
Some Applications of Graph Bandwidth to
Constraint Satisfaction Problems

Ramin Zabih
Computer Science Department

Stanford University
Stanford, California 94305

Abstract
Bandwidth is a fundamental concept in graph theory
which has some surprising applications to a class of
AI search problems. Graph bandwidth provides a link
between the syntactic structure of a constraint satis-
faction problem (CSP) and the complexity of the un-
derlying search task. Bandwidth can be used to define
a new class of easy CSP’s, namely those that have lim-
ited constraint graph bandwidth. These CSP’s can be
solved in polynomial time, essentially by divide and
conquer. This in turn suggests that bandwidth pro-
vides a mathematical measure of the decomposability
of a search problem. In addition, bandwidth supplies
a measure for comparing different search orderings for
a given CSP. Statistical analysis suggests that back-
tracking with small bandwidth orderings leads to a
more efficient search than that obtained under order-
ings with larger bandwidths. Small bandwidth order-
ings also limit the pruning that can be done by intel-
ligent backtracking. If small bandwidth orderings are
indeed advantageous, then a large number of heuristics
developed in numerical analysis to find such orderings
may find applicability to solving constraint satisfaction
problems.

1 Introduction
The bandwidth of an ordering of a graph is the maxi-
mum distance between two adjacent vertices, and the
bandwidth of a graph is its minimum bandwidth under
any ordering. ’ Bandwidth is one of the basic concepts
in graph theory, and is related to almost every other
mathematical property that graphs possess [Zinn et al.,
19821. It is nonetheless surprising to discover some
strong connections between graph bandwidth and a
class of search problems encountered in AI.

The search problems known as constraint satisfac-
tion problems (CSP’s) have an associated constraint
graph. The vertices of the graph consist of the vari-
ables of the search problem, and there is an edge be-
tween two vertices if there is a (non-trivial) constraint
between those variables.

‘These definitions will be made more precise in section 3.

The bandwidth of the constraint graph is strongly
related to the complexity of the underlying constraint
satisfaction problem. In particular, there is evidence
for two claims.
6 The bandwidth of the constraint graph of a con-

straint satisfaction problem serves as a measure of
its decomposability.

o The bandwidth of a search ordering provides a mea-
sure of its quality, as backtracking with a small band-
width ordering generally results in a smaller search
tree.

The first claim is supported by a proof that any prob-
lem of limited bandwidth can be solved in polynomial
time, essentially by divide and conquer. The second
claim is supported by statistical analysis, and by evi-
dence that small bandwidth orderings have additional
important properties related to intelligent backtrack-
ing. If small bandwidth orderings are indeed useful,
then the large body of heuristics that has been devel-
oped by numerical analysts for finding such orderings
may prove to be useful for solving CSP’s.

After a brief review of constraint satisfaction prob-
lems, section 3 formally defines bandwidth and re-
lates it to some other graph-theoretic notions in the
CSP literature. Section 4 proves that any CSP whose
bandwidth can be limited is solvable in polynomial
time. Section 5 presents statistical data which suggests
that small bandwidth orderings are generally superior,
as well as describing some preliminary results about
the interaction between such orderings and intelligent
backtracking.

2 Constraint Satisfaction Problems
A constraint satisfaction problem (CSP) has a set of
variables and a domain of values,

v = {VI, v2,. . . , v,} the set of variables, jlVlj = n,
D = {dl, d2,. . . , dm} the set of values, lIDI = d.

Every variable vi must be assigned a value dk.
A CSP also consists of some constraints saying which

assignments are compatible. Most interesting prob-
lems are binary CSP’s, where the constraints involve

46 AUTOMATED REASONING

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

pairs of variables. Such a constraint is a (proper) sub-
set of D x D consisting of the simultaneously permitted
assignments. A binary CSP has an associated con-
straint graph G = (V, E), where

E = { (vi, vi)] there is a contraint between vi and vj).

