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Abstract 

We obtain here the complexity of solving a type of 

Prolog problem which Genesereth and Nilsson have 

called sequential constraint satisfactrlon. Such prob- 

lems are of direct relevance to relational database re- 

trieval as well as providing a tractable first step in ana- 

lyzing Prolog problem-solving in the general case. The 

present paper provides the first analytic expressions 

for the expected complexity of solving sequential con- 

straint satisfaction problems. These expressions pro- 

vide a basis for the formal derivation of heuristics for 

such problems, analogous to the theory-based heuris- 

tics obtained by the author for traditional constraint 

satisfaction problem-solving. A first application has 

been in providing a formal basis for Warren’s heuris- 

tic for optimally ordering the goals in a conjunctive 

query. Due to the incorporation of “constraint loose- 

ness” into the analysis, the expected complexity ob- 

tained here has the useful property that it is usually 

quite accurate even for individual problem instances, 

rather than only for the assumed underlying problem 

class as a whole. Heuristics based on these results can 

be expected to be equally instance-specific. Prelimi- 

nary results for Warren’s heuristic have shown this to 

be the case. 

1. Introduction 

Two areas of major interest in Artificial Intelligence are 
constraint satisfaction problem solving and the logic 
programming language Prolog. Recently there has been 
considerable interest in the relationship between these 
two areas [4] [14] [16] [17] [NJ. This paper grew out 
of a study of this relationship. It treats one of the 
simplest types of Prolog problems, which Genesereth 
and Nilsson [2] call sequential constraint satisfaction 
problems. These involve a database consisting of no 

rules, but only of facts all of which are ground, and a 
query which is a conjunction of positive literals con- 
taining variables. Strategies for ordering the conjunc- 
tive queries have been studied in [15] and [19]. 

The present paper provides the first analytic expres- 
sions for the expected complexity of solving such prob- 
lems. The analysis is based on a division of the problem 
class into what we call small classes, defined in section 
2. These classes, and the assumed probability model 
defined in section 3, are analogs for Prolog of those used 
in the author’s earlier analyses of the complexity of tra- 
ditional constraint satisfaction problem-solving [6], [8], 
[12]. As opposed to the big classes which were also 
used in prior work (but which are not defined here), 
most instances of a small classes have remarkably sim- 
ilar complexity values. 

This homogeneity property is the result of taking into 
account “constraint tightness” (in terms of Sj or Rj 
below) in defining small classes. As a result of small 
class homogeneity, the expected case complexity for a 
given small class is likely to be a good estimate of the 
“exact case” complexity of most individual instances in 
the small class. This makes the expected case results 
much more practical by allowing them to be used for 
complexity prediction on an instance-by-instance basis, 
independent of the applicable probability distribution, 
if any, rather than only for a small class as a whole, 
under the assumed distribution. 

The expected complexity for solving sequential con- 
straint satisfaction problems is obtained in section 4, 
in terms of the expected number of nodes in the Pro- 
log search tree for finding all solutions of a problem in 
a small class. Extensions of the results are discussed 
briefly in section 5. A simple running example is used 
throughout. 

The complexity expressions obtained here provide a 
formal basis for the derivation of heuristics for solving 
this kind of Prolog problem, analogous to the theory- 
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based derivation of heuristics (for choosing a good al- 
gorithm, search ordering and even problem represen- 
tation) which has been possible for regular constraint 
satisfaction problem-solving [3] [S] [7] [8] [9] [12] [13]. A 
first example of this for our Prolog problems has been 
in providing a formal basis for Warren’s intuitively mo- 
tivated heuristic for optimally ordering the goals in a 
conjunctive query [19]. The instance-specificity of the 
complexity results here is expected to carry over to 
the theory-based heuristics derived from them. Pre- 
liminary results for Warren’s heuristic show this to be 
the case. By generalizing the problem class under con- 
sideration (in particular, allowing databases with rules 
and variables) it should be possible to obtain simi- 
lar instance-specific, theory-based guidance for Prolog 
problem solving in general. 

