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Abstract 

Constraint satisfaction (CSP) is a powerful and exten- 
sively used framework for describing search problems. 
A CSP is typically defined as the problem of finding 
consistent assignment of values to a fixed set of vari- 
ables given some constraints over these variables. How- 
ever, for many synthesis tasks such as configuration and 
model composition, the set of variables that are rele- 
vant to a solution and must be assigned values changes 
dynamically in response to decisions made during the 
course of problem solving. In this paper, we formalize 
this notion as a dynamic constraint satisfaction prob- 
lem that uses two types of constraints. Compatibility 
constraints correspond to those traditionally found in 
CSPs, namely, constraints over the values of variables. 
Activity constraints describe conditions under which a 
variable may or may not be actively considered as a part 
of a final solution. We present a language for express- 
ing four types of activity constraints in terms of vari- 
able values and variables being considered. We then 
describe an implemented algorithm that enables tight 
interaction between constraints about variable activity 
and constraints about variable values. The utility of this 
approach is demonstrated for configuration and model 
composition tasks. 

1 Introduction 

Constraint satisfaction is a powerful and extensively 
used framework for expressing and solving search prob- 
lems. A variety of general techniques have been devel- 
oped for finding a consistent assignment of values to a 
predefined set of variables [3; 8; 9; 12; 111. The variables 
typically have preenumerated domains of discrete values, 
and a set of constraints over subsets of these variables 
limit their possible values. 

In contrast, for synthesis tasks such as configuration, 
design, or model composition, the constraint problem is 
of a more dynamic nature where any of the elements 
of the constraint problem (i.e., variables, domains, con- 
straints) might change as the search progresses. For 
example, selecting the type of hard disk controller for 
a computer configuration is only relevant when a hard 
disk has been chosen as the form of secondary storage. 
Installing a floppy disk drive would require solving for a 
different set of variables and constraints. 

A common approach in such cases is to embed general 
constraint satisfaction mechanisms within a larger task- 
specific problem solving architecture. In this coupled 

mode of problem-solving, the problem solver makes deci- 
sions about which variables and constraints are relevant 
in order to define a problem solvable by some constraint 
satisfaction mechanism. For example, in the Cossack 
expert system for configuration [6],the problem solver 
created variables in response to requirements specifying 
some functional aspects of a desired configuration. Con- 
sistent choices were assigned to these variables by select- 
ing a component and propagating constraints associated 
with the selected component. Separate mechanisms were 
used for creating variables and processing constraints on 
them. Similarly, the Mapsee- and Mapsee- programs 
for understanding sketch maps [Is] have a control cy- 
cle that alternates between creating a new variable for 
each image element (a chain of edges in the Mapsee ter- 
minology) and propagating constraints between existing 
variables to find consistent interpretations for the im- 
age elements. However, experience with Cossack and 
Mapsee- suggests that this separation becomes cum- 
bersome and inefficient when decisions about which vari- 
ables are relevant interact closely with decisions about 
consistent value assignments. 

In this paper, we identify a specialized but useful class 
of dynamic problems that we call dynamic constraint 
satisfaction problems (DCSP). For this class of problems, 
we propose a more integrated approach that extends the 
notion of constraint satisfaction problems to include con- 
straints about the variables considered in each solution. 
When a variable must be included, we say that it is ac- 
tive. By expressing the conditions under which variables 
are and are not active, standard CSP methods can be 
extended to make inferences about variable activity as 
well as their possible value assignments. 

The key characteristic of such dynamic constraint 
problems is that constraints on introducing or remov- 
ing variables from a potential solution closely interact 
with constraints on consistent assignment of values to 
some already identified set of variables. This property 
distinguishes our model of DCSP from other “dynamic” 
formalisms such as incremental constraint satisfaction 
methods that can handle a changing set of variables [17] 
or constraints [7], but cannot themselves reason about 
the activity of a variable. Similarly, constraint logic pro- 
gramming [lo] naturally allows variables to be dynami- 
cally introduced but provides no special support for ef- 
ficiently reasoning about variable activity. 

