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Abstract 

Parameter transforms play a very important role in the 
recognition of geometric features in image data. Local 
operators devised to compute parametric descriptions of 
geometric entities using a small neighborhood p(x,y) 
about points of interest have been succesfully employed. 

These operators fail to exploit the long distance correla- 
tions present in the image (distant points belonging to the 
same feature). Thus, their accuracy decreases with the 
order of the parametric properties (e.g., position, direction, 
curvature, torsion, etc.) and they are very sensitive to 
noise. 

This paper presents a generalized neighborhood con- 
cept that allows parameter-extraction operators to use the 
joint information of different portions of the same feature. 
This produces up to a few orders of magnitude improve- 
ment in accuracy (signal/noise ratio) and a smoother 
response of the transform. 

A general framework, based on a connectionist ap- 
proach, is presented to deal with the complex response in 
parameter space generated by such operators. 

A layered and concurrent scheme to extract 3D surfaces 
intersection curves is presented which, exploiting the 
properties of these operators, is able to reconstruct lines 
and conic sections in three-space. 

. ocal Parameter transhr 
The usual approach for the recognition of complex geometric 
features in images is to introduce a, possibly partial, parametric 
description of the feature of interest and then devise an operator 
to extract parameters from sets of image data. For example see 
[Kimme Ballard and Slansky, 1975; Slansky, 19783. 

If multiple features are present in the data, the portion of 
image used as an input by the operator must be small enough to 
avoid, on average, the interference of more than one feature. 
Thus small, possibly overlapping, neighborhoods of fixed size 
are generally used; these are chosen such that the entire image 
is covered. Usually, for discrete samplings, the input to the oper- 
ator is composed of the data points contained in a window of 
small size. 

Several problems limit the usefulness of local operators: 
0 Poor resolution and high noise sensitivity:due to the mul- 
tiple noise sources, namely measurement and quantization noise, 
and due to the limited size of the neighborhoods, only zero and 
first-order properties of the features can be extracted with suffi- 

1 - Thanks to Ruud M. Belle for his valuable contributions 

cient accuracy. For a curve in three-space for instance, these 
would be the location and the orientation of a curve element. 
Recognition of features with higher-order properties (e.g., cur- 
vature for tonics sections) is extremely difficult [Bolle, Kjeldsen 
and Sabbah, 19871. 
0 Small number of points: some features like surface inter- 
section curves, given their one-dimensional nature, extend over 
O(N) data points (pixels) of a N x N image. This results in a 
small number of neighborhoods (computational units) taking 
part in the transform. 
. Poor handling of complex parametrization: complex 
parametric features are handled by leaving some of the 
parameters undetermined; this introduces a one-to-many map- 
ping from image to parameters space. This works well provid- 
ing that the dimension of the undetermined portion of parameter 
space is small [Shapiro 1978a; Shapiro, 1978b]. It can be ex- 
perimentally shown that, when this dimension exceeds two, the 
parameter space tends to become overloaded so that no structure 
appears. 

2. S 

For the above reasons, a different, non local approach is intro- 
duced. Such an approach must preserve some important charac- 
teristics of local operators, for instance their intrinsically 
parallel nature. 

Let us consider a bidimensional image where each point (x,y) 
has an associated value z (intensity, range, etc.). We definep(x,y) 
a neighborhood centered about the point (x,y), which is small 
compared to the image size. Let P = fp(Xi,yi) ; i = I . . . N) be a 
partition of the image, that is, a set of neighborhoods containing 
all the points of the image with possible overlapping. Let us de- 
fine a new partition MP (“multi-partition”) whose elements are 
all possible (unique) combinations of N neighborhoods p(x,y) in 
groups of K: 

MP={p(x,,y,)up(x,,y,)u...up(x,,y,);i=l..JV,J’=i+l...N ,... } 

(2.1) 

An element of the partition contains all the image data points of 
P(Xi ,yi ), P(x. ,Yj ) to P(xk ,Y~ ). The total number n of (unique) 
elements of dl e partition A4P is given by the combinations of N 
objects in groups of K: 

N 
0 

N! 
II= K =(N-K)!K! (2.2) 

where an element is considered not unique if it can be obtained 
from another by a permutation of the indi ces ij, . . . . k. For in- 
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Figure 1 

stance the two elements: 

Mpji...k z Mpij...k (2.3) 

would be considered equivalent and only one would appear in 
the partition. 

