcosrsina + qsinrsino + cost 

(p2 + q2 + 1p2 (2) 

where 

2.1 Linear Approximation 

If we then take the Taylor series expansion of I( x, y) 
about p, q = 0 up through the quadratic terms, we 
obtain 

1(x, y) m  cos a+p cos r sin a+q sin r sin 0- yqp2+q2) 

This expression gives an excellent approximation when 

IPI 9 lal < 1. 
Under the condition ]p] , IqI < 1 the linear terms 

of Eqn. (5) will dominate the power spectrum except 
when the average illuminant is within roughly f30” 
of the viewers’ position. When either p, q < 1 or the 
illumination direction is roughly perpendicular to the 
line of sight the quadratic terms will be negligible. 

ing 
We will assume that such is the case in the follow- 
analysis2. Thus we will approxi .mate the intensity 

function by: 

I(z,y) = cos0 +pcosrsina + qsinrsina 

Note that this is exactly the lunar reflectance function 

2.2 Spectral Properties 

We will let the complex Fourier spectrum F,(f, 8) of’ 

+,Y) be 

F, (f, e) = r-n, (f, e)ei+“(f,e) 

2Note that when these conditions are not true, then the image 
gradient direction is approximately parallel to the image-plane 
component of the surface orientation (tilt), and the magnitude 
of the image intensity gradient is proportional to the remaining 
component of orientation (slant). Thus when our assumptions 
are seriously violated, the recovery of surface orientation may 
be accomplished by local analysis of the image gradient field. 

Now since p and q are partial derivatives of a(~, y), 
their transforms F’p and F* are related to FZ in an 
elementary fashion. We can write 

In this case, the Fourier transform of the image I 
is (ignoring the DC term): 

Fz(M) = 27~ sin afm=(P, 0)ei(d=(f@)+?r/2) 
[cos 8 cos 7 + sin 0 sin 71 (10) 

2.3 ecovery of Shape 

This spectrum depends, as expected, upon the illu- 
minant direction and the surface Z(Z, y). What is re- 
markable is that given the illuminant direction we can 
recover the surfaces’ Fourier transform directly, except 
for an overall scale factor and the low-frequency terms 
which are lost in going from Eqn.(7) to Eqns.(8) and 
(9). That is, if we let 

then the Fourier transform of the a surface is simply 

F,(f,Q = 
mz(f, ++(W~h/2) 

27r sin af[cos 0 cos 7 + sin 0 sin 71. (12) 

The ability to directly recover surface shape from 
the Fourier components of the image suggests a theory 
of human shape perception. It is known that the vi- 
sual systems’ initial cortical processing areas contain 
many cells that are tuned to orientation, spatial fre- 
quency and phase. Although the tuning of these cells 
is relatively broad, it is clear that one could produce a 
coarse estimate of shape by (I) phase-shifting the cells’ 
responses by 7r/2, (2) scale the cells activity by l/f, 
where f is the spatial frequency that the cell is tuned 
for, and (3) biasing the cells’ activity to remove coarse 
variation in the distribution of activity versus orien- 
tation, i.e., to remove the effects of the illumination 
direction. 
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2.4 Estimating the Illuminant Direction. is a fractal Brownian surface with D = 2.3; max(p, q) w 

Pentland [7] introduced a method of estimating illumi- 
nant direction from the distribution of image deriva- 
tives as a function of image direction. The method 
works by assuming a statistically uniform distribu- 
tion of surface orientations, and then performing a 
maximum-likelihood analysis to estimate the cosine 
variation in image gradient magnitude induced by the 
directionality of the illuminant. In summary, the re- 
sult is that: 

(xi, yi) = (pTp)-lpT(a, dI22, . . ..aJ (13) 

where (zT,, y;) are the unnormalized x and y compo- 
nents of the illuminant direction, p is a 2 x n matrix 
of directions (dxi, dyi) and dli is the mean magnitude 
of dI(x, y)/dxi + dI(x, y)/dyi. 

Given (xi, yi) we may then find the complete il- 
luminant direction, which is simply: 

xL = xi/k YL = YT;lk ZL = d 1 - 5; - y; 
(14 

where 
k=j/m (15) 

and E(dl) is the expected value of dl/dxi + dI/dyi 
over all directions i. 

