
The Complexity of Constraint §atisfaction in Prolog

Bernard A. Nadel

Department of Computer Science
Wayne State University
Detroit, Michigan, 48202

ban@cs.wayne.edu

Abstract

We obtain here the complexity of solving a type of

Prolog problem which Genesereth and Nilsson have

called sequential constraint satisfactrlon. Such prob-

lems are of direct relevance to relational database re-

trieval as well as providing a tractable first step in ana-

lyzing Prolog problem-solving in the general case. The

present paper provides the first analytic expressions

for the expected complexity of solving sequential con-

straint satisfaction problems. These expressions pro-

vide a basis for the formal derivation of heuristics for

such problems, analogous to the theory-based heuris-

tics obtained by the author for traditional constraint

satisfaction problem-solving. A first application has

been in providing a formal basis for Warren’s heuris-

tic for optimally ordering the goals in a conjunctive

query. Due to the incorporation of “constraint loose-

ness” into the analysis, the expected complexity ob-

tained here has the useful property that it is usually

quite accurate even for individual problem instances,

rather than only for the assumed underlying problem

class as a whole. Heuristics based on these results can

be expected to be equally instance-specific. Prelimi-

nary results for Warren’s heuristic have shown this to

be the case.

1. Introduction

Two areas of major interest in Artificial Intelligence are
constraint satisfaction problem solving and the logic
programming language Prolog. Recently there has been
considerable interest in the relationship between these
two areas [4] [14] [16] [17] [NJ. This paper grew out
of a study of this relationship. It treats one of the
simplest types of Prolog problems, which Genesereth
and Nilsson [2] call sequential constraint satisfaction
problems. These involve a database consisting of no

rules, but only of facts all of which are ground, and a
query which is a conjunction of positive literals con-
taining variables. Strategies for ordering the conjunc-
tive queries have been studied in [15] and [19].

The present paper provides the first analytic expres-
sions for the expected complexity of solving such prob-
lems. The analysis is based on a division of the problem
class into what we call small classes, defined in section
2. These classes, and the assumed probability model
defined in section 3, are analogs for Prolog of those used
in the author’s earlier analyses of the complexity of tra-
ditional constraint satisfaction problem-solving [6], [8],
[12]. As opposed to the big classes which were also
used in prior work (but which are not defined here),
most instances of a small classes have remarkably sim-
ilar complexity values.

This homogeneity property is the result of taking into
account “constraint tightness” (in terms of Sj or Rj
below) in defining small classes. As a result of small
class homogeneity, the expected case complexity for a
given small class is likely to be a good estimate of the
“exact case” complexity of most individual instances in
the small class. This makes the expected case results
much more practical by allowing them to be used for
complexity prediction on an instance-by-instance basis,
independent of the applicable probability distribution,
if any, rather than only for a small class as a whole,
under the assumed distribution.

The expected complexity for solving sequential con-
straint satisfaction problems is obtained in section 4,
in terms of the expected number of nodes in the Pro-
log search tree for finding all solutions of a problem in
a small class. Extensions of the results are discussed
briefly in section 5. A simple running example is used
throughout.

The complexity expressions obtained here provide a
formal basis for the derivation of heuristics for solving
this kind of Prolog problem, analogous to the theory-

NADEL 33

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

based derivation of heuristics (for choosing a good al-
gorithm, search ordering and even problem represen-
tation) which has been possible for regular constraint
satisfaction problem-solving [3] [S] [7] [8] [9] [12] [13]. A
first example of this for our Prolog problems has been
in providing a formal basis for Warren’s intuitively mo-
tivated heuristic for optimally ordering the goals in a
conjunctive query [19]. The instance-specificity of the
complexity results here is expected to carry over to
the theory-based heuristics derived from them. Pre-
liminary results for Warren’s heuristic show this to be
the case. By generalizing the problem class under con-
sideration (in particular, allowing databases with rules
and variables) it should be possible to obtain simi-
lar instance-specific, theory-based guidance for Prolog
problem solving in general.

