
An Algebraic Approach to Conflict Resolution in
Planning
Qiang Yang *

Department of Computer Science
University of Waterloo

Waterloo, Ont. Canada, N2L 3Gl
qyang@watdragon.waterloo.edu

Abstract

This paper presents an algebra for conflict resolution
in nonlinear planning. A set of conflicts in a plan is
considered as a constraint network. Each node in the
network represents a conflict, and is associated with a
set of alternative ways for resolving it. Thus, resolving
conflicts in a plan corresponds to selecting a set of
consistent resolution methods so that, after they are
applied to the plan, every conflict can be removed.
The paper discusses the representional issues related to
the conflict resolution, presents an algebra for resolving
conflicts, and illustrates that some modified algorithms
for preprocessing networks of constraints can greatly
enhance the efficiency of conflict resolution.

Introduction

Many planners can be considered as search in a space
of possible plans [Chapman, 1985; Sacerdoti, 1977;
Stefik, 1981; Tate, 1977; Wilkins, 19881. A major con-
tributing factor to the branching factor in this space
is the number of alternative ways for resolving a set
of conflicts in a plan. Since search efficiency is greatly
affected by the branching factor in the search space,
reducing the number of ways for resolving a set of con-
flicts is an important way for improving planning effi-
ciency.

Unfortunately, most existing planning systems
[Chapman, 1985; Sacerdoti, 1977; Stefik, 1981; Tate,
1977; Wilkins, 19881 spend little or no effort in an-
alyzing conflicts in an intermediate plan, in order to
reduce the number of ways for resolving them. Usu-
ally there is more than one conflict to be introduced
to a given plan as a result of some planning activity.
These planners will simply generate a set of resolution
methods for each conflict, and either commit to one
of them in a depth-first manner, or generate the set
of all possible successor states, in a breadth-first way.
However, as we will show later in the paper, some of

*This work was supported in part by an interim research
grant from the Faculty of Mathematics at the University of
Waterloo.

the conflict resolution methods can be proven to be
either not applicable to the current plan, or related
to other methods in such a way that they are redun-
dant. In most of the existing planning systems, a great
deal of computational overhead can be spent on these
“useless” branches. It would be desirable to reduce
the number of alternative ways in many circumstances
through an analysis of conflicts in a plan.

Without any analysis at all on the inter-relations
among the conflicts can be considered as one extreme
on a spectrum of search control, while doing a complete
analysis in order to minimize the number of possible
alternatives can be considered as the other extreme
on that spectrum. Certainly, it may not be advanta-
geous to do a complete analysis over doing no analysis
in improving planning efficiency, since there may exist
some middle points on the spectrum that are better
than either extreme. However, without knowing both
ends of the spectrum well, it is hard to make an intel-
ligent decision on how much analysis is needed. It is
the purpose of this paper to investigate various ways
for minimizing the number of alternative methods for
resolving a given set of conflicts.

In particular, this paper presents a conflict algebra
for analyzing methods for resolving a set of conflicts in
nonlinear plans. Modified versions of the preprocess-
ing algorithms for network-based constraint satisfac-
tion problems (CSP) can be used for efficient applica-
tion of the algebra. The modified algorithms take into
account a wider range of possible constraints, so that
it is possible to prune from the constraint network not
only values that are inconsistent, but also those that
can be proven “redundant.” Interestingly, these algo-
rithms can be applicable to large classes of problem
domains rather than just the planning domain, and in
this respect, part of the results in this paper should
also be of interest to researchers in CSP area.

Below we discuss how conflicts in a plan are repre-
sented. Then we consider the details of the conflict
algebra, and show how to apply it to planning. This is
followed by a discussion of the algorithms for prepro-
cessing a constraint network.

40 AUTOMATEDREASONING

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

Conflicts and Conflict Resolutions

Preliminaries

A plan consists of a set of operators, a set of prece-
dence constraints on the operators, and a set of co-
designation constraints on the binding of variables of
the operators. Each operator o is defined in terms
of a set of preconditions, P,, and a set of effects E,.
Two special operators, start and finish, exist in any
plan, representing the initial and goal situations, re-
spectively. The operator, start (finish), has a set of
empty preconditions (effects), and has as its effects
(preconditions) the set of conditions true in the ini-
tial (goal) situation.