2. Sequential Constraint Satisfaction 
Problems and Small Classes 

To analyze the complexity of solving sequential con- 
straint satisfaction problems it is convenient to divide’ 
the space of all possible databases for such problems 
into what we class small classes. The expected com- 
plexity derived will be over the databases of a small 
class, each database arising with equal probability as 
described in the next section. 

Associated with a small class is an underlying set 
z= {q,z2,..., .z~} of n variables, each having a finite 
domain dzi = {1,2,. . . , m,;} of m,, candidate values. 
We denote the domain values as integers here for con- 
venience, but the results apply for values that are arbi- 
trary Prolog ground terms. Variables zi will sometimes 
be called domain variables or formal variables to dis- 
tinguish them from logical variables which appear in 
the queries to be asked with respect to a database. 

There is a set P = {pr ,p2,. . . , PK} of Ii’ predicate 
symbols, each having an associated fact template 

Pj (-%I > %Q Y - * - Y %iaj) (1) 

which specifies its arguments variables zik E 2 and 
their corresponding argument positions. The order of 
arguments in a template is usually, but not necessarily, 
in increasing order of the argument variable indices. 
A fact template is analogous to a relation schema in 

‘This division is not a partition however, since a given 
database may be considered as a member of an infinite num- 
ber of small classes, as implied in section 5 and discussed more 
fully in [ll]. 
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relational database theory [5]. It is not the same thing 
as a literal used in a query of the Prolog database, 
although they are related as discussed below. Zj = 
{~ilr%,...,~iaj } and Aj = ]Zj] are respectively the 
argument set and urity of pj. We may assume without 
loss of generality that the set 2 of all variables is given 
byZ=UF=rZj. 

Each database of the small class consists only of 
ground facts for each of the predicate symbols pj. The 
fact templates serve to specify the form and range of 
these facts. Specifically, facts for pj must have the form 

where h, is a value chosen only from the domain of 
the argument variable zik occurring for that position 
in the fact template. Each fact pj (Zj) thus corresponds 
to an Aj-tuple Zj from the Cartesian product Dj of the 
domains of the arguments of pj. Cartesian product Dj 
and its size M are given respectively by Dj = X dzi 

ZiEZj 

and Mj = m.2;. 
ZiEZj 

For each pj there is a parameter Sj, called the sut- 
isfiubidity of pj, which specifies how many facts for pj 
are in the database. The quantity Rj = Sj/Mj we 
call the sutisfiubility ratio for pj. Of course Sj and Rj 
respectively satisfy 0 5 Sj 5 Mj and 0 5 Rj 5 1. 
Rj is the fraction of possible tuples (formable from 
the domains of the corresponding argument variables) 
which actually correspond to facts in the database for 
Pj - Considering the goals of a conjunctive query as 
constraints to be simultaneously satisfied, Rj is a mea- 
sure of the looseness of the constraint corresponding to 
the pj goal. 

The required Sj facts for pj can correspond to any 
size-Sj subset of Dj and hence there are (7) ways 
to choose the facts for pj. Since such a choiie of Sj 
facts is required for each pj, 1 5 j 5 I<, the number 
of sequential constraint satisfaction databases scsd in 
a small class is 

ISCSD(n, m, I(, Z, S)l = fi (z) . 
j=l 

Here SCSD( n, r-n, K, 2, S) denotes the generic 
class characterized by n problem variables, set 

small 
lIl= 

(mzl,mzZ,...,mzn } of domain sizes, K predicate sym- 
bols, set Z = (Zi,&, . . . , 2~) of predicate argument 
sets and set S = {Sl , S2, . . . , SK) of predicate satisfia- 
bilities. 
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Fig. 1: The Prolog search tree for the scsp of solving query (2) with respect to our example database. 