For convenience we will use the word “unit” to indicate a 
local neighborhood and.“K-unit” to indicate one of the general- 
ized neighborhoods obtained by combining the local ones in 
groups of K (unit and I-unit are synonyms). As an example, let 
us consider the case of a discrete image of sizeL x L. If we choose 
P to be the set of all possible non overlapping windows of size 
M x M m = (L / M)2 is integer] we have N windows in the par- 
tition. If we choose a group size of two, the multi-partition MP 
is composed of N(N-1)/2 possible combinations of two windows 
as shown in figure 1. 

3. Properties of 
Using K-unit neighborhoods for parameter transforms has many 
advantages, among which: 

Enhanced accuracy 
The accuracy of the extracted parameters increases with the 
number of points taking part in the transform; the accuracy also 
depends on the relative position of the points on the feature. A 
K-unit contributes to the extraction of the parameter of a feature 
if all the composing local neighborhoods p(x,y) contain only 
points on the feature. Thus, since a K-unit contains the points of 
K different units, the computation has an expected increase K 
in the number of active points, compared to a local transform 
where only the points of a single unit would be considered. 

Another factor contributing to the enhanced accuracy is that 
distant points on the same feature are jointly used for the para- 
meter extraction. In general, due to the complexity of the para- 
meter transform model, it is impossible to quantify this 
contribution. However, using a rough and simplified model, we 
can quantitatively estimate the decrease in error when K-units 

are used, for the special case of a 2D-line of specified lenght par- 
allel to the x-axis. 

Suppose we have a set of points {(x,y)J evenly spaced with 
respect to the x-axis over an interval of length L with the value 
of y distributed within a finite interval 2Ay: 

Y(~)=Y,*AY (3.1) 

If Ay is small with respect to L, these points “correspond” to 
a line parallel to the x-axis. Now choose the partition to be the 
set of windows iWi~ of size M x M centered about the points 
f(Xi ~0) ; i=I . . N=L / l}(l = Xi+l- Xi), with 1 I M << L (SCX fig. 
2a). With these assumptions, all the points in a window are con- 
tained in a rectangle of size 2Ay x M, If we compute the angle 
of the line using I -units, the worst case estimate for the angle is 
8 = atan(2 Ay / j%4) as shown in figure 2b. If we use the result of 
the computation for all possible N windows on the line to 
generate a distribution in parameter space, we can estimate an 
upper bound for the error by taking the average of the worst case 
errors of the single measures: 

which is, as one would have expected, the same of the single- 
measure case. 

Let us now use the generalized neighborhood concept with 
two windows per group. As shown in figure 2c, considering two 
windows Wi and Wit all the points are contained in a rectangle 
of size 2Ay X [abs( Xi -xi ) + M]. Thus the maximum error for 
6 on the single measure is given by: 

DAY A(!$ = atan Ilj-i (3.3) 

The N windows in groups of two generate N (N - I) / 2 2- 
units that can be used, like in the previous case, to produce a dis- 
tribution on the parameter space; this time, the upper bound for 
the error becomes: 

2 4=-g E IA0,jI=N&6,i,atan (2’Ay’ 
N(N-l)i=lj=i+l 1G-i)+M (3.4) 

Figure 3 shows the behavior of the ratio between the error in 
the two cases, compared to the number of windows over the line 
(in the example Ay = M = 1). 