Let P be a plan. We adopt the notational convention
of [Chapman, 19851 for precedence and codesignation
constraints. Thus, a 4 b denotes that the operator a
precedes operator b in P, and p M Q or p $ Q denotes
that p and 4 are constrained to codesignate or non-
codesignate in P, respectively. If for two variables x
and y, x = y, then x and y are constrained to be bound
to the same constant. Moreover, we also assume both
the definitions and graphical notation of necessarily
(0) and possibly (0) in [Chapman, 19851.

Below we formally define conflicts. To do this,
we first define precondition establishment:operator a
is said to establish a condition p for operator b, or
Est(a, b, p), if and only if (i) p is a precondition for
b, (ii) q (a 4 b), (iii) 3u E E, such that q (u x p),
and (iv) Vu’ such that q J(U 4 a’ 4 b) and ‘#u’ E Eat,
lO(U’ z p). That is, no other operators necessarily
between a and b necessarily assert p.

In [Hertzberg and Horz, 19891, a is called a producer
of p for b, while b is called a user of p. If for ev-
ery operator b in a plan and for every precondition p
of b, there exists an operator a such that Est(a, b,p),
then P is said to be well-formed [Hertzberg and Horz,
19891. Note that a well-formed plan is not necessarily
a correct plan, since some operators may exist that can
possibly deny certain preconditions.

In this paper, we make the same assumptions as
[Hertzberg and Horz, 19891. That is,

(1) All plans are well-formed.
(2) The locality assumption holds. That is, every
operator must specify all the domain conditions it
may change, and every change is independent of
the situation before the operator is applied.
(3) The STRIPS assumption holds. That is, con-
ditions change only if mentioned in the effects
some operators in a plan.

Although the conflict resolution methods to be intro-
duced below become inadequate without these assump-
tions, the preprocessing algorithms later in the paper
are independent of them.

Conflicts in a Plan
Let P and U be operators in a plan such that
Est(P, U,p). Suppose there is another operator N in
the plan such that (i) N can possibly be between P and
U, and (ii) 3-q E EN such that 0(4 z p). Then N is
called a clobberer of p for U, and tuple (P, U, N, p, q) is
called a conflict in the plan. To distinguish from other
forms of conflicts in a plan, such as consumable re-
sources, we call the conflicts defined above as deleted-
condition conflicts. In this paper, we only consider
deleted-condition conflicts.

Hertzberg et. al. [Hertzberg and Horz, 19891 have
shown that all deleted-condition conflicts in a well-
formed plan are compositions of four types of conflicts
listed below:

(1) Linear Conflict (LN(P,U,N,p,q)) if N is be-
tween P and U.
(2) Left Fork (LF(P,U,N,p,q)) if U is after P and
N, and P and N are unordered in the plan.
(3) Right Fork (RF(P,U,N,p,q)) if P precedes both
U and N, and the latter two are unodered in the
plan.
(4) Parallel Conflict (PR(P,U,N,p,q)) if P pre-
cedes U, and N is unordered with both operators.

A plan is correct, if its set of operators is partially or-
dered by the precedence constraints, it is well-formed,
and it is free of conflicts.

Conflict Resolution Methods
To resolve a conflict, a planner imposes various kinds
of constraints. Chapman [Chapman, 19851 formulated
a necessary and sufficient goal achievement criterion,
known as the necessary modal truth criterion, or MTC.
He also provided a set of sufficient procedural inter-
pretations of the MTC, which includes “promotion,”
“demotion, ” “establishments,” “separation,” and “in-
troducing white knights.” These methods can be con-
sidered as various alternative constraints one can im-
pose on a plan for resolving a given conflict. A simpli-
fied version of the above methods is listed below: Let
(P, U, N, p, a) be a conflict. Then the following con-
straints are sufficient for resolving it:

(1) promotion of clobberer: U 4 N,
(2) demotion of clobberer: N -+ P,
(3) separation: p $ 4,
(4) demotion and establishment : for some W,
where W is either an existing operator in the plan,
or an inserted operator, and for some T E Ew,
N < W 4 U and r ==: p.