For example, consider the set 2 = { ~1, ~2, zs} of 
n = 3 underlying domain variables, having domains 
d - dz2 21 - = {1,2} and d,, = {1,2,3} of respective 
sizes m,, = m,, = 2 and mz3 = 3. Let’s say the 
database consists of facts for I< = 3 predicate sym- 
bols pl, ~2, ~3, with respective fact templates pl(z3), 

P2h > z2), P3( ~1, ~2, ~3) and satisfiabilities Si = 2, S2 = 
3, s3 = 10. The Cartesian products for the three pred- 
icates therefore have respective sizes i’Mi = m,, = 3, 
M~=mzlxmz,=4andMs=mz,xmz,xmz,=12. 
Thus the number of databases in the small class is 
(zi) x (Fz) x (yz) = 6) x (i) x (ig) = 792. The 
following is one of these 792 possible Prolog databases: 

Pl(0 Pl(3). Pz(l, 1). P2(2,1). P2(% 2). 

~~(1,1,1). P~(L~, 59. ~~(1~1~3). ~~(1,2,2). ~~(1,2,3). 

P3(2,1,1>- P3(2,1,% P3(2,1,3)- P3(2,2,2)- P3(2,2,3)- 

As required by the corresponding fact templates, the 
values for the single argument of p1 come from the do- 
main of ~3, the values for the first and second argu- 
ments of p2 are respectively from the domains of ~1 
and ~2, and the first, second and third argument val- 
ues for p3 are respectively from the domains of ~1, ~2 
and 2s. 

A sequential constraint satisfaction problem scsp is 
a sequential constraint satisfaction database scsd plus 
an associated conjunctive query & such as 

?- Pl(z3),P3(%,~2,~3),P2(%~2). (2) 

The zi here are logical variables, not necessarily re- 
lated to the domain variables of the same name used 
to define the small class. Figure 1 shows the Prolog 
search tree for solving this query with respect to the 
above database. Success nodes, indicated by 0, are 

labelled by the corresponding 3-tuple solution for the 
logical variables in the order (~1, ~2, ~3). In the follow- 
ing sections we derive the expected case complexity of 
answering such queries with respect to the databases of 
a small class. The analysis is for the case, as in figure 
1, where u/Z solutions of a query are sought. 

3. Probability Model 

The probability model we assume for the databases of 
a small class is very straight-forward: each selection 
of Sj tuples from the Cartesian product Dj of the j- 
th constraint is equally likely, and such a selection is 
made independently for each predicate pi, 1 5 j 5 K. 
As such, each database scsd in a small class SCSD is 
equally likely, with probability P(scsd) = ISCSDI-l = 

I-J;, (2)-l. 

4. Expected Complexity 

For the generic small class SCSD(n, m, I<, 2, S) de- 
scribed above, our analysis considers only queries which 
are a conjunction, in any order, of 1’ positive literals, 
one for each small class predicate symbol pj . These lit- 
erals contain logical variables. In practice, logical vari- 
ables are not necessarily named zi as are the domain 
variables in terms of which a small class is defined. 
Nor is there necessarily a one to one correspondence 
between logical variables in the set of query literals 
and domain variables in the set of fact templates. For 
example, given our previous example small class, such 
a correspondence is lacking for query 

(3) 
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even though this is a perfectly legal query. However, for 
the following analysis we assume queries for which such 
a one to one correspondence does exist. For simplicity 
we may then assume that logical variables have the 
same names as their corresponding domain variables. 
Therefore, if in the small class definition, a predicate 
has associated fact template as in (l), then we assume 
an “isomorphic” corresponding literal 

Pj(zj) =Pj(zil,za~!...~zi,j), 

in the query, the zd here of course being logical vari- 
ables. As in (4), we may therefore also use Zj to de- 
note the set of logical variables of the pj query literal, 
as well as for the set of domain variables in the pj fact 
template. 