2. Sequential Constraint Satisfaction
Problems and Small Classes

To analyze the complexity of solving sequential con-
straint satisfaction problems it is convenient to divide’
the space of all possible databases for such problems
into what we class small classes. The expected com-
plexity derived will be over the databases of a small
class, each database arising with equal probability as
described in the next section.

Associated with a small class is an underlying set
z= {q,z2,..., .z~} of n variables, each having a finite
domain dzi = {1,2,. . . , m,;} of m,, candidate values.
We denote the domain values as integers here for con-
venience, but the results apply for values that are arbi-
trary Prolog ground terms. Variables zi will sometimes
be called domain variables or formal variables to dis-
tinguish them from logical variables which appear in
the queries to be asked with respect to a database.

There is a set P = {pr ,p2,. . . , PK} of Ii’ predicate
symbols, each having an associated fact template

Pj (-%I > %Q Y - * - Y %iaj) (1)

which specifies its arguments variables zik E 2 and
their corresponding argument positions. The order of
arguments in a template is usually, but not necessarily,
in increasing order of the argument variable indices.
A fact template is analogous to a relation schema in

‘This division is not a partition however, since a given
database may be considered as a member of an infinite num-
ber of small classes, as implied in section 5 and discussed more
fully in [ll].

34 AUTOMATEDREASONING

relational database theory [5]. It is not the same thing
as a literal used in a query of the Prolog database,
although they are related as discussed below. Zj =
{~ilr%,...,~iaj } and Aj =]Zj] are respectively the
argument set and urity of pj. We may assume without
loss of generality that the set 2 of all variables is given
byZ=UF=rZj.

Each database of the small class consists only of
ground facts for each of the predicate symbols pj. The
fact templates serve to specify the form and range of
these facts. Specifically, facts for pj must have the form

where h, is a value chosen only from the domain of
the argument variable zik occurring for that position
in the fact template. Each fact pj (Zj) thus corresponds
to an Aj-tuple Zj from the Cartesian product Dj of the
domains of the arguments of pj. Cartesian product Dj
and its size M are given respectively by Dj = X dzi

ZiEZj

and Mj = m.2;.
ZiEZj

For each pj there is a parameter Sj, called the sut-
isfiubidity of pj, which specifies how many facts for pj
are in the database. The quantity Rj = Sj/Mj we
call the sutisfiubility ratio for pj. Of course Sj and Rj
respectively satisfy 0 5 Sj 5 Mj and 0 5 Rj 5 1.
Rj is the fraction of possible tuples (formable from
the domains of the corresponding argument variables)
which actually correspond to facts in the database for
Pj - Considering the goals of a conjunctive query as
constraints to be simultaneously satisfied, Rj is a mea-
sure of the looseness of the constraint corresponding to
the pj goal.

The required Sj facts for pj can correspond to any
size-Sj subset of Dj and hence there are (7) ways
to choose the facts for pj. Since such a choiie of Sj
facts is required for each pj, 1 5 j 5 I<, the number
of sequential constraint satisfaction databases scsd in
a small class is

ISCSD(n, m, I(, Z, S)l = fi (z) .
j=l

Here SCSD(n, r-n, K, 2, S) denotes the generic
class characterized by n problem variables, set

small
lIl=

(mzl,mzZ,...,mzn } of domain sizes, K predicate sym-
bols, set Z = (Zi,&, . . . , 2~) of predicate argument
sets and set S = {Sl , S2, . . . , SK) of predicate satisfia-
bilities.

