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Abstract 

This paper presents an algebra for conflict resolution 
in nonlinear planning. A set of conflicts in a plan is 
considered as a constraint network. Each node in the 
network represents a conflict, and is associated with a 
set of alternative ways for resolving it. Thus, resolving 
conflicts in a plan corresponds to selecting a set of 
consistent resolution methods so that, after they are 
applied to the plan, every conflict can be removed. 
The paper discusses the representional issues related to 
the conflict resolution, presents an algebra for resolving 
conflicts, and illustrates that some modified algorithms 
for preprocessing networks of constraints can greatly 
enhance the efficiency of conflict resolution. 

Introduction 

Many planners can be considered as search in a space 
of possible plans [Chapman, 1985; Sacerdoti, 1977; 
Stefik, 1981; Tate, 1977; Wilkins, 19881. A major con- 
tributing factor to the branching factor in this space 
is the number of alternative ways for resolving a set 
of conflicts in a plan. Since search efficiency is greatly 
affected by the branching factor in the search space, 
reducing the number of ways for resolving a set of con- 
flicts is an important way for improving planning effi- 
ciency. 

Unfortunately, most existing planning systems 
[Chapman, 1985; Sacerdoti, 1977; Stefik, 1981; Tate, 
1977; Wilkins, 19881 spend little or no effort in an- 
alyzing conflicts in an intermediate plan, in order to 
reduce the number of ways for resolving them. Usu- 
ally there is more than one conflict to be introduced 
to a given plan as a result of some planning activity. 
These planners will simply generate a set of resolution 
methods for each conflict, and either commit to one 
of them in a depth-first manner, or generate the set 
of all possible successor states, in a breadth-first way. 
However, as we will show later in the paper, some of 
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the conflict resolution methods can be proven to be 
either not applicable to the current plan, or related 
to other methods in such a way that they are redun- 
dant. In most of the existing planning systems, a great 
deal of computational overhead can be spent on these 
“useless” branches. It would be desirable to reduce 
the number of alternative ways in many circumstances 
through an analysis of conflicts in a plan. 

Without any analysis at all on the inter-relations 
among the conflicts can be considered as one extreme 
on a spectrum of search control, while doing a complete 
analysis in order to minimize the number of possible 
alternatives can be considered as the other extreme 
on that spectrum. Certainly, it may not be advanta- 
geous to do a complete analysis over doing no analysis 
in improving planning efficiency, since there may exist 
some middle points on the spectrum that are better 
than either extreme. However, without knowing both 
ends of the spectrum well, it is hard to make an intel- 
ligent decision on how much analysis is needed. It is 
the purpose of this paper to investigate various ways 
for minimizing the number of alternative methods for 
resolving a given set of conflicts. 

In particular, this paper presents a conflict algebra 
for analyzing methods for resolving a set of conflicts in 
nonlinear plans. Modified versions of the preprocess- 
ing algorithms for network-based constraint satisfac- 
tion problems (CSP) can be used for efficient applica- 
tion of the algebra. The modified algorithms take into 
account a wider range of possible constraints, so that 
it is possible to prune from the constraint network not 
only values that are inconsistent, but also those that 
can be proven “redundant.” Interestingly, these algo- 
rithms can be applicable to large classes of problem 
domains rather than just the planning domain, and in 
this respect, part of the results in this paper should 
also be of interest to researchers in CSP area. 

Below we discuss how conflicts in a plan are repre- 
sented. Then we consider the details of the conflict 
algebra, and show how to apply it to planning. This is 
followed by a discussion of the algorithms for prepro- 
cessing a constraint network. 
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Conflicts and Conflict Resolutions 

Preliminaries 

A plan consists of a set of operators, a set of prece- 
dence constraints on the operators, and a set of co- 
designation constraints on the binding of variables of 
the operators. Each operator o is defined in terms 
of a set of preconditions, P,, and a set of effects E,. 
Two special operators, start and finish, exist in any 
plan, representing the initial and goal situations, re- 
spectively. The operator, start (finish), has a set of 
empty preconditions (effects), and has as its effects 
(preconditions) the set of conditions true in the ini- 
tial (goal) situation. 