To allow for an arbitrary permutation R of conjunc- 
tions (literals) in the query, we write pi and Zj respec- 
tively for the predicate symbol and the argument set 
of the j-th literal in the query. The queries we consider 
are thus of the form 

?- p’(Z’),p”(Z”), - -. ,pK(ZK) (5) 
where pi = pr(j) and Zj = Zr(j) (and similarly for 
all predicate-related quantities: Dj = D,(j), Mj = 
MT(j), Sj = ST(j), Rj = R,(j)). Query (2) used in 
figure 1 is of the form given by (4) and (5)) assumed 
in our analysis. It corresponds to permutation 7r = 

( : g z ) and we have p1 = p,(l) = PI, P2 = P7r(2) = 

~3 and p3 = ~~(3) = ~2, and analogously Z1 = Zi, 
z2 = 2s and Z3 = 22. Another query of the form 
covered by our analysis is 

?-- P2(~1,~2),pl(z3),p3(~1,~2,~3). 

corresponding to permutation 7r = ( i T z ). 
As our measure of complexity for solving sequential 

constraint satisfaction problems in Prolog we use the 
number of nodes in the Prolog search tree for finding 
all solutions. We include the root node and the success 
nodes 0. Variations on this measure may be appro- 
priate for different implementations of Prolog, but in 
general these variations should be closely related to the 
fundamental measure used here and be derivable by a 
sirnilar analysis. 

Counting the root node as being at level Ic = 0, the 
search tree for solving a scsp has levels k = 0, 1, . . . , I<, 
as for example in figure 1. Since the number of nodes 
N in a search tree can of course be expressed as the 
sum of the number of nodes Nk at each level k of the 
tree we have N = CfzO Nk. Taking the expectation of 

both sides we have that the expected number of nodes 
in a Prolog search tree for instances of a small class of 
K predicates is the sum of the expected number #k of 
nodes at each level, 

K 

R = ):&. 
k=O 

(6) 

We now obtain a recursive, then non-recursive, ex- 
pression for #k. The nodes at level k arise as chil- 
dren of those at level k - 1. These children of a node 
are generated by unifying in all ways the leftmost lit- 
eral at a level k - 1 node with the corresponding facts 
in the database. The leftmost literal at a level k - 1 
node is the pk literal (that corresponding to predicate 
symbol p”) and each node at level k - 1 potentially 
has a child for each combination of values that can 
be assigned to the uninstantiated variables of that lit- 
eral. The set of instantiated variables is the same for 
the leftmost literal of each level k - 1 node, and is 
the union I(“) = @ii Zj of the argument sets of the 
initial-query literals pl(Z1) to pksl(ZkB1), since these 
literals have all been solved at preceding levels. The 
set of uninstantiated variables of the pk literal at a level 
k - 1 node is thus U(‘“) = Zk - I(“), the set difference 
between the argument set for the literal and the in- 
stantiated variables so far. 

By definition of the parent small class, there are m,, 
& priori possible values for variable zi. Each uninstan- 
tiated variable .za E U(‘“) of the pk literal at a level k - 1 
node has such an associated domain, and hence 

children are & priori possible for a level k - 1 node 
by unifying each uninstantiated variable in all ways 
against facts in the database. However, also by def- 
inition of the parent small class, only some fraction 
R” = Sk/Mk of the possible M” tuples of the carte- 
Sian product Dk correspond to database facts for pk. 
Thus only this fraction of the maximum A&” unifica- 
tions are possible (the actual number of possible unifi- 
cations being Sk = RkMk) for the initial-query literal 
~~(2”). Even though in general the p” literal at level 
k - 1 is not pk(Zk), but is ~“(2~) with some argu- 
ment variables zi E 2” already instantiated, the same 
fraction R” nevertheless governs how many unifications 
are possible on average for the pk literal at level k - 1 
against database facts, given an arbitrary assignment 
of values to its instantiated variables. But due to the 
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instantiation of some variables of the p” literal, this 
fraction is now out of rnck) possibilities rather than all 
iv”. 

