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On The Extraction Of Shape
Information From Shading
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We present a closed-form solution to the prob-
lem extracting shape information from image shading,
given standard assumptions and oblique illumination.
Neither integration nor iterative propagation of infor-
mation is required. An improved method for estimat-
ing the illuminant direction is also presented.’

1 Introduction

The extraction of shape from shading has a relatively
long history within the field of computer vision. There
have been two general classes of algorithm developed:
Local algorithms, which attempt to estimate shape
from local variations in image intensity, and informa-
tion propagation algorithms, which attempt to propa-
gate contour information across a shaded surface.

Local algorithms, such as Pentland [1] or Ferrie
and Levine [2], use shading information within a small
region to estimate surface orientation. Thus a subse-
quent integration step is required to obtain surface
shape. These local methods of estimating surface ori-
entation have been shown [2,3] to produce accurate
estimates whenever z(z,y), the imaged surface, has
derivatives that obey:
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Examples of surfaces which satisfy this condition ev-
erywhere are surfaces of revolution whose axis is par-
allel to the z axis and cylinders whose axis lays in the
image plane [4], however on more general surfaces this
condition holds only at infrequent, isolated points
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The global algorithms, principally developed by
Horn and his students [5], makes use a smoothness as-
sumption to relate adjoining points. This enables the
strong information available at smooth occluding con-
tours to be iteratively propagated across the surface.
The assumption of smoothness is perhaps the primary
limitation to the applicability of these algorithms; for
instance, the smoothness constraint adopted in {5] im-
plies that the algorithm will converge to the correct
surface only when the condition in Eqn.(1) holds [6].
Integration is normally required to obtain the surface
shape.

In this paper we develop a novel formulation of
the shape-from-shading problem, one that permits a
direct, closed-form solution for the surface. Neither
integration nor iterative propagation of information
is required to solve for the height field, however low-
frequency shape information cannot be recovered. This
formulation also permits us to develop an improved es-
timator of illuminant direction.

2 The Imaging of Surfaces

Let 2z = z(z,y) be a surface, and let us assume that:

(1) the surface is Lambertian,

(2) the surface is illuminated by (possibly several)
distant point sources,

(3) the surface is not self-shadowing.

We will also take 2 < 0 within the region of inter-
est, and assume orthographic projection onto the z,y
plane.

We willlet L = (21, yL,21) = (cosTsino,sinrsino,coso

be the unit vector in the mean illuminant direction,
where 7 is the tilt of the illuminant (the angle the im-
age plane component of the illuminant vector makes
with the z-axis) and o is its slant (the angle the illu-
minant vector makes with the z-axis).



Under these assumptions the normalized image in-
tensity I(z,y) will be

pcosTsing + ¢gsin7sino + coso

I(z,y) = (p? + ¢2 +1)1/2 (2)
where
p= ;—xz(z, ) (3)
q= %z(x, v) (4)

2.1 Linear Approximation

If we then take the Taylor series expansion of I(z,y)
about p,q = 0 up through the quadratic terms, we
obtain

coso (P +?)

(5)
This expression gives an excellent approximation when
lpl, gl < 1.

Under the condition |p|,|q| < 1 the linear terms
of Eqn. (5) will dominate the power spectrum except
when the average illuminant is within roughly +30°
of the viewers’ position. When either p,¢ < 1 or the
illumination direction is roughly perpendicular to the
line of sight the quadratic terms will be negligible.

We will assume that such is the case in the follow-
ing analysis?. Thus we will approximate the intensity
function by:

I(z,y) =~ coso+pcosTsing+gsin7sino—

I(z,y) = coso + pcosrsino + gsinrsino  (6)

Note that this is exactly the lunar reflectance function
[4].

2.2 Spectral Properties

We will let the complex Fourier spectrum F,(f,8) of

z(z,y) be

Fo(f,0) = m,(f,0)e'*:(/0 (7

?Note that when these conditions are not true, then the image
gradient direction is approximately parallel to the image-plane
component of the surface orientation (tilt), and the magnitude
of the image intensity gradient is proportional to the remaining
component of orientation (slant). Thus when our assumptions
are seriously violated, the recovery of surface orientation may
be accomplished by local analysis of the image gradient field.

where m,(f,0) is the magnitude at position (f,8) on
the Fourier plane, and ¢, is the phase.

Now since p and g are partial derivatives of 2(z, y),
their transforms F, and F, are related to F, in an
elementary fashion. We can write

Fp(f,0) = 2w cos 0 fm,(f, 0)e¢'(¢.(f,0)+1r/2) 8)

Fy(f,0) = 2nsin 0 fm,(f, 0)e'(#=(/:0)+7/2) 9)

In this case, the Fourier transform of the image I
is (ignoring the DC term):

27 sino fm,(f,0)e(#:(£:6)+7/2)
[cosf cosT + sinf sin 7]

Fi(f,0) = (10)

2.3 Recovery of Shape

This spectrum depends, as expected, upon the illu-
minant direction and the surface 2(z,y). What is re-
markable is that given the illuminant direction we can
recover the surfaces’ Fourier transform directly, except
for an overall scale factor and the low-frequency terms
which are lost in going from Eqn.(7) to Eqns.(8) and
(9). That is, if we let

Fi(f,8) = my(f,0)e4:(/) (11)
then the Fourier transform of the z surface is simply

m i( 1f.0)—-= )
F.(f,0) = 1(f,0)ei(41(1.8)-7/2 .