We begin by considering how to formalize configu- 
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ration as a constraint satisfaction problem. This pro- 
vides the motivation for the formal definition of dy- 
namic CSPs. We describe a simple language for stat- 
ing constraints about the activity of problem variables 
in a form that is usable within an extended constraint 
satisfaction framework. This enables introduction and 
removal of variables and constraints during search. Fur- 
ther, it provides a useful framework in which to express 
certain kinds of knowledge for synthesis problems. Ex- 
amples from configuration and model composition tasks 
are used to illustrate the use of our language. Finally, 
we describe an implemented search algorithm for solving 
DCSPs that is tuned to this specialized language. We 
close by describing some extensions in progress. 

2 Modeling configuration as constraint 
satisfaction 

A constraint satisfaction problem (CSP) is typically 
specified by a set of variables V = { 111,. . .,v~} and a 
set of constraints C on subsets of V limiting the val- 
ues that may be assigned in a consistent manner [ll; 
121. Each variable vi has an associated domain 0; = 
{ 41,. - - ,di,;} w ic 1 en 1 h’ h ‘d t’fi es its set of possible values. 
The constraint satisfaction task is to find assignments of 
values for { 211,. . . ,v~} that simultaneously satisfy all the 
constraints C. 

We shall motivate the ideas behind this paper by con- 
sidering how to formalize a configuration task as defined 
in [14] as a CSP. In that paper, it was shown that many 
configuration domains satisfy two important properties. 
One, the functional roles played by a component in a 
configured artifact are known ahead of time. Two, for 
each functional role, one can identify a set of compo- 
nents as the “key” for each role, i.e., one of these “key 
components” are always needed for implementing the 
corresponding functional role. For example, in a com- 
puter domain, the functional roles include instruction 
execution, program memory, secondary storage, display, 
and printing. The key components for these functions 
respectively include microprocessor chip, memory chip, 
hard disk or floppy disk, display terminal, and printer. 

One can model such configuration tasks as a CSP by 
making additional simplifying assumptions such as: (1) 
there are a fixed set of functional roles to be decided in 
a configured artifact; (2) there is a one-to-one associa- 
tion between functional roles and the components that 
function in that role; and (3) there is a fixed set of com- 
ponents for each functional role. In the CSP model, we 
create a variable for each functional role and the com- 
ponents associated with that functional role constitute 
the domain of these variables. Constraints are used to 
represent compatibility and selection knowledge. 

The model presented above is rather simplistic, since 
only assumption (3) above is valid. Assumption (2) 
is generally invalid, since the mapping between func- 
tional roles and actual available components is typically 
many-to-many. For example, in order to provide sec- 
ondary storage one not only needs a disk drive but also 

a drive controller, bus connection, and some associated 
driver software. Here the crucial problem is not just 
the additional components that are needed but the fact 
that different components for the same functional role 
often need non-identical sets of additional components. 
Similarly, some of the available components often pro- 
vide more than one function. For example, the moth- 
erboard on a PC often implements many functions such 
as the microprocessor, co-processor, program memory, 
basic I/O system, and assorted other functions. The 
problem is not just the multiplicity of functions but the 
fact that such multi-function components often provide 
non-identical sets of functions. 

One can use the “key component” idea to partially 
solve this problem. Essentially, retain the mapping de- 
scribed above but keep in mind that the mapping is 
only partial, i.e., the component associated with a func- 
tional role may only partially provide that function and 
other components (or functional roles) may be needed to 
complete the requirements. One can express these addi- 
tional requirements by dynamically introducing “new” 
variables and constraints in the solution as a result of 
selecting a partially satisfying component C for a func- 
tional role R. The model of dynamic CSP presented in 
this paper formalizes this insight by extending CSP to al- 
low constraints on both the values of a variable and “rel- 
evance” to a solution. It is important to point out that 
the language presented here is more general than the ini- 
tial motivation. In particular, as will become apparent 
from the examples discussed later in the paper, the same 
constraint type can be used to represent many different 
kinds of domain knowledge. Furthermore, the CSP ex- 
tensions require new methods for solving the problem 
and also create opportunities for additional heuristics 
for controlling search. 

3 ynamic constraint satisfaction 
problems 

In CSPs, the sets V, Oi, and C are fixed and known be- 
forehand. Each solution must contain an assignment for 
every variable in V. In DCSPs, there is also some set of 
variables V. However, unlike for a CSP, not all variables 
have to be assigned a value to solve the problem. Some 
variables and their value assignments render other vari- 
ables irrelevant, thus indicating that effort should not 
be spent considering values and constraints for these ir- 
relevant variables. 

