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Abstract 
Bandwidth is a fundamental concept in graph theory 
which has some surprising applications to a class of 
AI search problems. Graph bandwidth provides a link 
between the syntactic structure of a constraint satis- 
faction problem (CSP) and the complexity of the un- 
derlying search task. Bandwidth can be used to define 
a new class of easy CSP’s, namely those that have lim- 
ited constraint graph bandwidth. These CSP’s can be 
solved in polynomial time, essentially by divide and 
conquer. This in turn suggests that bandwidth pro- 
vides a mathematical measure of the decomposability 
of a search problem. In addition, bandwidth supplies 
a measure for comparing different search orderings for 
a given CSP. Statistical analysis suggests that back- 
tracking with small bandwidth orderings leads to a 
more efficient search than that obtained under order- 
ings with larger bandwidths. Small bandwidth order- 
ings also limit the pruning that can be done by intel- 
ligent backtracking. If small bandwidth orderings are 
indeed advantageous, then a large number of heuristics 
developed in numerical analysis to find such orderings 
may find applicability to solving constraint satisfaction 
problems. 

1 Introduction 
The bandwidth of an ordering of a graph is the maxi- 
mum distance between two adjacent vertices, and the 
bandwidth of a graph is its minimum bandwidth under 
any ordering. ’ Bandwidth is one of the basic concepts 
in graph theory, and is related to almost every other 
mathematical property that graphs possess [Zinn et al., 
19821. It is nonetheless surprising to discover some 
strong connections between graph bandwidth and a 
class of search problems encountered in AI. 

The search problems known as constraint satisfac- 
tion problems (CSP’s) have an associated constraint 
graph. The vertices of the graph consist of the vari- 
ables of the search problem, and there is an edge be- 
tween two vertices if there is a (non-trivial) constraint 
between those variables. 

‘These definitions will be made more precise in section 3. 

The bandwidth of the constraint graph is strongly 
related to the complexity of the underlying constraint 
satisfaction problem. In particular, there is evidence 
for two claims. 
6 The bandwidth of the constraint graph of a con- 

straint satisfaction problem serves as a measure of 
its decomposability. 

o The bandwidth of a search ordering provides a mea- 
sure of its quality, as backtracking with a small band- 
width ordering generally results in a smaller search 
tree. 

The first claim is supported by a proof that any prob- 
lem of limited bandwidth can be solved in polynomial 
time, essentially by divide and conquer. The second 
claim is supported by statistical analysis, and by evi- 
dence that small bandwidth orderings have additional 
important properties related to intelligent backtrack- 
ing. If small bandwidth orderings are indeed useful, 
then the large body of heuristics that has been devel- 
oped by numerical analysts for finding such orderings 
may prove to be useful for solving CSP’s. 

After a brief review of constraint satisfaction prob- 
lems, section 3 formally defines bandwidth and re- 
lates it to some other graph-theoretic notions in the 
CSP literature. Section 4 proves that any CSP whose 
bandwidth can be limited is solvable in polynomial 
time. Section 5 presents statistical data which suggests 
that small bandwidth orderings are generally superior, 
as well as describing some preliminary results about 
the interaction between such orderings and intelligent 
backtracking. 

2 Constraint Satisfaction Problems 
A constraint satisfaction problem (CSP) has a set of 
variables and a domain of values, 

v = {VI, v2,. . . , v,} the set of variables, jlVlj = n, 
D = {dl, d2,. . . , dm} the set of values, lIDI = d. 

Every variable vi must be assigned a value dk. 
A CSP also consists of some constraints saying which 

assignments are compatible. Most interesting prob- 
lems are binary CSP’s, where the constraints involve 
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pairs of variables. Such a constraint is a (proper) sub- 
set of D x D consisting of the simultaneously permitted 
assignments. A binary CSP has an associated con- 
straint graph G = (V, E), where 

E = { (vi, vi) ] there is a contraint between vi and vj ). 

Note that the constraint graph hides a great deal of the 
information about the search problem, particularly the 
tightness of the constraints. 

The constraint graph G may be assumed to be con- 
nected, as otherwise each connected component can be 
considered separately. Many standard combinatorial 
problems are binary CSP’s, including graph coloring 
and the n-queens problem. 

3 Graph Definitions 
Given a graph G with n vertices, an ordering h is a one- 
to-one map from the vertices of G to the set { 1, . . . , n}. 
The bandwidth of a vertex v under an ordering h is 
the maximum value of Ih(v) - h(w)1 over all vertices w 
connected to v. The bandwidth of a graph under an 
ordering is the maximum bandwidth of any vertex, and 
the bandwidth of a graph is its minimum bandwidth 
under any ordering. The bandwidth of G under h will 
be written as B(G, h). 

3.1 Relating bandwidth and other graph 
properties 

There are many notions akin to bandwidth which have 
been developed in the CSP literature. It is straightfor- 
ward to determine the relationship between bandwidth 
and three graph properties: front length (introduced 
by [Seidel, 1981]), width [Freuder, 19821, and induced 
width [Dechter and Pearl, 19871. 

Seidel [1981] defines an invasion of G to be a se- 
quence of subgraphs Gr, . . . , G, where Gi is a subgraph 
of Gr+l with i vertices and where G, = G. For a given 
invasion, a front & consists of the vertices in Gi that 
are adjacent (in G) to vertices not in Gi. The front 
length of an invasion is the maximum size of Fi. There 
is an invasion associated with any ordering h, defined 
by G = h-l(l), Gi+r = Gi u h-l(i + 1). The front 
length of G under the invasion associated with h will 
be written as F(G, h). 