Increased number of computational units 
In some cases, especially with small images or low-dimensional 
features, the number of units that can take part in a local 
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Figure 2(abc) Figure 3: Accuracy increase. 
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parameter extraction can be very small. The generalized neigh- 
borhood concept allows for an increased number of such active 
units. If a feature has N units on it, the total number of K-units 
is given by (2.2): 

Statistical analysis of local ~e~g~~~~~~~~s. 
If we keep one of the neighborhoods p(x,y) fixed and generate 
all possible K-units obtained by varying the other (K-I) units we 
arrive at: 

1 N 

0 

(N - l)! 
n=E’ K =(N-K)!K! (3.5) 

such K-units. This can be used for a statistical analysys for the 
fixed unit. For instance, then, it can be established that a unit 
has voted a certain number of times for the parameter vector of 
some specific features. This information is very important to 
define a competition process between mutually exclusive fea- 
tures generated by the same data points. This mechanism is 
described in detail in the next sections. 

The trade-off for the enhanced accuracy is a complex response 
of the parameter transform, an increase in computation time and 
a nonlinear response of the transform. 

Correlation between different features. 
When generalized neighborhoods are used on images where 
several features are present, we have two possible configurations 
for a K-unit. 
0 All the units in the K-unit are located about different points of 

the same feature. 
= The units are shared among different features. 
In the first case, the transform produces an estimate for the 
parameters of the feature. In the second case, the units are still 
used to produce the parameter vector of a single feature and they 
generate an unpredictable value. 

Figure 4 shows the result obtained by fitting lines to points 
on two different features. As shown, lines are scattered in all 
possible directions and positions generating a quasi-random re- 
sponse in parameter space (due to the deterministic nature of the 
process the distribution is pseudo-random &amperti]). Usually, 
due to the nature of the parameter vectors produced in this sec- 
ond case, these K-units contribute to the general noise back- 
ground and no accumulation is produced in parameter space . 
However it is experimentally shown that false confidence peaks 
can be generated if several features are present in the image. 

This is a consequence of the highly structured information 
present in the image which, when jointly used, produces corre- 
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lated noise and hence false confidence peaks. 
In particular, some feature can alter the response in parame- 

ter space of other features. For instance, as shown in figure 5, a 
line in three-space can amplify the response of all the planes con- 
taining it. In fact, any single point not on the line can cooperate 
with different combinations of points on the line producing al- 
ways the same parameterse (those of the plane containing the 
line and passing through the point). 

If there are N units on the line and one on the point, ( ) Ni1 
K-units will return the parameters corresponding to the plane as 
a result . This increases combinatorially with the lenght of the 
line and can produce erroneous hypotheses. 

binatoriaii computational ti 
The combinatorial increase in computation time 
of units per group grows, [given by (2.2)] is counterbalanced by 
the smoother response of the parameter extraction due to the in- 
creased number of K-units taking part to the transform. Com- 
putational complexity is inversely related to the size of the units. 
In fact, if the size is reduced by a factor M, the number of units 
in the partition increases by the same factor. This is due to the 
necessity of covering the entire image. 

In this case, if N is the previous number of units in the parti- 
tion, the number of K-units that participate to the transform be- 
comes: 

M*N 
n= 

( 1 K (4.1) 

Nonlinear response 
If two features of the same kind (two conic section, two planes, 
etc.) have different “size” (length for curves, area for surfaces, 
etc.) the local response of the transform is not a linear function 
of the size. As we have seen above, if there are N units on a fea- 
ture, the total number nfl of K-units that produce an estimate for 
the parameter vector of the feature is given by (2.2). If N is large 
with respect to K, this value can be approximated by a simple 
power law: 

NK 
n(f)sz (4.2) 

thus allowing for a simple renormalization rule [Califano and 
Bolle, 19871. It is important to notice that due to the pseudo-ran- 
dom nature of the correlation noise, the renormalization should 
only be performed after having isolated the confidence peaks 
from the noise background. Since the latter is not subject to the 
same law the signal to noise ratio would be greatly deteriorated 
otherwise. 

5. 
The noise sources and the correlation induced by the interaction 
between different features in the image produce a large number 
of hypotheses in the parameter space. Thus a “filtering” 
mechanism has to be introduced in order to distinguish between 
noisy, erroneous and true hypotheses. 