Because the set of variables requiring assignment is 
not fixed by the problem definition, we distinguish be- 
tween variables that appear in the solution and those 
that do not. A variable is called active when it must be 
part of the solution. The statement that vi is active is 
represented by the proposition active:v;; the statement 
that vi is not active is represented by lactive:vi. A vari- 
able vi is assigned one of its possible values { di,, . . ., din, } 
if and only if it is active: 

active:vi t-t vi = dil V . -. V vi = d;,, 
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DCSPs can themselves post constraints about which 
variables are active. Thus, a DCSP explicitly constructs 
each active:vi and every solution to a DCSP only assigns 
values to variables that are also active. 

A dynamic CSP specifies a non-empty set of initial 
variables VI that must appear in all solutions (i.e., for 
all vi in VI, active:vi always holds). The set of active 
variables appearing in each solution will always be a su- 
perset of VI. A problem not requiring additional vari- 
ables reduces to a conventional CSP with V = VI. 

To concisely represent the conditions under which a 
variable and its associated domain become relevant to 
forming a solution, we extend the notion of constraint 
to include a set of activity constraints CA affecting vari- 
able activity. These constrain a variable to be active or 
not active based on other variables’ activity and value 
assignments. There are several activity constraint types 
described in section 4. The simplest of these is logically 
equivalent to: 

P( 211 ,a - *, Vn) -+ UCtiVe: Vj 

where vj @ (vi ,s . + , vn} and P is a predicate over variables 
and their possible values. 

To distinguish between activity constraints and tradi- 
tional constraints over variable values, we call the stan- 
dard set of CSP constraints compatibility constraints, 
represented by C c. Due to the active variable distinc- 
tion, we must also revise the conditions under which a 
compatibility constraint is satisfied. Take P( vi, vj, vk) to 
represent a compatibility constraint over variables vi, vj, 
and VE. It is treated as being logically equivalent to: 

active:v~ A aCtiVe:Vj A active:vk + P(V~,Vj,V~) 
Thus, if one of the variables in a constraint is not active, 
the constraint is trivially satisfied; if all of the variables 
in a constraint are active, it has the standard mean- 
ing and we say that the constraint is active. For effi- 
ciency reasons, we make these two cases explicit within 
the problem solver so that only active constraints need 
be checked. 

We can now define a dynamic constraint satisfaction 
problem as follows: 

Given: 
A set of variables V representing all variables that 
may potentially become active and appear in a solu- 
tion. (This list need not be explicitly preenumerated, 
although our algorithm does not currently handle that 
case.) 
A non-empty set of initial variables VI = {VI ,- - -,vk}, 
which is a subset of V. 

A set of discrete, finite domains Di ,. . .,Dk, with each 
domain Da = (ddl,. - - ,diki} representing the set of pos- 
sible values for each variable vi in V. 

A set of compatibility constraints Cc on subsets of V 
limiting the values they may take on. 
A set of activity constraints CA on subsets of V spec- 
ifying constraints between the activity and possible 
values of problem variables. 

Find: 

e All solutions, where a solution is an assignment J1 
which meets two criteria: 

1. The variables and assignments in A satisfy Cc U 
CA. 

2. No subset of A is a solution. 

This definition extends the standard definition of CSP 
by introducing activity constraints and identifying a sub- 
set of the possible variables as initial variables. Note 
that the choice of initial variables is important for defin- 
ing the problem. Keeping everything else the same, we 
can create different problems simply by changing VI .l 
Also note that because activity may be affected by value 
assignments, each possible solution may contain a differ- 
ent set of variables. 