This method has proven to be quite robust [2,3,7], 
however the assumption of uniformly distributed sur- 
face orientations is disagreeably strong. We can im- 
prove this method substantially by observing that in 
Eqn.( 10) th e illuminant produces a similar effect in 
each frequency band. Thus if we make the much weaker 
assumption that the power in a particular spatial fre- 
quency band is uniformly distributed over orientation3 
then we can use a similar method to estimate the il- 
luminant direction, substituting the magnitude of the 
Fourier components for magnitude of the first deriva- 
tives. In particular, Eqn.( 13) becomes 

(xi, YE) = (PT/m3T(f7% m2, .“, 77%). (16) 

where the rni are the magnitude of the Fourier compo- 
nents within the selected frequency band in direction 
(dx, dy)- 

We have applied Eqn.(l2) to both synthetic images of 
complex surfaces, such as is shown in Figure l(a) (this 

30r, more precisely, is not distributed 
lated with the illuminant effects 

in a way that is corre- 

5.0), as well as to complex natural images such as 
shown in Figures 2(a) and 3(a). The use of synthetic 
imagery is necessary to answer the two important ques- 
tions concerning this method: One, is the Taylor series 
approximation a good one, and two, is the recovery 
stable and accurate? 

Figure l(b) h s ows the distribution of intensity val- 
ues obtained when the surface of Figure l(a) is illu- 
minated from L = (1,1, I)/&. Figure l(c) shows the 
distribution of errors between the full imaging model 
and the Taylor .series approximation using only the 
linear terms. As can be seen, the approximation is 
a good one, even though this surface is often steeply 
sloped (i.e., max(p,q) = 5.0). 

Figure l(d) h s ows the surface recovered by use of 
Eqn.(l2). Because the low-frequency terms and the 
overall amplitude cannot be recovered, it was neces- 
sary to scale the recovered surface to have the same 
standard deviation as the original surface before we 
could compare the two surfaces. Figure l(e) shows 
the differences between the original surface and the 
recovered surface. As can be seen, the recovery errors 
are uniformly distributed across the surface. These er- 
rors have a standard deviation that is approximately 
5% of the standard deviation of the original surface. 
It appears that these errors can be attributed to the 
Taylor expansion approximation breaking down for 
steeply-sloped regions of the surface, i.e., those with 
IPI > IQI ” 1. 

Figure 2(a) shows a high-altitude image of a moun- 
tainous region outside of Phoenix, Arizona. This area 
has been the subject of intensive study, so that we are 
able to compare our shape-from-shading algorithm to, 
for instance, results obtained using stereopsis. In par- 
ticular, the Defense Mapping Agency has created a 
depth map of this region using their interactive stereo 
system. The stereo depth map they recovered is shown 
in Figure 2(b). Such maps are hard to interpret, so we 
created an synthetic image from this stereo depth map 
using standard computer graphics techniques. The im- 
age created from the stereo depth map is shown in Fig- 
ure 2(b). In addition, Figure 2(d) shows a perspective 
view of this stereo depth map. 

Figure 2(e) shows the depth map recovered from 
the shading information in Figure 2(a), by use of Eqn. 
(12). As part of the recovery process, the illuminant 
direction was estimated from the Fourier transform of 
the image by use of Eqn.(lG). To aid in the evaluation 
of this shading-derived depth map, we also created an 
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Figure 1: (a) A  fractal Brownian surface, (b) the dis- 
tribution of intensities within the image of the surface 
in (a), (c) the distribution of differences between the 
image and our linear-term-only Taylor series approxi- 
mation, (d) the surface recovered from shading (com- . 
pare to (a)), and (e) the errors in the recovery process. 

Figure 3: (a) An image of a woman used in image com- 
pression research, (b) a perspective view of the depth 
map recovered from shading information alone, by use 
of Ev. (lz), ( c a close-up of the recovered surface in ) 
the neighborhood of the womans

’ 

face; note the pres- 
ence of eyes, cheek, lips, nostrils, and nose arch, (d) a 
shaded, oblique view of the recovered surface. 

Figure 2: (a) An image of a mountainous region outside of Phoenix, Arizona, 
(b) a depth map of this region obtained from a stereo pair by the Defense 
Mapping Agency, (c) an image created from this stereo depth map, (d) a 
perspective view of the stereo depth map, (e) the depth map recovered from 
shading information alone, by use of Eqn. (1 
this shading depth map, and (g) a perwective 
from image shading. 

2), (f) an image created from 
view of the depth map derived 
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