Now consider how to resolve each type of conflict in a
well-formed plan. We use + for logical disjunction, and
. for conjunction. Let rde represent the establishment
and demotion methods. That is,

Tde = (N + W < U) . (T z p),

YANG 41

III e P(W)

Figure 1: An example plan with two conflicts. The
liter& P(x), 4(Y), t e c., are the effects of the operator
immediately before them.

where T E Ew and IV is an operator. Let Rde be the
disjunction of all r&. Then

LN(P, u, N, P, 4) = (P $4) + Rdet

LF(P, u, N, P, 4) = (N-‘)+(ph)+Rde,

RF(P, u, N, P, a) = (u -(N) + (P # a) + Rde,

PR(P, u, N, P, 4) = LF(P, u, N, P, 4)

+RF(P, U, N, P, 9).

where ‘=‘ means “can be resolved by.”
As an example, consider the plan shown in Figure 1.

The set of precedence constraints in this plan is:

P = (a 4 b, a 4 c, b 4 d, c 4 d, a -i d).

Suppose that Est(a, b, p(z)), and Est(a, c, q(y)), then
there are two conflicts in this plan, Cl and C2, where
Cl = RF@, h c, P(x),P(Y)) = ~11 + m + R, ~11 =
(b 4 c), rr2 = (x $ y), and R = 733 . 734 . ~15, with
713 = (c 4 e), ~14 = (e 4 b), and 735 = (w M x). C’2 =
-w% c> b, q(y), q(x)) = r21+ 7-22, where r21 = (c -X b),
and ~22 = (x + y).

Relations Among Conflicts
Above we have shown that all conflicts in a well-formed
plan can be resolved using a set of resolution methods,
represented in a concise form. If all the conflicts in a
plan are found, then each conflict will be automatically
associated with a set of alternative resolution methods,
and the set of all conflicts can be represented in a con-
junction of disjunctive normal form. The purpose of
representing the conflict resolution methods is to find
one or all constraints that can resolve the conflicts in
a plan. Each consistent set of constraints that can
resolve all the conflicts is called a solution. Below we

consider the relationship between different conflict res-
olution methods.

Let RI and R2 be two precedence constraints.
RI subsumes Ra, or S(RI, Rz), if and only if
(RI} UB(P) 3 R2, where B(P) is the set of prece-
dence (co-designation) constraints in P. Likewise for
codesignation and non-codesignation constraints.

Intuitively, RI subsumes R2 if imposing R1 will
guarantee that R2 is also imposed. Thus, Ra is consid-
ered to be weaker than Rx. For example, let rr = (b 4
c), and r2 = (a 4 d). If ((a 4 b),(c 4 d)} E B(P),
then S(rl,rs). As another example, let r1 = (z x y)
and r2 = (y $2 z). If (z $ z) E C(P) then S(q,rz).

Imposing a set of constraints on a plan may result
in an incorrect plan. With the assumptions in this pa-
per, such incorrect plans are signaled by inconsistent
constraints of the form a 4 a or x + x, for some op-
erator a and variable x. Below, we use “Fail” for such
situations.

Two constraints RI and R2 are inconsistent, or
1(RI, R2), if and only if

(RI, R2) U C(P) U B(P) 1 Fail.

Intuitively, RI and R2 are inconsistent if imposing RI
and R2 together will result in a contradiction in a plan.
For example, if r1 = (a 4 b), and r2 = (b -X a),
then I(rr , r2). Also consider an example of inconsis-
tent codesignation constraints. If r1 = (x M y) and

= (u c
? 1

4, and ((a: = 4, (Y $ 41 E C(P), then
n,r2 .
Having the above definitions, we now can prove the

following theorems:

Theorem 1 If S(R1, R), S(R2, R’), and I(R, R’),
then I(RI, R2).

Intuitively, this theorem says that if the weaker con-
straints implied by two constraints are inconsistent,
then they are inconsistent themselves.

Theorem 2 If S(R1, R2), S(R2, Ra),then S(R1, R3).

This says the subsumption relation is transitive. We
also require that S is reflexive. However, the inconsis-
tency relation is not transitive.

Algebraic Rules
The disjunction and conjunction operations can be
considered as algebraic operations, with special seman-
tics. For example, the meaning of a conjunction RI - R3
in a disjunctive normal form representation of a con-
flict is that it is sufficient to impose both RI and R2 for
removing some conflicts. The meaning of disjunction
RI + Ra is that either RI or R2 is sufficient for resolv-
ing some conflicts. Given the precise meaning of these
operations, we can prove that “s” and “+” satisfy the
rules of boolean algebra, as well as the following set of
rules:

Rule 1 If S(R1, I??) then RI - R2 = RI.