Let P be a plan. We adopt the notational convention 
of [Chapman, 19851 for precedence and codesignation 
constraints. Thus, a 4 b denotes that the operator a 
precedes operator b in P, and p M Q or p $ Q denotes 
that p and 4 are constrained to codesignate or non- 
codesignate in P, respectively. If for two variables x 
and y, x = y, then x and y are constrained to be bound 
to the same constant. Moreover, we also assume both 
the definitions and graphical notation of necessarily 
(0) and possibly (0) in [Chapman, 19851. 

Below we formally define conflicts. To do this, 
we first define precondition establishment:operator a 
is said to establish a condition p for operator b, or 
Est(a, b, p), if and only if (i) p is a precondition for 
b, (ii) q  (a 4 b), (iii) 3u E E, such that q  (u x p), 
and (iv) Vu’ such that q  J(U 4 a’ 4 b) and ‘#u’ E Eat, 
lO(U’ z p). That is, no other operators necessarily 
between a and b necessarily assert p. 

In [Hertzberg and Horz, 19891, a is called a producer 
of p for b, while b is called a user of p. If for ev- 
ery operator b in a plan and for every precondition p 
of b, there exists an operator a such that Est(a, b,p), 
then P is said to be well-formed [Hertzberg and Horz, 
19891. Note that a well-formed plan is not necessarily 
a correct plan, since some operators may exist that can 
possibly deny certain preconditions. 

In this paper, we make the same assumptions as 
[Hertzberg and Horz, 19891. That is, 

(1) All plans are well-formed. 
(2) The locality assumption holds. That is, every 
operator must specify all the domain conditions it 
may change, and every change is independent of 
the situation before the operator is applied. 
(3) The STRIPS assumption holds. That is, con- 
ditions change only if mentioned in the effects 
some operators in a plan. 

Although the conflict resolution methods to be intro- 
duced below become inadequate without these assump- 
tions, the preprocessing algorithms later in the paper 
are independent of them. 

Conflicts in a Plan 
Let P and U be operators in a plan such that 
Est(P, U,p). Suppose there is another operator N in 
the plan such that (i) N can possibly be between P and 
U, and (ii) 3-q E EN such that 0( 4 z p). Then N is 
called a clobberer of p for U, and tuple (P, U, N, p, q) is 
called a conflict in the plan. To distinguish from other 
forms of conflicts in a plan, such as consumable re- 
sources, we call the conflicts defined above as deleted- 
condition conflicts. In this paper, we only consider 
deleted-condition conflicts. 

Hertzberg et. al. [Hertzberg and Horz, 19891 have 
shown that all deleted-condition conflicts in a well- 
formed plan are compositions of four types of conflicts 
listed below: 

(1) Linear Conflict (LN(P,U,N,p,q)) if N is be- 
tween P and U. 
(2) Left Fork (LF(P,U,N,p,q)) if U is after P and 
N, and P and N are unordered in the plan. 
(3) Right Fork (RF(P,U,N,p,q)) if P precedes both 
U and N, and the latter two are unodered in the 
plan. 
(4) Parallel Conflict (PR(P,U,N,p,q)) if P pre- 
cedes U, and N is unordered with both operators. 

A plan is correct, if its set of operators is partially or- 
dered by the precedence constraints, it is well-formed, 
and it is free of conflicts. 