~3(~1,~2,1),~2(~1,~2) ~3(zl,z2,3),~2(~1,~2)

(az2) =/Ll) \o ‘I/ pw \(2,lPx%p

P2OJ) Pw&l) P2UJ) P2W) PWJ) Pww

I I

q q
W>l) WJ) UA3) (2~3) w&3)

k: Nk
0 1

1 2

2 6

3 5

14

N/c
1 = 1

l(3.i) = 2

2 - (4 * +$) = 65

S$(l-;) = 5

14i

Fig. 1: The Prolog search tree for the scsp of solving query (2) with respect to our example database.

For example, consider the set 2 = { ~1, ~2, zs} of
n = 3 underlying domain variables, having domains
d - dz2 21 - = {1,2} and d,, = {1,2,3} of respective
sizes m,, = m,, = 2 and mz3 = 3. Let’s say the
database consists of facts for I< = 3 predicate sym-
bols pl, ~2, ~3, with respective fact templates pl(z3),

P2h > z2), P3(~1, ~2, ~3) and satisfiabilities Si = 2, S2 =
3, s3 = 10. The Cartesian products for the three pred-
icates therefore have respective sizes i’Mi = m,, = 3,
M~=mzlxmz,=4andMs=mz,xmz,xmz,=12.
Thus the number of databases in the small class is
(zi) x (Fz) x (yz) = 6) x (i) x (ig) = 792. The
following is one of these 792 possible Prolog databases:

Pl(0 Pl(3). Pz(l, 1). P2(2,1). P2(% 2).

~~(1,1,1). P~(L~, 59. ~~(1~1~3). ~~(1,2,2). ~~(1,2,3).

P3(2,1,1>- P3(2,1,% P3(2,1,3)- P3(2,2,2)- P3(2,2,3)-

As required by the corresponding fact templates, the
values for the single argument of p1 come from the do-
main of ~3, the values for the first and second argu-
ments of p2 are respectively from the domains of ~1
and ~2, and the first, second and third argument val-
ues for p3 are respectively from the domains of ~1, ~2
and 2s.

A sequential constraint satisfaction problem scsp is
a sequential constraint satisfaction database scsd plus
an associated conjunctive query & such as

?- Pl(z3),P3(%,~2,~3),P2(%~2). (2)

The zi here are logical variables, not necessarily re-
lated to the domain variables of the same name used
to define the small class. Figure 1 shows the Prolog
search tree for solving this query with respect to the
above database. Success nodes, indicated by 0, are

labelled by the corresponding 3-tuple solution for the
logical variables in the order (~1, ~2, ~3). In the follow-
ing sections we derive the expected case complexity of
answering such queries with respect to the databases of
a small class. The analysis is for the case, as in figure
1, where u/Z solutions of a query are sought.

3. Probability Model

The probability model we assume for the databases of
a small class is very straight-forward: each selection
of Sj tuples from the Cartesian product Dj of the j-
th constraint is equally likely, and such a selection is
made independently for each predicate pi, 1 5 j 5 K.
As such, each database scsd in a small class SCSD is
equally likely, with probability P(scsd) = ISCSDI-l =

I-J;, (2)-l.

4. Expected Complexity

For the generic small class SCSD(n, m, I<, 2, S) de-
scribed above, our analysis considers only queries which
are a conjunction, in any order, of 1’ positive literals,
one for each small class predicate symbol pj . These lit-
erals contain logical variables. In practice, logical vari-
ables are not necessarily named zi as are the domain
variables in terms of which a small class is defined.
Nor is there necessarily a one to one correspondence
between logical variables in the set of query literals
and domain variables in the set of fact templates. For
example, given our previous example small class, such
a correspondence is lacking for query

(3)

NADEL 35

even though this is a perfectly legal query. However, for
the following analysis we assume queries for which such
a one to one correspondence does exist. For simplicity
we may then assume that logical variables have the
same names as their corresponding domain variables.
Therefore, if in the small class definition, a predicate
has associated fact template as in (l), then we assume
an “isomorphic” corresponding literal

Pj(zj) =Pj(zil,za~!...~zi,j),

in the query, the zd here of course being logical vari-
ables. As in (4), we may therefore also use Zj to de-
note the set of logical variables of the pj query literal,
as well as for the set of domain variables in the pj fact
template.