Note that the constraint graph hides a great deal of the
information about the search problem, particularly the
tightness of the constraints.

The constraint graph G may be assumed to be con-
nected, as otherwise each connected component can be
considered separately. Many standard combinatorial
problems are binary CSP’s, including graph coloring
and the n-queens problem.

3 Graph Definitions
Given a graph G with n vertices, an ordering h is a one-
to-one map from the vertices of G to the set { 1, . . . , n}.
The bandwidth of a vertex v under an ordering h is
the maximum value of Ih(v) - h(w)1 over all vertices w
connected to v. The bandwidth of a graph under an
ordering is the maximum bandwidth of any vertex, and
the bandwidth of a graph is its minimum bandwidth
under any ordering. The bandwidth of G under h will
be written as B(G, h).

3.1 Relating bandwidth and other graph
properties

There are many notions akin to bandwidth which have
been developed in the CSP literature. It is straightfor-
ward to determine the relationship between bandwidth
and three graph properties: front length (introduced
by [Seidel, 1981]), width [Freuder, 19821, and induced
width [Dechter and Pearl, 19871.

Seidel [1981] defines an invasion of G to be a se-
quence of subgraphs Gr, . . . , G, where Gi is a subgraph
of Gr+l with i vertices and where G, = G. For a given
invasion, a front & consists of the vertices in Gi that
are adjacent (in G) to vertices not in Gi. The front
length of an invasion is the maximum size of Fi. There
is an invasion associated with any ordering h, defined
by G = h-l(l), Gi+r = Gi u h-l(i + 1). The front
length of G under the invasion associated with h will
be written as F(G, h).

Freuder [1982] defines the width of a vertex v under
an ordering h to be the number of vertices that are
connected to v which occur earlier than v under h. The
width of a graph under an ordering is the maximum
width of any vertex. The width of G under h will be
written as W(G, h).

Dechter and Pearl [1987] construct the induced
graph of G under an ordering h by processing G’s ver-
tices in the order {h-l(n), . . . , h-l(l)}, and adding an
edge between any two neighbors of a vertex v that pre-
cede v under h. The induced graph of G under h will
be written as Gm.

It is straightforward to analyze the relationships
among these quantities. First, for a fixed ordering h,

define

pi d!f (h-‘(i - B(G, h)), . . . , h-‘(i - 1))

(assuming h”(j) = h-l (1) if j < 1 for simplicity).
The important property of Pi is the following: if there
is an edge between v and W, where v occurs before h(i)
and w does not, then v E Pi.

Theorem 3.1 For any graph G and ordering h
BP, h) L J-W’, h).

Proof: Consider a front Fi in the invasion defined by
h. Clearly F! C Pd+l. But IIpS+lll L B(W). 0

Theorem 3.2 For any graph G and ordering h
WV4 2 WG,h).

Proof: All of the previous vertices that v = h(i) is
connected to must be in Pa. •I

Theorem 3.3 For any graph G and ordering h
B(G, h) 2 W(Gh, h).

Proofi The edges added when v = h(i) is processed will
be between two elements of Pi. Addin

Q
such edges will

never increase the bandwidth, so B(G , h) = B(G, h).
Applying theorem 3.2 with G replaced by Gh gives the
desired result. 0

Note that the above three inequalities cannot be
made strict (i.e., it is invalid to replace ‘2’ by ‘>‘).

Theorem 3.4 There exists a graph G and an order-
ing h such that B(G,h) = F(G, h) = W(G, h) =
W(Gh, h).

Proof: Consider a graph G that is a triangle. Then,
for any ordering h, B(G, h) = F(G, h) = W(G, h) =
W(G*, h) = 2. CI

4 Limited Bandwidth CSP’s
There is no technical definition of what it means for
a search problem to be “local” or “nearly decompos-
able”. The intuition behind these terms, however, is
that certain search problems can be solved piece by
piece, without taking the entire problem into consider-
ation at each point in the search. Coloring a long and
narrow graph is an example of such a search problem.