Conflict Resolution Methods 
To resolve a conflict, a planner imposes various kinds 
of constraints. Chapman [Chapman, 19851 formulated 
a necessary and sufficient goal achievement criterion, 
known as the necessary modal truth criterion, or MTC. 
He also provided a set of sufficient procedural inter- 
pretations of the MTC, which includes “promotion,” 
“demotion, ” “establishments,” “separation,” and “in- 
troducing white knights.” These methods can be con- 
sidered as various alternative constraints one can im- 
pose on a plan for resolving a given conflict. A simpli- 
fied version of the above methods is listed below: Let 
(P, U, N, p, a) be a conflict. Then the following con- 
straints are sufficient for resolving it: 

(1) promotion of clobberer: U 4 N, 
(2) demotion of clobberer: N -+ P, 
(3) separation: p $ 4, 
(4) demotion and establishment : for some W, 
where W is either an existing operator in the plan, 
or an inserted operator, and for some T E Ew, 
N < W 4 U and r ==: p. 

Now consider how to resolve each type of conflict in a 
well-formed plan. We use + for logical disjunction, and 
. for conjunction. Let rde represent the establishment 
and demotion methods. That is, 

Tde = (N + W < U) . (T z p), 
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Figure 1: An example plan with two conflicts. The 
liter& P(x), 4(Y), t e c., are the effects of the operator 
immediately before them. 

where T E Ew and IV is an operator. Let Rde be the 
disjunction of all r&. Then 

LN(P, u, N, P, 4) = (P $4) + Rdet 

LF(P, u, N, P, 4) = (N-‘)+(ph)+Rde, 

RF(P, u, N, P, a) = (u -( N) + (P # a) + Rde, 

PR(P, u, N, P, 4) = LF(P, u, N, P, 4) 

+RF(P, U, N, P, 9). 

where ‘=‘ means “can be resolved by.” 
As an example, consider the plan shown in Figure 1. 

The set of precedence constraints in this plan is: 

P = (a 4 b, a 4 c, b 4 d, c 4 d, a -i d). 

Suppose that Est(a, b, p(z)), and Est(a, c, q(y)), then 
there are two conflicts in this plan, Cl and C2, where 
Cl = RF@, h c, P(x),P(Y)) = ~11 + m + R, ~11 = 
(b 4 c), rr2 = (x $ y), and R = 733 . 734 . ~15, with 
713 = (c 4 e), ~14 = (e 4 b), and 735 = (w M x). C’2 = 
-w% c> b, q(y), q(x)) = r21+ 7-22, where r21 = (c -X b), 
and ~22 = (x + y). 

Relations Among Conflicts 
Above we have shown that all conflicts in a well-formed 
plan can be resolved using a set of resolution methods, 
represented in a concise form. If all the conflicts in a 
plan are found, then each conflict will be automatically 
associated with a set of alternative resolution methods, 
and the set of all conflicts can be represented in a con- 
junction of disjunctive normal form. The purpose of 
representing the conflict resolution methods is to find 
one or all constraints that can resolve the conflicts in 
a plan. Each consistent set of constraints that can 
resolve all the conflicts is called a solution. Below we 

consider the relationship between different conflict res- 
olution methods. 

Let RI and R2 be two precedence constraints. 
RI subsumes Ra, or S( RI, Rz), if and only if 
(RI} UB(P) 3 R2, where B(P) is the set of prece- 
dence (co-designation) constraints in P. Likewise for 
codesignation and non-codesignation constraints. 

Intuitively, RI subsumes R2 if imposing R1 will 
guarantee that R2 is also imposed. Thus, Ra is consid- 
ered to be weaker than Rx. For example, let rr = (b 4 
c), and r2 = (a 4 d). If ((a 4 b),(c 4 d)} E B(P), 
then S(rl,rs). As another example, let r1 = (z x y) 
and r2 = (y $2 z). If (z $ z) E C(P) then S(q,rz). 

Imposing a set of constraints on a plan may result 
in an incorrect plan. With the assumptions in this pa- 
per, such incorrect plans are signaled by inconsistent 
constraints of the form a 4 a or x + x, for some op- 
erator a and variable x. Below, we use “Fail” for such 
situations. 

Two constraints RI and R2 are inconsistent, or 
1( RI, R2), if and only if 

(RI, R2) U C(P) U B(P) 1 Fail. 