Consider the following simple dynamic CSP. We are 
given the variables vi, ~12, 25, v4 with domains Di = 
{a, b}, 02 = {c, d}, 03 = {e, f), and 04 = {g, h). Fur- 
ther, we are given initial variables VI = {vi ,v2} and con- 
straints: 

Vl =a + v2=d 
Vl =b+v2=c 
V2 =c A v3=e --) v4=h 
Vl = b -+ active : v3 
V3 = e + active : 214 

This problem has three solutions: 

=a, v2=d 

Vl =z, 
3 v 2=c, 
v2'= c, v3 

v3= f 
=e, va=h 

4 Activity constraints 

In applying the dynamic CSP framework to several ap- 
plication tasks, we have found it useful to define a spe- 
cialized language for expressing four types of activity 
constraints. This language is useful for compactly rep- 
resenting selection and composition constraints in syn- 
thesis tasks. Additionally, separating these different ac- 
tivity constraints into distinct types also improves search 
efficiency by adding finer control over constraint propa- 
gation within our algorithm. 

4.1 Require variable constraint 
The most fundamental activity constraint is the require 
variable (RV), which establishes a variable’s activity 
based on an assignment of values to a set of active vari- 
ables. RV constraints have the form: 

P(v1,. * * jvj) 3 Viz (where VU~ 4 {VI,- - *,vj}) 

This notation is logically equivalent to: 

p( Vl )’ ’ .jVj) -+ active: vk 

‘This flexibility in reusing the knowledge base is often 
quite useful in the class of problems that have provided the 
motivation for the ideas presented here. 
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where P( ~11,. . . ,vj) is a predicate over the possible val- 
ues of variables. When P(vr,. . .,vj) is both active (i.e., 
211,’ - *9 3 21. are all active) and satisfied, ZIP must be active. 
A contradiction results if it is inconsistent for vk to be 
active. 

One use of RV constraints is to represent conditional 
requirements in synthesis tasks. 

4.2 Always Require 
The always require variable (ARV) constraint extends 
the basic notion of a require constraint to require a vari- 
able’s activity based on the activity of other variables, 
independent of their current value. ARV constraints 
have the form: 

VlA * **r\vj 2 vk (where vk # (~1,. - *,Vj}) 

This form handles the special case where all choices for 
v1 through Vi require vk. While logically equivalent to 

the special form is more compact and can lead to more 
efficient search. The search method presented in sec- 
tion 6 takes advantage of the form of ARV constraints 
to make ?& active as soon as vl through vj become ac- 
tive, without waiting for particular value assignments to 
~1 through vj. 

Note that the initial variables in the definition of a 
DCSP could alternatively be expressed as a set of ARV 
constraints whose conditions are “true”. Thus, a given 
DCSP can be easily modified by simply changing such 
top-level ARV constraints. 

4.3 Require -Not 
In addition to stating when variables must be in the 
problem space, some tasks require the ability to state 
when variables must not be in the problem space. For 
example, selecting a convertible body frame for a car 
is inconsistent with any type of sunroof. The require 
not (RN) constraint states an inconsistency between an 
assignment of values to a set of active variables and an- 
other variable being active. RN constraints have the 
form: 

P(v1,. * - ,%a) s Vj (where vj e (VI ,- - -,vn}) 

They are logically equivalent to 

q Vl,’ * *,%a) + ~UCtiVfXVj 

For some applications, this constraint is more efficiently 
reexpressed as an inconsistency (c.f. ATMS NoGood [l]): 

P(V1,’ * * ,Vn) A UCtiVe:Vj -+ I 

where I represents false. 
RN constraints are particularly useful for expressing 

an incompatibility between variables without knowing 
if the variables will ever be active. This situation often 
arises when a given DCSP can be incrementally modified 
by simply adding a few other variables to the initial set. 

4.4 Always Require Not 
Analogous to the always require constraint, the always 
require not (ARN) constraint extends the basic notion of 
a require not constraint to rule out a variable’s activity 
based on the activity of other variables, independent of 
their current value. ARN constraints have the form: 

vlA~~~ Avn 3 Vj (where vj fit {VI,- - -,v~}) 

and are logically equivalent to 

active:vl A - - - A active:v, + -active:vj 

or the corresponding NoGood. 

5 Examples 

The DCSP framework is being applied to two indepen- 
dent research problems. The first is concerned with con- 
figuration and automated design tasks [6; 141. The sec- 
ond is concerned with composing the most appropriate 
model of a physical system given some query [4; 51. In 
this section, we demonstrate our approach on some sim- 
plified examples taken from each. 