There are several reasons to believe that the band-
width of a CSP’s constraint graph reflects the locality
of the search problem. First, note that edges in the
constraint graph measure strong interactions between
variables. If there is no edge between two variables,
then assigning one a value can have no (direct) effect
upon the other, so the lack of an edge reflects a sort
of independence. If the CSP has limited bandwidth,
each vertex in the constraint graph can have no more
than a bounded number of neighbors. This suggests
that small bandwidth graphs should be solvable by
only worrying about a small subset of the variables
at any instant.

Additional anecdotal evidence to support this con-
clusion can be obtained by visual inspection of graphs

ZABIH 47

of various bandwidths. Graphs with small bandwidths
tend to look long and thin. The highest bandwidth
graph, on the other hand, is the complete graph where
there is an edge between every pair of vertices.

A stronger argument can be made on the basis of
the claim that nearly decomposable search problems
should be easy to solve. In particular, it should be
possible to solve them efficiently by solving their sub-
parts more or less independently (gluing the subparts
back together into a solution by divide and conquer or
by dynamic programming). It turns out that any CSP
of limited bandwidth can be solved in polynomial time
by dynamic programming.

4.1 Solving bandwidth-limited CSP’s in
polynomial time

The basic strategy is to find an ordering with mini-
mal bandwidth, and then to use this ordering to solve
the CSP. In general, determining the bandwidth of
a graph is an NP-complete problem [Papadimitriou,
19761. However, if the graph’s bandwidth is no larger
than b, a minimal bandwidth ordering can be found in
time 0(n’) and also space 0 n’). This can be done
via an algorithm of Saxe [1980 I
and Sudborough [19841.

as improved by Gurari

Given an ordering h with bandwidth no larger than
b, the CSP can then be solved via dynamic pro-
gramming. There are three possible algorithms, with
slightly different bounds. Because of the relation-
ships between bandwidth, front length and induced
width that are proven in section 3, either Seidel’s or
Dechter and Pearl’s method may be used. In addition,
Ferniindez-Baca has recently produced an algorithm
that makes explicit use of bandwidth [Fernandez-Baca,
19SS]. However, Dechter and Pearl’s algorithm gives
the bound that seems likely to be lowest in practice.

Dechter and Pearl [1987] show how to solve a CSP
under an ordering h with induced width w = W(Gh, h)
in time O(d”+l) and space O(dW). Applying theo-
rem 3.3, w < b. Combining this with Saxe’s algorithm
gives the desired result.

Theorem 4.1 Any CSP whose constraint graph’s
bandwidth is no larger than b can be solved in time
O(nb + db+‘) and space O(nb + db).

One corollary of this theorem is a very simple proof
of a result first discovered by Monien and Sudborough
[1985].

Corollary 4.2 Any graph of limited bandwidth can be
colored in polynomial time.

5 Small Bandwidth Orderings
Since small bandwidth CSP’s are easy to solve, the
obvious generalization would be to claim that small
bandwidth orderings are generally efficient. In fact, the
method for solving small bandwidth CSP’s described
above first finds a small bandwidth ordering (by Saxe’s

Figure 1: Average tree size for a graph-coloring prob-
lem, with 99% confidence intervals.

24000

22000
Search

tree 20909
size

18000

16000

14000

A

t

t

I I I I I I -

8 9 10 11 12
Graph bandwidth

Figure 2: Average tree size as a function of ordering
bandwidth, with 99% confidence intervals.

algorithm), and next uses that ordering to solve the
search problem. This suggests that there
special about small bandwidth orderings.