Intuitively, RI and R2 are inconsistent if imposing RI 
and R2 together will result in a contradiction in a plan. 
For example, if r1 = (a 4 b), and r2 = (b -X a), 
then I(rr , r2). Also consider an example of inconsis- 
tent codesignation constraints. If r1 = (x M y) and 

= (u c 
? 1 

4, and ((a: = 4, (Y $ 41 E C(P), then 
n,r2 . 
Having the above definitions, we now can prove the 

following theorems: 

Theorem 1 If S(R1, R), S(R2, R’), and I(R, R’), 
then I( RI, R2). 

Intuitively, this theorem says that if the weaker con- 
straints implied by two constraints are inconsistent, 
then they are inconsistent themselves. 

Theorem 2 If S(R1, R2), S(R2, Ra),then S(R1, R3). 

This says the subsumption relation is transitive. We 
also require that S is reflexive. However, the inconsis- 
tency relation is not transitive. 

Algebraic Rules 
The disjunction and conjunction operations can be 
considered as algebraic operations, with special seman- 
tics. For example, the meaning of a conjunction RI - R3 
in a disjunctive normal form representation of a con- 
flict is that it is sufficient to impose both RI and R2 for 
removing some conflicts. The meaning of disjunction 
RI + Ra is that either RI or R2 is sufficient for resolv- 
ing some conflicts. Given the precise meaning of these 
operations, we can prove that “s” and “+” satisfy the 
rules of boolean algebra, as well as the following set of 
rules: 

Rule 1 If S(R1, I??) then RI - R2 = RI. 
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Rule 2 IfS(R1,R~) and u is any constraint, then RI- 
u+Ra=Ra. 

Rule 3 If S(R1, R2) and S(R1, Rs), then S(R1, R2 . 
R3), and S(Rl, & + R3)* 

Rule 4 If R = RI . R2, then S( R, RI) and S( R, Rs). 

Consider the plan shown in Figure 1. Analysis 
of the conflicts establishes the following relationships: 
I(rll, r21) S(rl2, m), S(m, w), and S(& r21). 

Expanding Cr . C2 we get 

rll - r21+ rll - r22 + rl2 - r21 

+rl2 - r22 + R - r21+ R - r22 
rll - r22 + rl2 l r 2 1+ rl2 - r22 

+R - m+ R. r22 (I(rll, 7-21 )) 

rll - r22 + rl2 - r 2 1+ rl2 

+R - m + hf. m (Rulel) 
r12 + R - r21 + R - r22 (RuZe2) 
m + R - m + R (RuEel) 
r12 -I- R (RuZe2) 

Thus, using algebraic rules we are able to reduce the 
number of backtracking points from 6 to 2. 

Pruning using CSP Techniques 

A set of conflicts can be considered as a constraint net- 
work, where each conflict is a node, and the consistency 
relations between the conflicts are arcs in the network. 
Each node has a set of values to choose from, each value 
being an alternate conflict resolution method. Thus, 
a conflict resolution problem can be considered as a 
constraint satisfaction problem (CSP). In particular, 
the goal of a conflict resolution problem in planning is 
either to find out the set of all consistent values, or to 
find out just one value. 

As in CSP, we would like to enforce arc and path 
consistency of the network. The degree of constraints 
in such a network of conflicts can be the size of the 
network. To see this, consider the following exam- 
ple. Each node Ni in the network contains a primitive 
precedence constraint ai < ai+l, for i = 0, . . . , n - 1. 
Also, node N, contains a value uT2. 4 ao. Thus, if no 
two ai are identical, then no proper subset of the set 
of these values is inconsistent, while the set of values 
when considered together is. This particular network 
is constrained by n-ary constraints. It follows that en- 
suring arc and path consistencies is not sufficient for 
global consistency in general. 

Important difference exists between this particular 
CSP and a traditioual one, because of the existence 
of subsumption relations between the different values 
of a node. Using this relation, redundant backtrack 
points can be quickly discovered, aud removed. The 
set of rules that euable this ability is what we call 
“pruning rules.” Below, we consider path consistency 
and redundancy removal separately. 