~ 2nsinoflcosfcosT +sinfsin|

The ability to directly recover surface shape from
the Fourier components of the image suggests a theory
of human shape perception. It is known that the vi-
sual systems’ initial cortical processing areas contain
many cells that are tuned to orientation, spatial fre-
quency and phase. Although the tuning of these cells
is relatively broad, it is clear that one could produce a
coarse estimate of shape by (1) phase-shifting the cells’
responses by 7 /2, (2) scale the cells activity by 1/f,
where f is the spatial frequency that the cell is tuned
for, and (3) biasing the cells’ activity to remove coarse
variation in the distribution of activity versus orien-
tation, i.e., to remove the effects of the illumination
direction.
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2.4 Estimating the Illuminant Direction

Pentland [7] introduced a method of estimating illumi-
nant direction from the distribution of image deriva-
tives as a function of image direction. The method
works by assuming a statistically uniform distribu-
tion of surface orientations, and then performing a
maximum-likelihood analysis to estimate the cosine
variation in image gradient magnitude induced by the
directionality of the illuminant. In summary, the re-
sult is that:

(=%, y5) = (BT8) 6T (dN, dIy, ..., dI,) (13)

where (z},y;) are the unnormalized = and y compo-
nents of the illuminant direction, § is a 2 x n matrx
of directions (dz;, dy;) and dI; is the mean magnitude
of dI(z,y)/dz; + dI(z,y)/dy;.

Given (z},y;) we may then find the complete il-
luminant direction, which is simply:

z =zp/k yL = yi./k zL =+\/1-z} -y}
(14)
where

k = \/E(dI?) — E(d])? (15)
and E(dI) is the expected value of dI/dz; + dI/dy;
over all directions ¢.

This method has proven to be quite robust [2,3,7],
however the assumption of uniformly distributed sur-
face orientations is disagreeably strong. We can im-
prove this method substantially by observing that in
Eqn.(10) the illuminant produces a similar effect in
each frequency band. Thus if we make the much weaker
assumption that the power in a particular spatial fre-
quency band is uniformly distributed over orientation®
then we can use a similar method to estimate the il-
luminant direction, substituting the magnitude of the
Fourier components for magnitude of the first deriva-
tives. In particular, Eqn.(13) becomes

(IZ:UI*,) = (ﬂTﬁ)_lﬂT(ml’m2""amﬂ)' (16)

where the m; are the magnitude of the Fourier compo-
nents within the selected frequency band in direction

(dz, dy).

3 Surface Recovery Results

We have applied Eqn.(12) to both synthetic images of
complex surfaces, such as is shown in Figure 1(a) (this

30r, more precisely, is not distributed in a way that is corre-
lated with the illuminant effects
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is a fractal Brownian surface with D = 2.3; max(p, ¢) ~
5.0), as well as to complex natural images such as
shown in Figures 2(a) and 3(a). The use of synthetic
imagery is necessary to answer the two important ques-
tions concerning this method: One, is the Taylor series
approximation a good one, and two, is the recovery
stable and accurate?

Figure 1(b) shows the distribution of intensity val-
ues obtained when the surface of Figure 1(a) is illu-
minated from L = (1,1,1)/v/3. Figure 1(c) shows the
distribution of errors between the full imaging model
and the Taylor series approximation using only the
linear terms. As can be seen, the approximation is
a good one, even though this surface is often steeply
sloped (i.e., max(p, q) ~ 5.0).

Figure 1(d) shows the surface recovered by use of
Eqn.(12). Because the low-frequency terms and the
overall amplitude cannot be recovered, it was neces-
sary to scale the recovered surface to have the same
standard deviation as the original surface before we
could compare the two surfaces. Figure 1(e) shows
the differences between the original surface and the
recovered surface. As can be seen, the recovery errors
are uniformly distributed across the surface. These er-
rors have a standard deviation that is approximately
5% of the standard deviation of the original surface.
It appears that these errors can be attributed to the
Taylor expansion approximation breaking down for
steeply-sloped regions of the surface, i.e., those with
Ipl, gl >> 1.

Figure 2(a) shows a high-altitude image of a moun-
tainous region outside of Phoenix, Arizona. This area
has been the subject of intensive study, so that we are
able to compare our shape-from-shading algorithm to,
for instance, results obtained using stereopsis. In par-
ticular, the Defense Mapping Agency has created a
depth map of this region using their interactive stereo
system. The stereo depth map they recovered is shown
in Figure 2(b). Such maps are hard to interpret, so we
created an synthetic image from this stereo depth map
using standard computer graphics techniques. The im-
age created from the stereo depth map is shown in Fig-
ure 2(b). In addition, Figure 2(d) shows a perspective
view of this stereo depth map.