1s something

There is both empirical and theoretical evidence
that
ties.
ing small ban
advantageous

small bandwidth orderings have special
Empirically, there is statistical evidence

.d width
There

proper-
that us-

orderings for backtrack search is
are also theoretical evidence that

links small bandwidth
tracking.

orderings with intelligent back-

5.1 Empirical results

Statistical analysis of some preliminary experimen-
tal results suggest that small bandwidth orderings are
indeed advantageous. The problem that has been
examined is the graph-coloring problem described in
[Bruynooghe and Pereira, 19841. This CSP has 1176
solutions. Depth-first search (sometimes referred to as
backtracking, or chronological backtracking) has been
run on the problem several thousand times, under or-
derings with different bandwidths.

Figure 1 shows the average number of nodes in the
search tree as a function of the bandwidth of the order-
ing, together with the 99% confidence intervals. The
graph in figure 2 presents the same data in a slightly
more readable form. The data supports the hypothesis

48 AUTOMATED REASONING

that the search trees resulting from small bandwidth
orderings are significantly smaller than those resulting
from orderings with greater bandwidth.

More precisely, the data suggests that as the band-
width of the ordering increases, the search tree gets
larger. Furthermore each increment in bandwidth re-
sults in a corresponding increase in search tree size
which is statistically significant at the 99% confidence
level. For this problem at least, it is not merely the
case that the very smallest bandwidth orderings are
better han the very largest.

Of course, one would like to have evidence from more
than one problem. The large number of trial runs nec-
essary to obtain statistically significant results, how-
ever, makes this something of a challenge.

5.2 Ordering bandwidth and intelligent
backtracking

Why should it be advantageous to use a small band-
width ordering? Suppose that a CSP is solved by
chronological backtracking under an ordering with
bandwidth b. Such a process will construct a search
tree in the standard manner: the nodes of the search
tree will consist of labelings which assign values to
some subset of the variables, the root node will consist
of the empty labeling, and the children of a node will
assign a value to one variable that was not assigned a
value by the parent node. Assuming that the CSP is
solved under a fixed ordering, each level in the search
tree will correspond to a single variable which is as-
signed a value at that depth in the tree.2 Some of the
leaf nodes of the search tree will be solutions to the
CSP; the remaining leaf nodes are failures, because all
the possible values of some unassigned variable are in-
compatible with the values of the variables that have
been assigned values.

At a given node of this search tree, the corresponding
labeling will have assigned values to certain variables.
However, only the most recent b variables to have been
assigned values can have any effect on the remainder
of the search. Any variables that were assigned values
earlier will have no edges in the constraint graph con-
necting them to variables that do not yet have values,
and hence will have no effect.

More precisely, consider two labelings at the same
level in the search tree. If these two labelings assign
the same values to the most recent b variables, then
the subtrees underneath the two labelings will be iso-
morphic. This is the property that the dynamic pro-
gramming schemes mentioned in section 4.1 exploit.

This is also an advantageous property for doing
chronological backtracking. In a small bandwidth or-

21t is rather straightforward to extend all of the results
in this paper to rearrangement search strategies such as
[Purdom et al., 19811. The bandwidth of a dynamic search
ordering is simply the maximum of the bandwidths of the
orderings used down any branch of the search tree.

dering, at any point in the search the only variables
that matter are a small number of recent ones.

When using backtrack search, the decision actually
responsible for a failure can occur significantly before
the failure itself is detected. This is a well-known mal-
ady of backtracking which can lead to extremely poor
performance. The greater the number of intervening
decisions, the worse backtracking performs.

Various schemes have been proposed to solve this
problem. These schemes mostly work by invoking some
sort of failure analysis to determine where responsibil-
ity for a failure lies. The results of this analysis are
then used to discard portions of the search tree which
can be shown to contain no solution.

The two most popular such schemes are dependency-
directed backtracking [Stallman and Sussman, 19771
and intelligent backtracking [Bruynooghe, 19811. The
major difference involves how much pruning of the
search tree is done. Dependency-directed backtracking
achieves a much greater reduction in search tree size,
at the cost of a potentially exponential use of storage
space. Intelligent backtracking uses very little space,
but does less pruning.