5.1 Configuration 
The following simple example of a DCSP has been for- 
mulated from a car configuration task (adapted from 
[13]). There are eight variables, of which three are in the 
initial variable set. Notice that the activity constraints 
have been used to represent many different kinds of do- 
main knowledge such as packaging, functional require- 
ments, structural decomposition, and incompatibilities. 
Similarly, compatibility constraints represent functional, 
structural, and packaging concerns. 

Variable 
Package 
Frame 
Engine 
Battery 
Sunroof 
AirConditioner 
Glass 
Opener 

Domain 
{luxury, deluxe, standard} Initial var 

{convertible, sedan, hatchBack} Initial var 

{small, med, large} Inztial vaf 

{small, med, large) 
{srl,sr2} 
{ acl,ac2} 
{tintednot-tinted) 
{ auto,manual} 

Activity constraints 
1. Package=luxury 3 Sunroof 
2. Package=luxury 3 AirConditioner 
3. Package=deluxe 3 Sunroof 
4. Sunroof=sr2 3 Opener 
5. Sunroof=srl 3 AirConditioner 
6. Sunroof A% Glass 
7. Engine A= Battery 
8. Opener Ag Sunroof 
9. Glass A* Sunroof 
10. Sunroof=srl 3 Opener 
11. Frame=convertible 3 Sunroof 
12. Battery= small & Engine=small 3 AirConditioner 

Compatibility constraints 
13. Package=standard + AirConditioner#ac:! 
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14. Package=luxury + AirConditioner#acl 
15. Package=standard + Frame#convertible 
16. Opener=auto & AirConditioner=acl + Battery=med 
17. Opener=auto & AirConditioner=ac2 + Battery=large 
18. Sunroof=srl & AirConditioner=ac’L --+ Glass#Tinted 

For this problem the smallest solutions have only four 
variables (Package, Frame, Engine, and Battery) and the 
largest have all eight. The description of a car configura- 
tion knowledge base given above would be augmented by 
additional constraints that represent user requirements 
before solving the problem. Thus, notice that changing 
the set of initial variables (e.g., by making Sunroof an- 
other initial variable) creates a somewhat different prob- 
lem with different solutions, which may not simply be 
subsets of the solution set of the original problem. 

5.2 Model composition 

Compositional modeling is a method for reasoning about 
modeling assumptions and automatically composing the 
most appropriate model of a physical system for a given 
analytic query [4; 51. Th e model composition problem 
is to synthesize the simplest model that is relevant to 
the needs of the task and consistent with the operat- 
ing conditions of the system. This model must contain 
the parameters of interest, be able to show specified in- 
formation about those parameters at a specified degree 
of accuracy, and minimize “cost” by reducing extrane- 
ous detail and computational effort. Many choices must 
be made, including the parts of the system to consider, 
their structural decomposition, the phenomena to con- 
sider, and how they should be modeled (e.g., what ap- 
proximations can be applied). 

In the compositional modeling framework, the sys- 
tem’s models of various domains consists of a set of el- 
ementary domain models, each describing some funda- 
mental piece of the domain’s physics, such as processes 
(e.g., liquid flow), devices (e.g., transistor), and objects 
(e.g., container). Each elementary model is conditioned 
on a set of modeling assumptions stating their range of 
applicability and underlying approximations. Reasoning 
focuses on choosing among the set of possible modeling 
assumptions, which enable a corresponding set of ele- 
mentary models, rather than reasoning about each ele- 
mentary model individually. Model composition consists 
of four steps: 

. Query analysis. A query specifies a set of parameters 
of interest. Thus, a minimal requirement is that all 
of these parameters be modeled. Additionally, these 
parameters directly suggest further constraints. For 
example, a query about the level of liquid in a con- 
tainer indicates that a macroscopic, “contained fluids” 
view is called for as opposed to a microscopic “particle 
dynamics” view. 

. Object expansion. The query directly indicates a set of 
objects to consider, but additional objects may need 
to be considered to capture all relevant interactions. 

3. 

4. 

Candidate completion. Some choices of simplifying as- 
sumptions raise new choices in turn. For example, 
considering liquid flowing through a pipe requires a 
decision about whether to model the fluid as com- 
pressible or incompressible. 
Candidate evaluation and selection. Finally, each can- 
didate is evaluated and the “best” candidate is se- 
lected. 