The average number of children (or average branch- 
ing factor) of a level k - 1 node is therefore m(“)R”. 
The average number of nodes at level k is thus Nk = 
flk-rm(“)R”, the average number of nodes at the pre- 
vious level by their average branching factor. We have 
then the following recurrence for the expected number 
of nodes at level k in the Prolog search tree 

Nk = 
- { 

1 ifk=O 
Nk-lmCk)Rk if 1 5 k 5 K (8) 

which, by induction, has the closed-form solution 

Nk = fi ,(j) Rj =fi[ n mzi]Rj. (9) 
j=l j=l - aicU(j) 

A product over no terms (i.e. when k = 0) is considered 
to equal 1 (cf. 2’ = 1). Similarly in (7), if there are no 
uninstantiated argument variables for the pk literal at 
level k - 1 then rnck) = 1. By (6) and (9), the expected 
total number of nodes in a Prolog search tree is 

k=Oj=l k=O j=l -zi~u(j) 

Note that for k = IC, expression (9) must be the 
expected number of solutions for an instance of a small 
class - a result which (unlike #k for k < K) is of 
course independent of the ordering of the K conjuncts 
in the initial query. Since by assumption, 2 is the set 
of all variables appearing in the K literals of the initial 
query, and the set of uninstantiated variables at the 
leftmost literal over all levels must be 2, we have from 
(9) when k = K, that the expected number of solutions 
is 

Figure 1 includes a table at the right showing the 
number of nodes Nk at each level k for the particular 
problem instance being solved and also the correspond- 
ing expected number of nodes fik by (8) at level k for 
the small class to which the instance belongs. For ex- - 
ample, in calculating the expected number of nodes N2 
at level k = 2, there are 2 uninstantiated variables, z1 
and ~2, in the leftmost p2 = p3 literal at the preceding 
level k = 1. We thus have m2 = m,, x m,, = 4, and 
from the initial specification of the small class we have 

R2 = R3 = Ss/Ms = 10/12. Thus (4. g) is the second 
factor in the expression for #2 in the table of figure 1. 
By (8), the first factor is #r from the preceding line of 
the table. 

5. Applications and Extensions 

Due to the preliminary nature of the work and also 
because of space restrictions, we only sketch here the 
ways in which the above complexity results may be 
applied and extended. This section is based on [ll] 
where these issues have been addressed in more detail. 

The above complexity expressions are for finding all 
solutions to a conjunctive query against databases of 
an arbitrary small class, where the databases are all 
equally likely. As such, our complexities are exact ez- 
petted case results. However, we have found them also 
to be good approximations to the exact case complex- 
ity of solving most individual instances of a given small 
class. 

Experiments have shown that most instances of a 
small class have a similar complexity of solution, and so 
the expected case complexity for a small class is close 
to that of most subsumed instances. Specifically, we 
have found that about 85% of the instances in a small 
class have (exact-case) complexity of solution within 
15% of the expected complexity for their small class 
value. It is in this sense that we say that small classes 
are homogeneous. Homogeneity is an unusual and very 
useful property of problem subclasses. It was first ob- 
served for the essentially same kind of small classes 
(called c-classes in [12]) used in our analyses of tra- 
ditional (non-Prolog) methods for solving constraint 
satisfaction problems [6] [8] [12]. 

The key to obtaining homogeneity for constraint sat- 
isfaction problems is the use of the Rj “constraint loose- 
ness” parameters in defining small classes. Problem in- 
stances whose corresponding “constraints” have equal 
looseness are usually sufficiently alike, given equality 
of the other parameters used in defining a small class, 
that their complexities of solution are also close. Small 
class homogeneity allows our expected case complexity 
to be used - as in figure 1 - as a good estimate for 
individual instances of the corresponding small class. 
As such, the results can be applied irrespective of the 
actual probability distribution or grouping of instances 
that occurs in practice. The notion of homogeneity and 
its importance is studied more fully in [lo]. 