Researchers who have studied dependency-directed
backtracking or intelligent backtracking have generally
suspected that these schemes have some relationship
with search order. For instance, it is very difficult to
construct an example of a problem where dependency-
directed backtracking is helpful without requiring that
the problem be solved in a particular order. There is
usually some other ordering which solves the problem
without running into this problem. One example is
the sample problem described by [de Kleer, 1986, page
1361.

Suppose that a search problem is being solved by
chronological backtracking under an ordering with
bandwidth b. At any point in the search, only the
last b variables that have been assigned values matter.
A failure occurs because all the values at a particular
variable vi have been eliminated. The responsible vari-
ables must be among the last b to be assigned values,
as no other variables have an edge connecting them
with vi.

This strongly suggests that the number of interven-
ing decisions between the choice responsible for a fail-
ure and the failure itself should be bounded by b. It
is possible to prove a theorem that supports this intu-
ition.

The theorem applies to intelligent backtracking
schemes, which are in fairly wide use in the PRO-

LOG community. Bruynooghe [1981] gives one intelli-
gent backtracking algorithm for solving CSP’s. There
are numerous other very similar schemes, such as
that given in [Bruynooghe and Pereira, 19841. The
statement of the theorem, which applies to all these
schemes, is as follows.

If a CSP is searched in a fixed order using intelligent
backtracking, the bandwidth of that ordering provides

ZABIH 49

‘.

a bound on the amount of the search tree that intel-
ligent backtracking will prune. This bound holds at
almost all nodes in the search tree; the only exception
is when intelligent backtracking declares the problem
to be insolvable. It is possible to prove restrictions on
the nodes in the search tree where these exceptions can
occur, in terms of the Ic-consistency [Freuder, 19781 of
the original CSP.

This theorem and some related results will be dis-
cussed in detail in a forthcoming paper. They provide
an interesting relationship between search ordering and
intelligent backtracking. Intelligent backtracking and
search order are clearly not orthogonal. Choosing a
good (i.e., small bandwith) ordering reduces the ad-
vantages of using intelligent backtracking. A reason-
able explanation would be that choosing a small band-
width ordering ameliorates the problem that intelli-
gent backtracking is designed to solve. This expla-
nation is consistent with the statistical evidence that
small bandwidth orderings are useful for (chronologi-
cal) backtracking.

5.3 Bandwidth and adjacency
One final interesting property of small bandwidth or-
derings is their relationship to the “adjacency” heuris-
tic. This is one of the simplest and most standard
ordering heuristics, which is especially common for
graph-coloring problems. Adjacency simply means
that the ordering starts at one edge of the graph and
looks at new vertices that are adjacent (i.e., connected)
to a vertex that has already been examined.

The adjacency heuristic is clearly related to minimiz-
ing ordering bandwidth. A small bandwidth ordering,
by definition, will examine all of a vertex v’s neighbors
soon after it examines v. It is not always the case that
a small bandwidth ordering will next examine a ver-
tex adjacent to those already examined. However, it is
usually true, and in any event the next vertex will be
close to the previously examined vertices.

5.4 Consequences
If it is indeed true that small bandwidth orderings are
in general efficient, then there is a large set of algo-
rithms developed by numerical analysts that can be
applied to CSP’s. Bandwidth minimization, as men-
tioned, is NP-complete. However, because it is an
important problem in the field of numerical analysis,
many heuristic procedures for finding small bandwidth
orderings have been developed. Most of these have rel-
atively low time overhead. [Zinn et al., 19821 surveys
some of these algorithms; perhaps the most popular
one is [Gibbs et al, 19761.

These algorithms can be applied to CSP’s to yield
small bandwidth orderings. The CSP may then be
solved using chronological backtracking under that or-
dering; or, as an alternative, it can be solved using
the dynamic programming methods mentioned in sec-
tion 4.1.