42 AUTOMATEDREASONING

Rule 2 IfS(R1,R~) and u is any constraint, then RI-
u+Ra=Ra.

Rule 3 If S(R1, R2) and S(R1, Rs), then S(R1, R2 .
R3), and S(Rl, & + R3)*

Rule 4 If R = RI . R2, then S(R, RI) and S(R, Rs).

Consider the plan shown in Figure 1. Analysis
of the conflicts establishes the following relationships:
I(rll, r21) S(rl2, m), S(m, w), and S(& r21).

Expanding Cr . C2 we get

rll - r21+ rll - r22 + rl2 - r21

+rl2 - r22 + R - r21+ R - r22
rll - r22 + rl2 l r 2 1+ rl2 - r22

+R - m+ R. r22 (I(rll, 7-21))

rll - r22 + rl2 - r 2 1+ rl2

+R - m + hf. m (Rulel)
r12 + R - r21 + R - r22 (RuZe2)
m + R - m + R (RuEel)
r12 -I- R (RuZe2)

Thus, using algebraic rules we are able to reduce the
number of backtracking points from 6 to 2.

Pruning using CSP Techniques

A set of conflicts can be considered as a constraint net-
work, where each conflict is a node, and the consistency
relations between the conflicts are arcs in the network.
Each node has a set of values to choose from, each value
being an alternate conflict resolution method. Thus,
a conflict resolution problem can be considered as a
constraint satisfaction problem (CSP). In particular,
the goal of a conflict resolution problem in planning is
either to find out the set of all consistent values, or to
find out just one value.

As in CSP, we would like to enforce arc and path
consistency of the network. The degree of constraints
in such a network of conflicts can be the size of the
network. To see this, consider the following exam-
ple. Each node Ni in the network contains a primitive
precedence constraint ai < ai+l, for i = 0, . . . , n - 1.
Also, node N, contains a value uT2. 4 ao. Thus, if no
two ai are identical, then no proper subset of the set
of these values is inconsistent, while the set of values
when considered together is. This particular network
is constrained by n-ary constraints. It follows that en-
suring arc and path consistencies is not sufficient for
global consistency in general.

Important difference exists between this particular
CSP and a traditioual one, because of the existence
of subsumption relations between the different values
of a node. Using this relation, redundant backtrack
points can be quickly discovered, aud removed. The
set of rules that euable this ability is what we call
“pruning rules.” Below, we consider path consistency
and redundancy removal separately.

Path Consistency

The first type of pruning is the same as a traditional
definition for arc and path-consistency in CSP: Let Cr
and C2 be two nodes in a constraint network. If for
some R E Cl such that ‘JR’ E C2 I(R, R’) holds, then
R can be pruned from Cr.

If all the values of Cr are pruned,then the network
has no solution. This type of pruning is called “incon-
sistency pruning.”

New relations concerning inconsistency can also be
obtained when considering groups of nodes greater
than two. The most commonly known such algorithms
for establishing new relations are the path-consistency
algorithms. We present a modified path consistency al-
gorithm based on algorithm PC-2 in [Mackworth and
Freuder, 19851. As in PC-2, this algorithm returns
an updated set of inconsistency relations, possibly im-
plemented in a matrix form. The difference here is
that upon termination, a list Q of arcs that are mod-
ified during the execution of the entire algorithm is
returned. This list is used for further removal of re-
dundant values or nodes in the network, and we will
discuss this in detail in the next subsection.

The function PC is listed below. In PC, Related-
Paths(i, b, j) is a function which returns a set of length-
2 paths that might have their consistency affected
by a change in the consistency of (i, k, j). Likewise,
REVISE((i, k, j)) re t urns true if I(i, j) is modified due
to path inconsistency. Both functions are defined in
[Mackworth, 19811.

Function PC(Q’)
begin

Q := emptyset;
while Q’ is not empty, do

begin

end

select and delete a path (i, k, j) from Q’;
if REVISE((i,k,j)) then

begin
Q’ := Q’ U Related-Paths(i, k, j);

Q := Q U-l(i, d>
end; (if)

end; (while)
return Q

Redundancy Removal

More pruning can be achieved using subsumption rela-
tions among constraints. Note that the redundancy as
defined below is caused by the subsumption and the in-
consistency relations, instead of the latter alone. Thus,
our results here are fundamentally different from that
in [Dechter aud Dechter, 19771.