Choices made during the first two stages are fully de- 
termined by the query. The DCSP framework is be- 
ing used to express and solve the third stage, in which 
additional choices made relevant by the query must be 
made. In describing the possible modeling assumptions 
for a domain, some collections of assumptions represent 
mutually exclusive, alternative ways to model the same 
aspect of an object or phenomenon. To represent this 
important relationship, some assumptions are organized 
into sets called assumption classes. Each assumption 
class has a name cd representing a DCSP variable; its 
domain is the set of assumptions in that class. The 
analytic query entails a set of minimal required mod- 
eling assumptions, which identify VI, a DCSP’s initial 
variables. The dynamic constraint satisfaction task is 
to extend this initial set to identify a set of modeling 
assumptions corresponding to a coherent and parsimo- 
nious model. 

For example, consider the task of determining an ap- 
propriate set of modeling assumptions for analyzing the 
flow of water through a pipe connecting two contain- 
ers. There are 7 variables, with the initial variable set 
consisting of VI ={ Precision, Can-Geometry} .2 

Assumption Class Domain 
Precision {qualitative,quantitative} 
Can-Geometry {quantity(level), lquantity(leve1)) 
Can-Capacity {finite-cans, infinite-cans} 
On tology {energy-flows, contained-fluids, 

particle-dynamics} 
Fluid-Density {incompressible, compressible} 
Fluid-Viscosity {inviscid, viscous, non-newtonian} 
Flow-Structure {laminar, turbulent} 

Activity constraints 
Can-Geometry A3 Can-Capacity 
Fluid-Viscosity=viscous 3 Flow-Structure 
Fluid-Viscosity=inviscid s Flow-Structure 
Precision=quantitative & Ontology=contained-fluids 

3 Flow-Structure 
Ontology=contained-fluids s Fluid-Density 
Ontology=particle-dynamics 3 Fluid-Density 
Ontology=particle-dynamics s Can-Capacity 

Compatibility constraints 
Can-Geometry=quantity(level) 

---f Ontology=contained-fluids 
Flow-Structure=turbulent ---) Fluid-Viscosity#inviscid 

2A more sophisticated set of representations is used in the 
modeling work than shown here. We have highly simplified 
the representation descriptions in an effort to gain clarity. 
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Can-Capacityzfinite-cans 
+ Can-Geometry=quantity(level) 

Given a query about the changing levels of the two 
containers, these constraints elaborate the query as 
needed to ensure that the resulting model is coherent. 
For example, asking about the changing fluid levels re- 
quires a model that represents a macroscopic view of 
liquids and their containers. 

6 Algorithm and Implementation 

6.1 ATMS-based Implementation 
We have implemented the dynamic CSP framework 
as a specialized problem solver integrated with an 
assumption-based truth maintenance system (ATMS) [l]. 
The algorithm is designed to use our specialized lan- 
guage and is summarized in Figure 1. It enables con- 
straints about variable activity (the problem space) to 
interact with constraints about variable values (the so- 
lution space), producing the two problem solving levels 
shown in Figure 2. 

The algorithm consists of a main choose / propagate 
cycle based largely on [a]. Each choose step selects an 
active, unassigned variable and assigns it a value that 
has not been previously ruled out. Each propagate step 
checks the constraints relevant to the new variable value 
assignment and propagates their consequences and de- 
pendencies. Constraint checking is ordered to take ad- 
vantage of the differing scope of each constraint type. 
ARV and ARN constraints are checked first because they 
have the largest scope (i.e., they apply to variable activ- 
ity, encompassing all their possible value assignments). 
RV and RN are checked second, because they affect a 
variable’s activity, independent of its possible values. Fi- 
nally, compatibility constraints are examined to see if 
the new variable value assignment is consistent. A con- 
straint is “run” when it becomes active. Due to ATMS 
caching, each constraint need only be run once. Con- 
straints that never become active during the course of 
problem solving are never checked. Search for each so- 
lution terminates when all active variables have been 
consistently assigned a value (i.e., there are no more 
variables for the choose step). Other variables do not 
appear in the solution. 

Here we informally show that the algorithm is sound, 
which requires showing that each solution generated 
meets the criteria specified in section 3. The first cri- 
terion, that each solution satisfies all the constraints in 
Cc U CA, is easy to show since each time a value is as- 
signed to an active variable, all the constraints activated 
by that assignment are checked before the next choose. 