To allow for an arbitrary permutation R of conjunc-
tions (literals) in the query, we write pi and Zj respec-
tively for the predicate symbol and the argument set
of the j-th literal in the query. The queries we consider
are thus of the form

?- p’(Z’),p”(Z”), - -. ,pK(ZK) (5)
where pi = pr(j) and Zj = Zr(j) (and similarly for
all predicate-related quantities: Dj = D,(j), Mj =
MT(j), Sj = ST(j), Rj = R,(j)). Query (2) used in
figure 1 is of the form given by (4) and (5)) assumed
in our analysis. It corresponds to permutation 7r =

(: g z) and we have p1 = p,(l) = PI, P2 = P7r(2) =

~3 and p3 = ~~(3) = ~2, and analogously Z1 = Zi,
z2 = 2s and Z3 = 22. Another query of the form
covered by our analysis is

?-- P2(~1,~2),pl(z3),p3(~1,~2,~3).

corresponding to permutation 7r = (i T z).
As our measure of complexity for solving sequential

constraint satisfaction problems in Prolog we use the
number of nodes in the Prolog search tree for finding
all solutions. We include the root node and the success
nodes 0. Variations on this measure may be appro-
priate for different implementations of Prolog, but in
general these variations should be closely related to the
fundamental measure used here and be derivable by a
sirnilar analysis.

Counting the root node as being at level Ic = 0, the
search tree for solving a scsp has levels k = 0, 1, . . . , I<,
as for example in figure 1. Since the number of nodes
N in a search tree can of course be expressed as the
sum of the number of nodes Nk at each level k of the
tree we have N = CfzO Nk. Taking the expectation of

both sides we have that the expected number of nodes
in a Prolog search tree for instances of a small class of
K predicates is the sum of the expected number #k of
nodes at each level,

K

R =):&.
k=O

(6)

We now obtain a recursive, then non-recursive, ex-
pression for #k. The nodes at level k arise as chil-
dren of those at level k - 1. These children of a node
are generated by unifying in all ways the leftmost lit-
eral at a level k - 1 node with the corresponding facts
in the database. The leftmost literal at a level k - 1
node is the pk literal (that corresponding to predicate
symbol p”) and each node at level k - 1 potentially
has a child for each combination of values that can
be assigned to the uninstantiated variables of that lit-
eral. The set of instantiated variables is the same for
the leftmost literal of each level k - 1 node, and is
the union I(“) = @ii Zj of the argument sets of the
initial-query literals pl(Z1) to pksl(ZkB1), since these
literals have all been solved at preceding levels. The
set of uninstantiated variables of the pk literal at a level
k - 1 node is thus U(‘“) = Zk - I(“), the set difference
between the argument set for the literal and the in-
stantiated variables so far.

By definition of the parent small class, there are m,,
& priori possible values for variable zi. Each uninstan-
tiated variable .za E U(‘“) of the pk literal at a level k - 1
node has such an associated domain, and hence

children are & priori possible for a level k - 1 node
by unifying each uninstantiated variable in all ways
against facts in the database. However, also by def-
inition of the parent small class, only some fraction
R” = Sk/Mk of the possible M” tuples of the carte-
Sian product Dk correspond to database facts for pk.
Thus only this fraction of the maximum A&” unifica-
tions are possible (the actual number of possible unifi-
cations being Sk = RkMk) for the initial-query literal
~~(2”). Even though in general the p” literal at level
k - 1 is not pk(Zk), but is ~“(2~) with some argu-
ment variables zi E 2” already instantiated, the same
fraction R” nevertheless governs how many unifications
are possible on average for the pk literal at level k - 1
against database facts, given an arbitrary assignment
of values to its instantiated variables. But due to the

36 AUTOMATEDREASONING

instantiation of some variables of the p” literal, this
fraction is now out of rnck) possibilities rather than all
iv”.