Theorem 3 Suppose 3R:! E (2’2, such that ‘v’R1 E Cl,
S(R1, Rz). Then Cz can be pruned from the network,
without affecting the set of solutions.

YANG 43

Note that this theorem is different from inconsistent
pruning. It says that if some value of C2 is subsumed
by all values of Cr, then C2 is subsumed by Cr, in the
sense that any solution for Cl must also be a solution
for C2. This type of pruning can be called “subsump-
tion pruning.”

Subsumption relations also allow for the removal of
individual values.

Theorem 4 If 3R2 E C2, such that VRr E Cl, either

I. 3Ri E C2, such that R2 # R& and S(R1, R&), or

2. I(Rl,Rz),

then R-J can be pruned from C2, without aflecting the
sobution of the network.

Removal of nodes or values in some node is called re-
dundancy removal. This is different from inconsistency
removal. If a node becomes empty after applying the
inconsistency pruning rule, then the whole network is
inconsistent. In planning, this means that the current
plan corresponds to a dead end in the search space.
On the other hand, if a node is made empty by apply-
ing the subsumption theorems, then it simply means
that the removed node is redundant, and has no direct
relation with the consistency of the whole network.

Algorithm RR (Redundancy Removal), listed below,
is an implementation of the above two redundancy-
pruning theorems. In the function RR, the list Q,
which is returned at the end, contains length-2 paths
which have changes in their domains because of the
redundancy pruning. Q will be used for checking more
possible inconsistency pruning.

Function REVISE-RR((i,j))
begin

DELETE := false
for each R E Ci do

if for all R’ E C’j such that
either I(R’, R) or S(R’, R”) for some R” E Ci

such that R # R”, then
begin

delete R from Ci;
DELETE := true

end;
if Ci becomes empty, then

delete it from the network;
return DELETE

end

Function RR(Q’)
begin

Q := emptyset;
while Q’ is not empty, do

begin
select and delete any arc (i, j) from Q’;
INC := {(k,i) 1 k # i, k # j}
if REVISE-RR((i,j)) then

begin
Q’ := Q’ U INC;

Q := Q U Related-Paths((i, j, i))
end;(if)

end; (while)
return Q

Combining Path Consistency and
Redundancy Pruning
When both inconsistency and redundancy pruning are
done, the outcome of modifying one relation canpos-
sibly affect the status of the other. For example, re-
moving a redundant value from a node can produce
further inconsistency, and thus, the two types of prun-
ing have to be used interchangeably. The basic idea
is to interleave the two algorithms PC and RR, until
no changes can possibly be made. Algorithm PP (Pre-
Processing), listed below, achieves this purpose. It can
be shown that the algorithm PP has a worst case com-
plexity of O(k5n3), where k is the number of values in
a node, and n is the number of nodes in the network.

Procedure PP
begin

~2~Qj(i, A k) I -(i = j = k)};
.

if any hode is deleted, then return(fai1);

end

begin
Q := PC(Q);
if any node is deleted, then return(fai1);

en&d:= RR(Q);
;

Example
Now consider again the example given in Figure 1.
We start with the set of relations among the con-
straints: 1(r 11, m), S(m,m), and S(m, m), and
S(R, r21). Now apply the pruning rules. By Theorem
4, rrr can be pruned from Cr. Thus, after updating,
Cr = r12 + R. By Theorem 3, the node C2 can be
pruned. Thus, what is left is Cl = r12 + R. The -
number of backtracking points for planning is again
reduced form six to two. Therefore, using preprocess-
ing techniques, one can simplify the constraint network
while avoiding an exponential number of algebraic ex-
pansions.

Applying the Algebraic and CSP
Techniques to Planning

A typical planning session
tions of several steps:

can be considered as itera-

(1) Select a condition to be achieved and some
operators for achieving it. Insert these operators
into the plan ., possibly with certain precedence

44 AUTOMATEDREASONING

and codesignation constraints.
(2) Activate a conflict detection routine, and com-
pute the set of all conflicts introduced by the in-
serted operators and constraints.
(3) Impose a set of conflict resolution constraints
for resolving one or more conflicts. Save the rest
of the alternative conflict resolution methods as
backtrack points.