However our analysis assumed a query of quite re- 
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stricted form; in particular we required literals to be 
isomorphic to the fact templates defining the small 
class (see (4)). M ore general kinds of queries are cer- 
tainly possible, such as that in (3). Our results do not 
give the expected complexity for solving such queries. 

This is just the branching factor from (8). In other 
words, Warren’s heuristic can be interpreted as 

However, in approximating the exact case complex- 
ity for a specific problem instance our results may be 
applied even for these different kinds of queries. The 
reason is simply because when only a single instance 
is of interest, no particular parent small class has been 
specified. The latter may therefore be chosen as con- 
venient for the purposes of the computation. In par- 
ticular, we are free to choose the parent small class 
so that the database query of interest satisfies the re- 
quired assumptions of the analysis. The procedure is 
quite straight-forward, as given in [ll]. Having chosen 
an appropriate parent small class, the corresponding 
parameter values are inserted into (10). Due to ho- 
mogeneity, the resulting expected complexity for the 
small class is likely to be a good approximation for the 
original instance even though the small class is only a 
“nominal” parent of the instance. In this way small 
class homogeneity allows our results to be used to ap- 
proximate well the exact case complexity of most scsp 
instances, even for conjunctive queries not of the type 
assumed for the expected case analysis per se. 

The next logical step is to consider ways in which our 
results may guide problem solving so as to minimize 
complexity, rather than just predicting the complexity. 
Warren in [19] has proposed a heuristic for ordering 
the conjuncts in a query: rank the literals according to 
increasing cost, where cost of a literal (he calls them 
goal predicates) is defined as “the total size (i.e. num- 
ber of tuples) of the relation corresponding to the goal 
predicate, divided by the product of the sizes of the 
domains of each instantiated argument position”. It is 
not obvious why his cost measure, and its use in this 
way, is appropriate. However it becomes clear when 
the relation to our analysis is established. In our no- 
tation Warren’s cost for the k-th literal in a query is 

Sk / n mzi = Sk / n mzi 
ZiEl(k) PiEZk-U(k) 

= Sk [ rl[ mti] /Mk 
ZiEUtk) 

= [ n mzi ] R” 
.ZiEUtk) 

= m(“)R” 
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implicitly assuming that the instance of interest 
is a member of its natural parent small class, uni- 
formly distributed according to our probability 
model above 

choosing the next literal using a “greedy” ap- 
proach of minimizing the expected (over the par- 
ent small class) branching factor, and hence the 
expected number (over the parent small class) of 
nodes at the next level 

implicitly taking advantage of small class homo- 
geneity in using the result obtained with respect 
to the parent small class as appropriate to the 
initial instance itself. 

Our experiments [l] have shown Warren’s heuristic 
to usually lead to the optimal, or a near optimal, con- 
junct ordering in terms of minimizing the expected to- 
tal number of nodes N for the assumed parent small 
class of a given instance. Moreover, as a result of small 
class homogeneity, the actual total number of nodes N 
for a given instance is usually close to Iv for its parent 
small class, so that the conjunct ordering which mini- 
mizes N also tends to minimize N for the instance. 

However, Warren’s heuristic does not adwa ys succeed 
in minimizing IV of a small classes, let alone in min- 
imizing N of an individual member instance. More 
accurate heuristics are however implicit in our results 
above. One just needs to use (10) more completely, 
rather than in the incomplete greedy manner in which 
it was implicitly used by Warren. We are currently in- 
vestigating such improved theory-based heuristic guid- 
ance in solving sequential constraint satisfaction prob- 
lems [l]. Moreover, by generalizing the problem class 
under consideration (in particular, to allow databases 
with rules and variables) it should be similarly possible 
to obtain a formal basis for instance-specific, theory- 
based optimization of Prolog problem solving in gen- 
eral. 
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