The average number of children (or average branch-
ing factor) of a level k - 1 node is therefore m(“)R”.
The average number of nodes at level k is thus Nk =
flk-rm(“)R”, the average number of nodes at the pre-
vious level by their average branching factor. We have
then the following recurrence for the expected number
of nodes at level k in the Prolog search tree

Nk =
- {

1 ifk=O
Nk-lmCk)Rk if 1 5 k 5 K (8)

which, by induction, has the closed-form solution

Nk = fi ,(j) Rj =fi[n mzi]Rj. (9)
j=l j=l - aicU(j)

A product over no terms (i.e. when k = 0) is considered
to equal 1 (cf. 2’ = 1). Similarly in (7), if there are no
uninstantiated argument variables for the pk literal at
level k - 1 then rnck) = 1. By (6) and (9), the expected
total number of nodes in a Prolog search tree is

k=Oj=l k=O j=l -zi~u(j)

Note that for k = IC, expression (9) must be the
expected number of solutions for an instance of a small
class - a result which (unlike #k for k < K) is of
course independent of the ordering of the K conjuncts
in the initial query. Since by assumption, 2 is the set
of all variables appearing in the K literals of the initial
query, and the set of uninstantiated variables at the
leftmost literal over all levels must be 2, we have from
(9) when k = K, that the expected number of solutions
is

Figure 1 includes a table at the right showing the
number of nodes Nk at each level k for the particular
problem instance being solved and also the correspond-
ing expected number of nodes fik by (8) at level k for
the small class to which the instance belongs. For ex- -
ample, in calculating the expected number of nodes N2
at level k = 2, there are 2 uninstantiated variables, z1
and ~2, in the leftmost p2 = p3 literal at the preceding
level k = 1. We thus have m2 = m,, x m,, = 4, and
from the initial specification of the small class we have

R2 = R3 = Ss/Ms = 10/12. Thus (4. g) is the second
factor in the expression for #2 in the table of figure 1.
By (8), the first factor is #r from the preceding line of
the table.

5. Applications and Extensions

Due to the preliminary nature of the work and also
because of space restrictions, we only sketch here the
ways in which the above complexity results may be
applied and extended. This section is based on [ll]
where these issues have been addressed in more detail.

The above complexity expressions are for finding all
solutions to a conjunctive query against databases of
an arbitrary small class, where the databases are all
equally likely. As such, our complexities are exact ez-
petted case results. However, we have found them also
to be good approximations to the exact case complex-
ity of solving most individual instances of a given small
class.

Experiments have shown that most instances of a
small class have a similar complexity of solution, and so
the expected case complexity for a small class is close
to that of most subsumed instances. Specifically, we
have found that about 85% of the instances in a small
class have (exact-case) complexity of solution within
15% of the expected complexity for their small class
value. It is in this sense that we say that small classes
are homogeneous. Homogeneity is an unusual and very
useful property of problem subclasses. It was first ob-
served for the essentially same kind of small classes
(called c-classes in [12]) used in our analyses of tra-
ditional (non-Prolog) methods for solving constraint
satisfaction problems [6] [8] [12].

The key to obtaining homogeneity for constraint sat-
isfaction problems is the use of the Rj “constraint loose-
ness” parameters in defining small classes. Problem in-
stances whose corresponding “constraints” have equal
looseness are usually sufficiently alike, given equality
of the other parameters used in defining a small class,
that their complexities of solution are also close. Small
class homogeneity allows our expected case complexity
to be used - as in figure 1 - as a good estimate for
individual instances of the corresponding small class.
As such, the results can be applied irrespective of the
actual probability distribution or grouping of instances
that occurs in practice. The notion of homogeneity and
its importance is studied more fully in [lo].