Path Consistency 

The first type of pruning is the same as a traditional 
definition for arc and path-consistency in CSP: Let Cr 
and C2 be two nodes in a constraint network. If for 
some R E Cl such that ‘JR’ E C2 I(R, R’) holds, then 
R can be pruned from Cr. 

If all the values of Cr are pruned,then the network 
has no solution. This type of pruning is called “incon- 
sistency pruning.” 

New relations concerning inconsistency can also be 
obtained when considering groups of nodes greater 
than two. The most commonly known such algorithms 
for establishing new relations are the path-consistency 
algorithms. We present a modified path consistency al- 
gorithm based on algorithm PC-2 in [Mackworth and 
Freuder, 19851. As in PC-2, this algorithm returns 
an updated set of inconsistency relations, possibly im- 
plemented in a matrix form. The difference here is 
that upon termination, a list Q of arcs that are mod- 
ified during the execution of the entire algorithm is 
returned. This list is used for further removal of re- 
dundant values or nodes in the network, and we will 
discuss this in detail in the next subsection. 

The function PC is listed below. In PC, Related- 
Paths(i, b, j) is a function which returns a set of length- 
2 paths that might have their consistency affected 
by a change in the consistency of (i, k, j). Likewise, 
REVISE( (i, k, j)) re t urns true if I(i, j) is modified due 
to path inconsistency. Both functions are defined in 
[Mackworth, 19811. 

Function PC(Q’) 
begin 

Q := emptyset; 
while Q’ is not empty, do 

begin 

end 

select and delete a path (i, k, j) from Q’; 
if REVISE( (i,k,j)) then 

begin 
Q’ := Q’ U Related-Paths(i, k, j); 

Q := Q U-l(i, d> 
end; (if) 

end; (while) 
return Q 

Redundancy Removal 

More pruning can be achieved using subsumption rela- 
tions among constraints. Note that the redundancy as 
defined below is caused by the subsumption and the in- 
consistency relations, instead of the latter alone. Thus, 
our results here are fundamentally different from that 
in [Dechter aud Dechter, 19771. 

Theorem 3 Suppose 3R:! E (2’2, such that ‘v’R1 E Cl, 
S(R1, Rz). Then Cz can be pruned from the network, 
without affecting the set of solutions. 
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Note that this theorem is different from inconsistent 
pruning. It says that if some value of C2 is subsumed 
by all values of Cr, then C2 is subsumed by Cr, in the 
sense that any solution for Cl must also be a solution 
for C2. This type of pruning can be called “subsump- 
tion pruning.” 

Subsumption relations also allow for the removal of 
individual values. 

Theorem 4 If 3R2 E C2, such that VRr E Cl, either 

I. 3Ri E C2, such that R2 # R& and S(R1, R&), or 

2. I(Rl,Rz), 

then R-J can be pruned from C2, without aflecting the 
sobution of the network. 

Removal of nodes or values in some node is called re- 
dundancy removal. This is different from inconsistency 
removal. If a node becomes empty after applying the 
inconsistency pruning rule, then the whole network is 
inconsistent. In planning, this means that the current 
plan corresponds to a dead end in the search space. 
On the other hand, if a node is made empty by apply- 
ing the subsumption theorems, then it simply means 
that the removed node is redundant, and has no direct 
relation with the consistency of the whole network. 

Algorithm RR (Redundancy Removal), listed below, 
is an implementation of the above two redundancy- 
pruning theorems. In the function RR, the list Q, 
which is returned at the end, contains length-2 paths 
which have changes in their domains because of the 
redundancy pruning. Q will be used for checking more 
possible inconsistency pruning. 