After step 2 is done, the conflict algebra can be applied
for simplifying the conflict resolution methods. The
resultant methods can be represented in a disjunctive
normal form. One or more disjuncts can then be cho-
sen to be imposed on the plan, and the rest saved as
backtrack points.

Conclusion
This paper proposes to analyze conflicts in a plan in
order to reduce the number of backtracking points in a
planner’s search space. In particular, a set of algebraic
rules, together with a set of preprocessing algorithms
are presented for simplifying a set of conflict resolution
methods. Via subsumption relationship between con-
straint to be imposed on a plan, the algorithms are able 9
to not only remove inconsistent choices, but also those
that are redundant. Furthermore, these algorithms are
applicable to a class of constraint satisfaction problems
in which subsumption relations are involved.

With the theoretical foundation of this paper, we in-
tend to further explore the amount of analysis of con-
flicts necessary for a planner’s best performance. Such
exploration will have to involve a considerable amount
of experimentation. We will also look for other kinds of
relations in a constraint network, similar to subsump-
tion ones, in order to allow more powerful preprocess-
ing algorithms to be designed.

Acknowledgments. Thanks to Peter Van Beek for
many useful comments.

References
[Allen and Koomen, 19831 J. Allen and J Koomen.

Planning using a temporal world model. In Pro-
ceedings of the 8th IJCAI, pages 741-747, 1983.

[Allen, 19841 James F. Allen. Towards a general the-
ory of action and time. Artificial Intelligence,
23(2):123-154, 1984.

[Chapman, 19851 David Chapman. Planning for con-
junctive goals. AI Technical Report 802, Mas-
sachusetts Institute of Technology, 1985.

[Charniak and McDermott, 19851 Eugene
Charniak and Drew McDermott. Introduction to
Artificial Intelligence. Addison-Wesley Publishing
Company, 1985.

[Dean and Boddy, 19881 T. Dean and M. Boddy. Rea-
soning about partially ordered events. Artificial In-
telligence, 36:375-399, 1988.

[Dechter and Dechter, 19771 A. Dechter and
R. Dechter. Removing redundancies in constraint
networks. In Proceedings of the 6th AAAI, pages
105-109,1977.

[Dechter and Pearl, 19871 R. Dechter and J. Pearl.
Network-based heuristics for constraint-satisfaction
problems. Artificial Intelligence, 34, 1987.

[Hertzberg and Horz, 19891 Hertzberg and Horz. To-
wards a theory of conflict detection and resolution in
nonlinear plans. In Proceedings of the 11th IJCAI,
pages 937-942, Detroit, Michigan, 1989.

[Mackworth and Freuder, 19851 A.K. Mackworth and
E.C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satis-
faction problems. Artificial Intelligence, 125:65-74,
1985.

[Mackworth, 19811 A.K. Mackworth. Consistency in
networks of relations. In Webber and Nilsson, edi-
tors, Readings in Artificial Intelligence, pages 69-78.
Morgan Kaufmann Publishers Inc., 1981.

[Sacerdoti, 19771 Earl S acerdoti. A Structure for Plans
and Behavior. American Elsevier, 1977.

[Stefik, 19811 Mark Stefik. Planning with constraints.
Artificial Intelligence, 16(2):111-140, 1981.

[Tate, 19771 Austin Tate. Generating project net-
works. In Proceedings of the 5th IJCAI, pages 888-
893, 1977.

[Van Beek and Cohen, 19891 P. Van Beek and R. Co-
hen. Approximation algorithms for temporal rea-
soning. Technical Report CS-89-12, Department of
Computer Science, University of Waterloo, 1989.

[Vilain and Kautz, 19861 M. Vilain and H. Kautz.
Constraint propagation algorithms for temporal rea-
soning. In Proceedings of the 5th AAAI, pages 337-
382, 1986.

[Wilkins, 19881 David Wilkins. Practical Planning:
E&ending the Classical AI Planning Paradigm.
Morgan Kaufmann, CA, 1988.

[Yang and Tenenberg, 19901 Qiang Yang and Josh
Tenenberg. Abtweak: Abstracting a nonlinear, least
commitment planner. Department of Computer Sci-
ence, University of Waterloo, Technical Report No.
cs-90-09, 1990.

[Yang, 19901 Qiang Yang. Formalizing planning
knowledge for hierarchical planning. Computational
Intelligence, 6, 1990.

YANG 45