However our analysis assumed a query of quite re-

NADEL 37

stricted form; in particular we required literals to be
isomorphic to the fact templates defining the small
class (see (4)). M ore general kinds of queries are cer-
tainly possible, such as that in (3). Our results do not
give the expected complexity for solving such queries.

This is just the branching factor from (8). In other
words, Warren’s heuristic can be interpreted as

However, in approximating the exact case complex-
ity for a specific problem instance our results may be
applied even for these different kinds of queries. The
reason is simply because when only a single instance
is of interest, no particular parent small class has been
specified. The latter may therefore be chosen as con-
venient for the purposes of the computation. In par-
ticular, we are free to choose the parent small class
so that the database query of interest satisfies the re-
quired assumptions of the analysis. The procedure is
quite straight-forward, as given in [ll]. Having chosen
an appropriate parent small class, the corresponding
parameter values are inserted into (10). Due to ho-
mogeneity, the resulting expected complexity for the
small class is likely to be a good approximation for the
original instance even though the small class is only a
“nominal” parent of the instance. In this way small
class homogeneity allows our results to be used to ap-
proximate well the exact case complexity of most scsp
instances, even for conjunctive queries not of the type
assumed for the expected case analysis per se.

The next logical step is to consider ways in which our
results may guide problem solving so as to minimize
complexity, rather than just predicting the complexity.
Warren in [19] has proposed a heuristic for ordering
the conjuncts in a query: rank the literals according to
increasing cost, where cost of a literal (he calls them
goal predicates) is defined as “the total size (i.e. num-
ber of tuples) of the relation corresponding to the goal
predicate, divided by the product of the sizes of the
domains of each instantiated argument position”. It is
not obvious why his cost measure, and its use in this
way, is appropriate. However it becomes clear when
the relation to our analysis is established. In our no-
tation Warren’s cost for the k-th literal in a query is

Sk / n mzi = Sk / n mzi
ZiEl(k) PiEZk-U(k)

= Sk [rl[mti] /Mk
ZiEUtk)

= [n mzi] R”
.ZiEUtk)

= m(“)R”

38 AUTOMATED REASONING

implicitly assuming that the instance of interest
is a member of its natural parent small class, uni-
formly distributed according to our probability
model above

choosing the next literal using a “greedy” ap-
proach of minimizing the expected (over the par-
ent small class) branching factor, and hence the
expected number (over the parent small class) of
nodes at the next level

implicitly taking advantage of small class homo-
geneity in using the result obtained with respect
to the parent small class as appropriate to the
initial instance itself.

Our experiments [l] have shown Warren’s heuristic
to usually lead to the optimal, or a near optimal, con-
junct ordering in terms of minimizing the expected to-
tal number of nodes N for the assumed parent small
class of a given instance. Moreover, as a result of small
class homogeneity, the actual total number of nodes N
for a given instance is usually close to Iv for its parent
small class, so that the conjunct ordering which mini-
mizes N also tends to minimize N for the instance.

However, Warren’s heuristic does not adwa ys succeed
in minimizing IV of a small classes, let alone in min-
imizing N of an individual member instance. More
accurate heuristics are however implicit in our results
above. One just needs to use (10) more completely,
rather than in the incomplete greedy manner in which
it was implicitly used by Warren. We are currently in-
vestigating such improved theory-based heuristic guid-
ance in solving sequential constraint satisfaction prob-
lems [l]. Moreover, by generalizing the problem class
under consideration (in particular, to allow databases
with rules and variables) it should be similarly possible
to obtain a formal basis for instance-specific, theory-
based optimization of Prolog problem solving in gen-
eral.

References

[l] Chugh K., Theory-based heuristics for constraint
satisfaction in Prolog, Computer Science Dept.,
Wayne State University, Detroit, Michigan, M. SC.
thesis, 1990, to appear.

[2] Genesereth M. R., and Nilsson N. J., “Logical
Foundations of Artificial Intelligence”, Morgan
Kaufmann, Los Altos, California., 1987.