Function REVISE-RR( (i,j)) 
begin 

DELETE := false 
for each R E Ci do 

if for all R’ E C’j such that 
either I(R’, R) or S( R’, R”) for some R” E Ci 

such that R # R”, then 
begin 

delete R from Ci; 
DELETE := true 

end; 
if Ci becomes empty, then 

delete it from the network; 
return DELETE 

end 

Function RR( Q’) 
begin 

Q := emptyset; 
while Q’ is not empty, do 

begin 
select and delete any arc (i, j) from Q’; 
INC := {(k,i) 1 k # i, k # j} 
if REVISE-RR( (i,j)) then 

begin 
Q’ := Q’ U INC; 

Q := Q U Related-Paths((i, j, i)) 
end;(if) 

end; (while) 
return Q 

Combining Path Consistency and 
Redundancy Pruning 
When both inconsistency and redundancy pruning are 
done, the outcome of modifying one relation canpos- 
sibly affect the status of the other. For example, re- 
moving a redundant value from a node can produce 
further inconsistency, and thus, the two types of prun- 
ing have to be used interchangeably. The basic idea 
is to interleave the two algorithms PC and RR, until 
no changes can possibly be made. Algorithm PP (Pre- 
Processing), listed below, achieves this purpose. It can 
be shown that the algorithm PP has a worst case com- 
plexity of O(k5n3), where k is the number of values in 
a node, and n is the number of nodes in the network. 

Procedure PP 
begin 

~2~Qj(i, A k) I -(i = j = k)}; 
. 

if any hode is deleted, then return(fai1); 

end 

begin 
Q := PC(Q); 
if any node is deleted, then return(fai1); 

en&d:= RR(Q); 
; 

Example 
Now consider again the example given in Figure 1. 
We start with the set of relations among the con- 
straints: 1(r 11, m), S(m,m), and S(m, m), and 
S(R, r21). Now apply the pruning rules. By Theorem 
4, rrr can be pruned from Cr. Thus, after updating, 
Cr = r12 + R. By Theorem 3, the node C2 can be 
pruned. Thus, what is left is Cl = r12 + R. The - 
number of backtracking points for planning is again 
reduced form six to two. Therefore, using preprocess- 
ing techniques, one can simplify the constraint network 
while avoiding an exponential number of algebraic ex- 
pansions. 

Applying the Algebraic and CSP 
Techniques to Planning 

A typical planning session 
tions of several steps: 

can be considered as itera- 

(1) Select a condition to be achieved and some 
operators for achieving it. Insert these operators 
into the plan ., possibly with certain precedence 
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and codesignation constraints. 
(2) Activate a conflict detection routine, and com- 
pute the set of all conflicts introduced by the in- 
serted operators and constraints. 
(3) Impose a set of conflict resolution constraints 
for resolving one or more conflicts. Save the rest 
of the alternative conflict resolution methods as 
backtrack points. 

After step 2 is done, the conflict algebra can be applied 
for simplifying the conflict resolution methods. The 
resultant methods can be represented in a disjunctive 
normal form. One or more disjuncts can then be cho- 
sen to be imposed on the plan, and the rest saved as 
backtrack points. 

Conclusion 
This paper proposes to analyze conflicts in a plan in 
order to reduce the number of backtracking points in a 
planner’s search space. In particular, a set of algebraic 
rules, together with a set of preprocessing algorithms 
are presented for simplifying a set of conflict resolution 
methods. Via subsumption relationship between con- 
straint to be imposed on a plan, the algorithms are able 9 
to not only remove inconsistent choices, but also those 
that are redundant. Furthermore, these algorithms are 
applicable to a class of constraint satisfaction problems 
in which subsumption relations are involved. 

With the theoretical foundation of this paper, we in- 
tend to further explore the amount of analysis of con- 
flicts necessary for a planner’s best performance. Such 
exploration will have to involve a considerable amount 
of experimentation. We will also look for other kinds of 
relations in a constraint network, similar to subsump- 
tion ones, in order to allow more powerful preprocess- 
ing algorithms to be designed. 

Acknowledgments. Thanks to Peter Van Beek for 
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