6 Conclusions
Graph bandwidth has been defined and shown to have
applicability to CSP’s. Bandwidth provides a new class
of tractably solvable constraint satisfaction problems,
and a possible measure of CSP decomposability. In
addition, the bandwidth is an important characteristic
of a search ordering. Small bandwidth orderings seem
to result in a statistically significant increase in back-
tracking efficiency, and these or nderings are also
to intelligent backtracking and to adjacency.

related

6.1 Acknowledgements
Johan de Kleer, David McAllester and Joe Weening
contributed to this research. The author is supported
by a fellowship from the Fannie and John Hertz Foun-
dation.

References
[Bruynooghe and Pereira, 19841 Maurice Bruynooghe

and Luis Pereira. Deduction revision by intelligent
backtracking. In J. A. Campbell, editor, Implemen-
tations of Prolog, chapter 3, pages 196-215. Ellis
Horwood, Chichester, 1984.

[Bruynooghe, 19811 Maurice Bruynooghe. Solving
combinatorial search problems by intelligent back-
tracking. Information Processing Letters, 12(1):36-
39, 1981.

[de Kleer, 19861 Johan de Kleer. An assumption-based
TMS. Artificial Intelligence, 28(2):127-162, March
1986.

[Dechter and Pearl, 19871 Rina Dechter and Judea
Pearl. Network-based heuristics for constraint-
satisfaction problems. Artificial Intelligence,
34(1):1-38, December 1987.

[Fernandez-Baca, 19881 David Fernandez-Baca. Non-
serial dynamic programming formulations of satisfi-
ability. Information Processing Letters, 271323-326,
May 1988.

[Freuder , 19781 Eugene Freuder . Synthesizing con-
straint expressions. Communications of the Associ-
ation for Computing Machinery, 21:958-966, 1978.

[Freuder, 19821 E u g ene Freuder. A sufficient condition
for backtrack-free search. Journal of the Associ-
ation for Computing Machinery, 29(1):24-32, Jan-
uary 1982.

[Gibbs et al., 19761 N orman Gibbs, William Poole,
and Paul S tockmeyer . An algorithm for reducing
the bandwidth and profile of a sparse matrix. SIAM
Journal of Numerical Analysis, 13(2), April 1976.

[Gurari and Sudborough, 19841 Eitan Gurari and Ivan
Sudborough. Improved dynamic programming algo-
rithms for bandwidth minimization and the mincut
linear arrangement problem. Journal of Algorithms,
5:531-546, December 1984.

50 AUTOMATEDREASONING

d

[Monien and Sudborough, 19851 Burkhard Monien
and Ivan Sudborough. Bandwidth constrained NP-
complete problems. Theoretical Computer Science,
41:141-167, 1985.

[Papadimitriou, 19761 Christos Pa.padimitriou. The
NP-completeness of the bandwidth minimization
problem. Computing, 16:263-270, 1976.

[Purdom et al., 1981] Paul Purdom, Cynthia Brown,
and Edward Robertson. Backtracking with multi-
level dynamic search rearrangement. Acta Informat-
ica, 15:99-114, 1981.

[Saxe, 19801 James Saxe. Dynamic programming al-
gorithms for recognizing small bandwidth graphs in
polynomial time. SIAM Journal on Algebraic and
Discrete Methods, 1(4):363-369, December 1980.

[Seidel, 19811 R aimund Seidel. A new method for solv-
ing constraint satisfaction problems. In Proceedings
of IJCAI-81, Vancouver, BC, pages 338-342, Au-
gust 1981.

[Stallman and Sussman, 19771 Richard Stallman and
Gerald Jay Sussman. Forward reasoning and de-
pendency directed backtracking in a system for
computer-aided circuit analysis. Artificial Intelli-
gence, 9:135-196, 1977.

[Zinn et al., 19821 P. Z. Zinn, J. Chvatalova, A. I<.
Dewdney, and N. E. Gibbs. The bandwidth prob-
lem for graphs and matrices - a survey. Journal of
Graph Theory, 6(3):223-254, 1982.

ZABIH 51