[3] Haralick R. M. and Elliot G. L., “Increasing tree
search efficiency for constraint satisfaction prob-
Iems”, Artificial Intelligence, vol. 14, 1980, pp.
263-313.

[4] Jaffar J. and Lassez J.-L., “Constraint logic
programming”, Proc. 14-th ACM Conference on
Principles of Programming Languages, Munich,
West Germany, January, 1987.

[5] Maier D., The Theory of Relationad Databases,
Computer Science Press, Rockville, Maryland,
1983.

[6] Nadel B. A., The Consistent Labeling Problem and
its Algorithms: Towards Exact-Case Compllexities
and Theory-Based Heuristics, Computer Science
Dept., Rutgers University, New Brunswick, N. J.,
May 1986, Ph. D. dissertation.

[7] Nadel B. A., ‘Representation selection for con-
straint satisfaction: a case study using n-queens”,
IEEE Expert, vol. 5, #3, June 1990.

[S] Nadel B. A., “The complexity of Backtracking and
Forward Checking: search-order and instance spe-
cific results”, submitted for publication. Also in
technical report CSC-88-002, Dept. Computer Sci-
ence, Wayne State University, Detroit, Michigan.

[9] Nadel B. A., “C onstraint satisfaction algorithms”,
Computationad Intelligence, vol. 5, no. 4, Novem-
ber 1989, pp. 188-224. A preliminary version ap-
peared as “Tree search and arc consistency in con-
straint satisfaction algorithms”, in Search in Arti-
ficial Intelligence, edited by L. Kanal and V. Ku-
mar, Springer-Verlag, 1988.

[lo] Nadel B. A., “Precision complexity analysis: a
case study using insertion sort”, submitted for
publication. Available as technical report CSC-88-
008, 1988, Dept. Computer Science, Wayne State
University, Detroit, Michigan.

[ll] Nadel B. A., “The complexity of constraint satis-
faction in Prolog”, technical report CSC-89-004,
1989, Dept. Computer Science, Wayne State Uni-
versity, Detroit, Michigan.

[12] Nude1 B. A., ‘Consistent-labeling problems and
their algorithms: expected-complexities and
theory-based heuristics”, Artificial Intelligence
(Special Issue on Search and Heuristics), vol. 21,

nos. 1 and 2, March 1983, pp. 135-178. Also in
book: Search and Heuristics, Ed. J. Pearl, North-
Holland, Amsterdam, 1983.

[13] Nude1 B. A., “Solving the general consistent label-
ing (or constraint satisfaction) problem: Two al-
gorithms and their expected complexities”, Proc.
Nat. Conf on Artificial Intelligence (AAAI,),
Washington D.C., August 1983, pp. 292-296.

[14] Rossi F., “Constraint satisfaction problems in
logic programming” SIGART Newsletter of the
ACM, October 1988, pp. 24-28.

[15] Smith D. E. and Genesereth M. R., “Ordering con-
junctive queries”, Artificial Intelligence, vol. 26,
no. 3, 171-215, 1985.

[16] Van Hentenryck P. and Dincbas M., “Domains
in logic programming”, Proc. Fifth Nat. Conf.
on Artificial Intelligence (AAAI), Philadelphia,
Pennsylvania, August 1986.

[17] Van Hentenryck P., Consistency Techniques in
Logic Programming, Universitaires Notre-Dame
de la Paix, Namur, Belgium, July 1987, Ph. D.
dissertation.

[18] Van Hentenryck P., “A theoretical framework
for consistency techniques in logic programming”,
Proc. International Joint Conference on Artifkiad
Intelligence (IJCAI), August 1987, pp. 2-8.

[19] Warren D., “Efficient processing of interactive re-
lational database queries expressed in logic”, Proc.
Seventh Conf on Very Large Data Bases, Cannes,
France, 272-282, August 1981.

NADEL 39