This can be elegantly accomplished by instantiating the par- 
ameter spaces as networks where nodes correspond to hypothe- 
ses characterized by the appropriate parameters. The links in the 
network are connections between nodes and computational units 
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(K-units) or between nodes themselves. Hypotheses are 
generated by K-units using these links; they can be partial or 
complete descriptions of geometric features. 

Logically, each node computes the confidence of the network 
in the existence of the specific hypothesis in the input. This is 
done by assigning an activation level to the nodes. Parameter 
transforms are used to create or support nodes in the network 
correponding to the output parameters. Updating of the activa- 
tion levels can be performed in a standard connectionist way 
Feldman and Ballard, 1982; Sabbah, 19851. If the acivation 
level of a unit falls below a noise threshold NT, the unit is deac- 
tivated and no longer takes part in the relaxation process. 

Quantitatively the activation level of a node at iteration i, de- 
noted by AL,,(i), is computed as: 

4mm = 0 (5.1) 

A&&) =ALmd& - 1) +SU,, +TD,, -LZ,,,(i - 1)-D(5.2) 

where 

(5.3) 

represents bottom-up reinforcemenran TD,, top-down re- 
inforcement. WV node is a measure, (“weighted vote”) assigned to 
the unit by the input data (K-units) through the parameter trans- 
form operators. That is, a measure of confidence that the corre- 
sponding hypothesis exists based only on data measurements 
(see [Sabbah and Bolle, 19861). E is a normalizing factor and kbu 
a rate parameter. The term D is the decay term that suppresses 
spurious hypotheses. 

The lateral inhibition term LI is generated as a weighed sum 
of the activation levels of competing units. This term insures that 
semantically incompatible hypotheses inhibit each other so that 
stronger ones survive while the others are eventually deactivated 
by the noise threshold term NT in a “winner-take-all” network 
Feldman and Ballard, 19821. 

In previous connectionist networks involving parameter 
transforms [Belle, Kjeldsen and Sabbah, 19871, hypotheses 
would mutually inhibit each other when their parameters are 
“close”. This implies the generation of a metric in parameter 
space so that all hypotheses within a certain radius would be con- 
nected with inhibitory links. 

This approach has some limitations, namely: 
a The parametrization must be chosen to ensure the stability of 

hypotheses in parameter space biapunov, 19471. This means 
that a small perturbation of the geometric feature in the image 
must produce a small perturbation of the parameter vector. 
This is not always possible. For instance, no matter how little 
the direction of a line is perturbed, the variation i the position 
of a point on the line (needed for the complete parametriza- 
tion) can become arbitrarily large depending on where the per- 
turbation is applied. 

. Such parametric interaction does not make use of geometrical 
or topological knowledge (domain knowledge) about the 
hypotheses. Thus only hypotheses that have the same repre- 
sentation can interact and no inter- submitted to ICCV Con.. 
1988.parameter space interaction is possible. For instance, the 
hypothesis of a sphere should support one of a circle of same 
radius in the image while the hypothesis of a conic section 
should be incompatible with one of a line if they have both 

been supported by the same image units. 
. A totally symmetric interaction between hypotheses presents 

some difficult normalization issues. In fact, since the number 
of competing hypotheses grows as the dimension of the 
parameter space increases, one with a high level of activation, 
corresponding to an effectively existing feature in the image 
could be killed by a large number of competing ones just 
above the noise threshold. Also, once domain knowledge be- 
comes an active element of the network structure, diffeent 
sources of inhibition should be normalized separately. 
For the above reasons, a more involved interaction model is 

introduced based on the following rules: 
0 Hypotheses compete when: 

O Domain knowledge establishes their incompatibility 
or 

O Their activation is supported by some identical image I- 
units (windows) and domain knowledge does not preclude 
their incompatibility. In this case the strength of the inter- 
action is proportional to the percentage amount of common 
supporting I -units. 

a Hypotheses support each other when domain knowledge es- 
tablishes their mutual consistence. 