Figure 2(e) shows the depth map recovered from
the shading information in Figure 2(a), by use of Eqn.
(12). As part of the recovery process, the illuminant
direction was estimated from the Fourier transform of
the image by use of Eqn.(16). To aid in the evaluation
of this shading-derived depth map, we also created an



intensity image (Figure 2(f)), and a perspective view
(Figure 2(g)).

The accuracy of shape recovery for this image can
be assessed by either comparing the original image
(Figure 2(a)) with the synthetic image created from
the recovered surface (Figure 2(f)), or (better) by com-
paring perspective views of the stereo-derived surface
(Figure 2(d)) with the shading-derived surface (Figure
2(g)). These comparisons demonstrate that the recov-
ery of shape from shading in this example is quite ac-
curate. The only major defect of the recovered depth
map is a slight bowing of the entire surface, which ap-
pears to stem from inaccuracies in the estimation of
the illuminant direction.

It is interesting to compare these results to those
achieved using the most sophisticated iterative algo-
rithms. In [8], for instance, reasonably accurate re-
covery of surface shape was achieved for complex syn-
thetic images, such as shown in Figure 1, after 50
iterations of the shape-from-shading interleaved with
50 iterations of the integrability algorithm. Although
no quantitative error statistics were given, the graphs
shown indicate about 10% average error in the re-
covered height surface. In similar situations (where
|pl,lg| < 1, oblique illumination) we have found that
our algorithm typically has significantly less average
error — and, of course, no iteration or integration is
required.

A final example of shape recovery is shown in Fig-
ure 3. Figure 3(a) shows a complex image widely used
in image compression research. Figure 3(b) shows the
shape estimated for this image. Although the surface
appears jumbled, because of large changes in surface
albedo, it is in fact a correct interpretation of Figure
3(a) — i.e., illuminating the surface shown in Figure
3(b) will result in the image shown in Figure 3(a).
Moreover, the outline and correct general shape of the
woman is present in this recovered surface. Figure 3(c)
shows a close-up of the recovered surface in the neigh-
borhood of the face. The eyes, cheek, lips, the nose
arch and nostrils can all be clearly seen in the recov-
ered surface. The accuracy of recovery is illustrated
more strikingly in Figure 3(d), which shows a shaded,
oblique view of the recovered surface. The somewhat
“smeared” appearance of the facial features is due to
the highly foreshortened view in the original image.

4 Summary

By approximating the Lambertian image formation
process using the linear terms of the Taylor series, we
can achieve a simple closed-form expression that re-
lates surface shape to image intensity. This new result
may be used in two ways.

First, the image-surface equation gives us the basis
for a new method of estimating the illuminant direc-
tion that makes weaker assumptions about the viewed
scene.

Second, the image-surface equation is invertible in
closed form, except for overall scale and low spatial fre-
quency terms, given the illuminant direction. Thus we
may recover high-frequency shape information directly
from image shading without the necessity of integra-
tion or iterative propagation of shape information.

Experimental results indicate that the recovery pro-
cess is both stable and (at least for the images so
far examined) quite accurate. Further, because the
technique is both simple and uses only biologically-
available information, it may serve as a model for hu-
man perception.

One special aspect of this approach is that it makes
no assumption of surface smoothness. In place of the
smoothness assumption we substitute a somewhat sim-
pler reflectance function, and the assumption general
viewing position: Changes and discontinuities are in-
serted only where there is direct evidence for them
in the image intensities. Because smoothness is not
assumed this approach can be successfully applied to
complex natural surfaces such as hair, mountains, or
bushes. By the same token, however, on smooth-man
made surfaces this approach may not perform as well
as techniques that employ smoothness constraints.
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Figure 2: (a) An image of a mountainous region outside of Phoenix, Arizona,
(b) a depth map of this region obtained from a stereo pair by the Defense
Mapping Agency, (c) an image created from this stereo depth map, (d) a
perspective view of the stereo depth map, (e) the depth map recovered from
shading information alone, by use of Eqn. (12), (f) an image created from

this shading depth map, and (g) a pergpective view of the depth map derived
from image shading.

Figure 1: (a) A fractal Brownian surface, (b) the dis-
tribution of intensities within the image of the surface
in (a), (c) the distribution of differences between the
image and our linear-term-only Taylor series approxi-
mation, (d) the surface recovered from shading (com-
pare to (a)), and (e) the errors in the recovery process.

Figure 3: (a) An image of a woman used in image com-
pression research, (b) a perspective view of the depth
map recovered from shading information alone, by use
of Eqn. (12), (c) a close-up of the recovered surface in
the neighborhood of the womans’ face; note the pres-
ence of eyes, cheek, lips, nostrils, and nose arch, (d) a
shaded, oblique view of the recovered surface.
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