The second criterion states that each solution must 
be minimal in the sense that there should be no other 
solution that is a superset of another. Since a solution 
is described by a set of variables and their associated 
value assignments, a proof of minimality requires prov- 
ing two properties for each solution. One, no variable 
is assigned a value unless it is active. Two, a variable 

Figure 1: Dynamic constraint satisfaction algorithm. 
procedure DCSP (VI) 

v t VI 
SOLUTION t empty 
Check all applicable activity and compatibility constraints 
if CONTRADICTION(V, SOLUTION), 

then return faa’l (initial problem statement is inconsistent) 
BACKUP? t f&e 

while V is not empty 
if BACKUP? or CONTRADICTION(V, SOLUTION) 

then backtrack and change V and SOLUTION. 
if backtracking fails, 

then return fail. 
BACKUP? t false 

else if there is an active ARV constraint c; 
then run c; and add newly activated variables to V 

else if there is an active ARN constraint c( 
then run c; 

else if there is an active RV constraint c; 
then run c; and add newly activated variables to V 

else if there is an active RN constraint c; 
then run c; 

else if there is an active compatibility constraint c; 
then run c; 

else vi t SELECT&DELETE(V) {choose nezt variable} 

value( 21;) + CHOOSE( v;) {choose an assignment} 

if value(v;) is NULL, 
then BACKUP? +trere 
else add value(vi) to SOLUTION 

return SOLUTION 

/ 
RC 

\ 
RN 

/\\ 

/ Solulion Space \ 

Figure 2: A dynamic constraint satisfaction network. 
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is made active if and only it has well-founded support 
from the initial set of active variables. It is easy to see 
that the first property holds since the only variables that 
are assigned values are those that have been made active 
by a previous step in the main loop. The second prop- 
erty, i.e., well-founded support for active variables can 
be seen to hold for our algorithm based on the following 
observations. One, at any time through the loop in the 
algorithm, a new variable 21 is made active if and only 
if there are some active activity constraints that justify 
it and there is no active activity constraint that contra- 
dicts ~1’s activity. This ensures that a variable becomes 
active if and only if it has well-founded support. In other 
words, all active variables in a solution are required ei- 
ther by the initial variables or by explicitly chosen value 
assignments. Two, the only place where a choice is made 
(i.e., a branch in the search space) is in the assignment 
of a value to a variable. Each such choice generates a 
potentially different solution. Notice that in the lan- 
guage described so far, there is no disjunction over re- 
quired variable constraints. While such disjunctive ac- 
tivity constraints will be necessary for expressing some 
types of domain knowledge, finding minimal solutions in 
the presence of such constraints can be very expensive. 
We are exploring heuristics that will work in some spe- 
cial cases. Also see [15] for an alternative formulation of 
disjunctive require constraints in some cases. 

6.2 Example Trace 
Here we briefly show a partial trace of our algorithm 
solving the car configuration example described in sec- 
tion 5.1. The algorithm does not commit to any heuris- 
tics for selecting the next variable or choosing a value 
for the selected variable. For this trace assume that a 
“smallest domain size” heuristic is used to select vari- 
ables and the “first value” heuristic is used to choose 
variable values. We show the active variables and value 
assignments in bold font, constraint propagation and 
value choices in italics, and explanatory comments in 
roman. We have also shortened the names of the vari- 
ables to the first letter. 

VI = {P,KE} 
C7 r~n8 (ARV making B active) 
V = {P,F,E,B} 
Choose P=luxury 
C1 runs (RV making S active) 
V = { P=luxury,F,E,B,S} 
C6 runs (ARV making G active) 
V = {P=luxury,F,E,B,S,G} 
C.2 runs (RV making A active) 
V = { P=luxury,F,E,B,S,G,A} 
C9 runs, (ARV on S - no change to the active variables) 
V = { P=luxury,F,E,B,S,G,A} 
Cl4 runs (constraint between P and A, creating 
nogood(P=luxury, A=acl} 
Choose A =a& 
Choose F=convertible 
V = {P=luxury,F=convertible,E,B,S,G,A=ac2} 
Cl1 runs (RN on S, leading to a contradiction (Cl & Cll)) 
Backup to the previous choice point 