. Hypotheses can only inhibit others with a lower or equal level 
of activation. 
It is very important to notice that this kind of approach is con- 

sistent with K-unit parameter transforms. In fact, by definition, 
the K-unit structure allows different hypotheses to be supported 
by the same I -unit. This implicit knowledge can be used to cor- 
rectly set up the inhibition network using the above guidelines. 

When a hypothesis meets some existence criteria, namely a 
certain ratio between activation and lateral inibition, the corre- 
sponding feature is considered to be present in the image. In case 
that only a partial description of the feature is produced, the unit 
can start another process in a higher-level parameter space to ex- 
tract the remaining parameters. A layered structure of parameter 
spaces is generated in this way. 

The above mechanism allows for concurrent extraction of 
different geometric features and their mutual support or inhibi- 
tion through LI - and TD -links. 

This model for the interaction has proven very reliable and 
robust as shown in the section on curves extraction in three- 
space. 

6. Corn aeionall complexity. 
It is important to reduce the combinatorial explosion of the com- 
putation time with an increasing’size of the image to a more ap- 
pealing linear one. To do that we can introduce the concept of a 
“Search Radius” R, such that each of the neighborhoods’ center 
points (x,y), in a K-unit, is within a distance R, from the center 
point of the next one (see figure 6). 

Since R, can be thought as the distance over which we expect 
two neighborhoods to possibly contain coherent information, we 
can think of R, as a radius of coherence. Let NR be the total num- 
ber of I-units (local neighborhoods) contained in a circle of co- 
herence of radius R,. Depending on the metric we select in order 
to define the circle of coherence, the number n of possible K- 
units generated by keeping the first unit fixed and choosing the 
others within R, from each other is: 

(6.1) 
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Figure 6 

which does not depend on N, the total number of units on the 
image. Thus the total number of K-units N,, becomes N . n due 
to the N possible choices for the first unit. N,, is now a linear 
function of the image partition size N and thus of the image size 
itself. However, even if more contained, we still have a com- 
binatorial explosion with respect to K. 
It is important to notice that such a definition of the coherence 
radius allows for K-units to extend on distances much longer than 
R, depending on the value of K. In fact, it is not required that all 
the units have centers within the coherence radius but only that 
a sequence can be established on the K-unit ordering, such that 
every I-unit’s center is within an R, from the next one. 

It immediately follows that, if K is larger than two, chains of 
units of maximum length K R, can be formed, thus allowing for 
longer distance correlation extraction. 

Statistical properties of the distribution generated by K-units 
within a coherence radius are under further investigation. 
However the experimental results are very promising and the re- 
duction of computation time is significant. 

7. Experiments 
Figures 7bc show the distributions generated in parameter space 
from a line parameter transform using the 128 x 128 pixels size 
synthetic image in figure 7a as an input. Lines are parametrized 
using their angle (x-axis) and their signed distance from the 
origin (y-axis). The parameter transform is based on a least 
square error line fitting algorith using points contained either in 
I-units or in 2-units on the image. Here the units are windows of 
size 8 x 8 . Due to the high level of noise in the image and to the 
small difference in the lines parameter vectors, the result for I- 
units does not show a significant accumulation. In the distribu- 
tion obtained with the multi-neighborhood approach, on the 
contrary, the parameter vector values corresponding to the three 
lines in the image show significant accumulation with respect to 
the noise background. 

Figure 8b shows the distribution on a partial parameter space 
generated by an ellipse parameter transform. The x-axis corre- 
sponds to the ratio between the sqares of the two axis of the el- 
lipse (a ratio of one corresponds to a circle) while the y-axis to 
the rotation angle of the ellipse with respect to the image x-axis. 
The parameter transform uses a fitting algorithm proposed by 
Bookstein [1979] based on the scatter matrix of the image data. 
The image is shown in figure 8a and it has the same size of the 
previous case. It contains a circle and an ellipse (ratio between 
the axis 2). The fitting algorithm extract in a single step the five- 
dimensional parameter vector for an ellipse. Since it is im- 
possible to display a distribution on a five-dimensional 
parameter space, its projection along the two parameter axis is 
shown. 

Even when only quantization noise is present, the local ap- 
proach produces just scattered points in parameter space. Figure 
8b shows only the results using 2-units. The same unit size of the 

Figure 7(abc) 

--. 
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Figure 8(ab) 

previous case is used. As it can be seen, the values coresponding 
to the two image features (ratio 1, angle 0 for the circle and ratio 
4, angl0 for the ellipse) show a significant accumulation. 

. rves recognition in three-s 
We give here a brief outline of a layered and concurrent scheme 
for extraction of lines and conic sections in three-space with 
respect to the use of generalized neighborhoods. This system is 
part of a general effort of our group [Belle, Kjeldsen and Sab- 
bah, 1987; Bolle, Califano and Kjeldsen, 19881 for the recogni- 
tion of objects generated by patches of planes and quadrics of 
revolution in range data images. 

The recognition hierarchy for curve parameter extraction is 
shown in Figure 9. 3D edge detection techniques are used to 
generate maps of the image discontinuities. 

Since the dimensionality of the parameter vectors of interest 
can range from four for 3D lines to eight for 3D ellipses or hy- 
perbolas we divide our recognition process in two stages. 

First using parameter transform based on a scatter matrix fit- 
ting algorithms [Duda and Hart, 19731 we concurrently search 
for (1) lines and (2) planes that contain intersection curves. 
Whenever a significant plane is found, we search for conic sec- 
tions contained in the plane, again using a fitting algorithm based 
on the scatter matrix [Bookstein, 19791. The best experimental 
compromise between accuracy and computability is to use 2- 
units for line extraction and 3-units for planes and tonics extrac- 

Figure 9 
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tion. The whole ensamble of parameter spaces is set up as a net- 
work with the structure described in section 5. 

Figure 10a shows a noisy artificially generated 64 x 64 depth 
map (laser-range-finder generated images have also been used 
and produce similar results [Bolle, Califano and Kjeldsen, 
19881). It contains a cylinder with the axis aligned with the y- 
axis, with a hemisphere of the same radius at one end and a cone 
at the other. In this case, units have a size of 2 x 2 for lines ex- 
traction and of 4 x 4 for planes and conic sections extraction. 

Figure lob shows the situation after two iterations of the re- 
laxation process. At this time 8 out of the 13 initially active line 
hypotheses and 9 out of the more than 80 plane hypotheses are 
still active. 

Some of the planes, having satisfied our existance criteria, 
have initiated the search for tonics. In fact, three conic section 
hypotheses associated with two planes have just been created. 

After six iterations (see figure 10~) only the correct hypothe- 
ses for lines and tonics have survived and their lateral inhibition 
has reached a level of zero so that they will continue to exist. The 
four lines are the linear limbs of the object, one circle is the limb 
of thesphere while the other is the intersection between the cyl- 
inder and the cone. 

The secondorder discontinuity curve, between the cylinder 
and the sphere, is not found because the low-level edge opera- 
tors do not detect such discontinuities. A promising operator for 
second order discontinuities is under investigation. 

Figures lob and 1Oc display the projection of the active 
curves at the two stages of recognition. Activation levels are in- 
dicated by the gray level (darker = more active). Planes are not 
displayed since we only use them as an intermediate step for con- 
its extraction. 

More than the number of existing planes (2) have been found 
in the image after our relaxation process. This is due to the in- 
teraction between lines and planes as described in section 4. This 
contribution can be eliminated by changing the lateral inhibition 

l After Iteration 1: 
36 aaivc cbm in PLANARCURVES 
0 naive objeas in JD-coNIcs 

l After Iteration 6: 

Figure lO(abc) 

model for plane hypotheses to include links with the line para- 
meter space. A new model is under investigation. 

9. Conclusions 
A new approach to parameter extraction in images has been 
proposed where using correlated evidence from distant part of 
the image allows for complex parametric feature recogniion. Up 
to eight-dimensional features have been experimentally 
reconstructed from synthetic and laser-range-finder range data 
images. 
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