Choose F=sedan 

Ehz,I,“, !small 
= uxury,F=sedan,E,B,S,G,A=ac2} 
= 

Choose B=smaIl 
V = { P=luxury,F=sedan,E=small,B=small, 

S,G,A=ac’L} 
CIZ runs (RN on A, leading to a contradiction on 
AirConditioner activity (C2 & C12)) 
Backup to the previous choice point 
Choose B=medium 
V = { P=luxury,F=sedan,E=small,B=medium, 

S,G,A=aclt} 
Choose S=srl 
V = { P=luxury,F=sedan,E=small,B=medium, 

S=srl,G,A=ac%} 
C5 runs (RV on A - no change to the active variables) 
Cl0 runs (RN on 0 - no immediate effect) 
C18 runs, creating nogood{S=srl, A=ac2, G=tinted} 
Choose G=not-tinted 
V = { P=luxury,F=sedan,E=small,B=medium, 

S=srl,G=not-tinted,A=acft] 
This is one of the possible solutions. Others can be found 
by backtracking. 

6.3 Backtracking Implementation 
A subset of our language (only the RV and CC con- 
straints) has also been implemented by extending a con- 
ventional backtrack-search CSP framework [13]. The ba- 
sic algorithm is similar to the one shown in Figure 1 with 
the major difference that each time an active variable is 
assigned a value, we use forward checking to propagate 
all active compatibility constraints. 

This implementation was also used for making some 
comparisons between solving a DCSP directly using the 
method presented here versus solving a logically equiv- 
alent “static” CSP. The latter was obtained by intro- 
ducing a new distinguished value called “null” in the 
domains of all variables and by appropriate transforma- 
tions of all constraints such that they are trivially sat- 
isfied if one or more variables have a “null” value. In 
the examples that we tried, the DCSP version outper- 
formed the “static” CSP version in all the performance 
metrics we measured (total time, number of backtracks, 
constraint checks and total variable assignments). Even 
on simple problems the difference in constraint checks, 
the metric most commonly used in the literature, was 
quite significant. A more detailed comparison will be 
presented in an extended version of this paper. 

7 Discussion 

In this paper we showed how to extend a constraint 
satisfaction framework to include constraints on activ- 
ity of variables. With these extensions, we described a 
core language for compactly representing selection and 
composition constraints in synthesis tasks. We also de- 
scribed an algorithm that efficiently finds minimal (non- 
redundant) solutions to such dynamic CSPs. 

We believe that the combination of the DCSP version 
of a problem and our method for solving such problems 
is effective for two reasons. One, by creating distinct 
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kinds of constraints, we can tune a search engine to take 
advantage of these distinctions in focussing the search. 
Two, in the DCSP version most of the variables and con- 
straints are initially “not active”. Thus, the constraint 
graph for the problem starts out by being very sparsely 
connected. It is filled only as the result of choices made 
by the search engine. Theoretical and empirical results 
[3; 8; 91 based on analyses of constraint graphs clearly 
show a close correspondence between the search effort 
and connectivity (e.g., width) of variables in the prob- 
lem. The DCSP version (when relevant) “hides” many 
of the variables and constraints. Clearly more work is 
needed here, especially in terms of precise mathematical 
analysis that can quantify this intuition. 

We are also developing improved heuristics for choos- 
ing the next active variable (e.g., most supported) or 
choosing a value from the domain of these variables (e.g., 
based on how many variables are activated by a choice). 
We are also looking at heuristics that help with disjunc- 
tive require constraints. 

The language we have presented is only a subset of 
what will eventually be needed for modelling the rela- 
tionships that are important in synthesis tasks. For ex- 
ample, referring back to the discussion in section 2, note 
that we need to express constraints of the form that a 
component may also provide additional functional roles 
or that it cannot be part of a configured solution by 
itself, i.e., without some other parent component. We 
have already alluded to the need for expressing disjunc- 
tive activity constraints, the simplest examples arising 
in cases where a component’s requirements can be sat- 
isfied by disjunctive functional roles. Our methodology 
has been to identify language primitives for expressing 
some domain relationships and then examine their im- 
plications for our search method both in terms of effi- 
ciency of search and minimality of solutions found. We 
expect to report progress on developing a more complete 
language in the next paper. 
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