Freuder [1982] defines the width of a vertex v under 
an ordering h to be the number of vertices that are 
connected to v which occur earlier than v under h. The 
width of a graph under an ordering is the maximum 
width of any vertex. The width of G under h will be 
written as W(G, h). 

Dechter and Pearl [1987] construct the induced 
graph of G under an ordering h by processing G’s ver- 
tices in the order {h-l(n), . . . , h-l(l)}, and adding an 
edge between any two neighbors of a vertex v that pre- 
cede v under h. The induced graph of G under h will 
be written as Gm. 

It is straightforward to analyze the relationships 
among these quantities. First, for a fixed ordering h, 

define 

pi d!f (h-‘(i - B(G, h)), . . . , h-‘(i - 1)) 

(assuming h”(j) = h-l (1) if j < 1 for simplicity). 
The important property of Pi is the following: if there 
is an edge between v and W, where v occurs before h(i) 
and w does not, then v E Pi. 

Theorem 3.1 For any graph G and ordering h 
BP, h) L J-W’, h). 

Proof: Consider a front Fi in the invasion defined by 
h. Clearly F! C Pd+l. But IIpS+lll L B(W). 0 

Theorem 3.2 For any graph G and ordering h 
WV4 2 WG,h). 

Proof: All of the previous vertices that v = h(i) is 
connected to must be in Pa. •I 

Theorem 3.3 For any graph G and ordering h 
B(G, h) 2 W(Gh, h). 

Proofi The edges added when v = h(i) is processed will 
be between two elements of Pi. Addin 

Q 
such edges will 

never increase the bandwidth, so B(G , h) = B(G, h). 
Applying theorem 3.2 with G replaced by Gh gives the 
desired result. 0 

Note that the above three inequalities cannot be 
made strict (i.e., it is invalid to replace ‘2’ by ‘>‘). 

Theorem 3.4 There exists a graph G and an order- 
ing h such that B(G,h) = F(G, h) = W(G, h) = 
W(Gh, h). 

Proof: Consider a graph G that is a triangle. Then, 
for any ordering h, B(G, h) = F(G, h) = W(G, h) = 
W(G*, h) = 2. CI 

4 Limited Bandwidth CSP’s 
There is no technical definition of what it means for 
a search problem to be “local” or “nearly decompos- 
able”. The intuition behind these terms, however, is 
that certain search problems can be solved piece by 
piece, without taking the entire problem into consider- 
ation at each point in the search. Coloring a long and 
narrow graph is an example of such a search problem. 

There are several reasons to believe that the band- 
width of a CSP’s constraint graph reflects the locality 
of the search problem. First, note that edges in the 
constraint graph measure strong interactions between 
variables. If there is no edge between two variables, 
then assigning one a value can have no (direct) effect 
upon the other, so the lack of an edge reflects a sort 
of independence. If the CSP has limited bandwidth, 
each vertex in the constraint graph can have no more 
than a bounded number of neighbors. This suggests 
that small bandwidth graphs should be solvable by 
only worrying about a small subset of the variables 
at any instant. 

Additional anecdotal evidence to support this con- 
clusion can be obtained by visual inspection of graphs 
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of various bandwidths. Graphs with small bandwidths 
tend to look long and thin. The highest bandwidth 
graph, on the other hand, is the complete graph where 
there is an edge between every pair of vertices. 

A stronger argument can be made on the basis of 
the claim that nearly decomposable search problems 
should be easy to solve. In particular, it should be 
possible to solve them efficiently by solving their sub- 
parts more or less independently (gluing the subparts 
back together into a solution by divide and conquer or 
by dynamic programming). It turns out that any CSP 
of limited bandwidth can be solved in polynomial time 
by dynamic programming. 

4.1 Solving bandwidth-limited CSP’s in 
polynomial time 

The basic strategy is to find an ordering with mini- 
mal bandwidth, and then to use this ordering to solve 
the CSP. In general, determining the bandwidth of 
a graph is an NP-complete problem [Papadimitriou, 
19761. However, if the graph’s bandwidth is no larger 
than b, a minimal bandwidth ordering can be found in 
time 0( n’) and also space 0 n’). This can be done 
via an algorithm of Saxe [1980 I 
and Sudborough [ 19841. 

as improved by Gurari 

Given an ordering h with bandwidth no larger than 
b, the CSP can then be solved via dynamic pro- 
gramming. There are three possible algorithms, with 
slightly different bounds. Because of the relation- 
ships between bandwidth, front length and induced 
width that are proven in section 3, either Seidel’s or 
Dechter and Pearl’s method may be used. In addition, 
Ferniindez-Baca has recently produced an algorithm 
that makes explicit use of bandwidth [Fernandez-Baca, 
19SS]. However, Dechter and Pearl’s algorithm gives 
the bound that seems likely to be lowest in practice. 

Dechter and Pearl [1987] show how to solve a CSP 
under an ordering h with induced width w = W(Gh, h) 
in time O(d”+l ) and space O(dW). Applying theo- 
rem 3.3, w < b. Combining this with Saxe’s algorithm 
gives the desired result. 

Theorem 4.1 Any CSP whose constraint graph’s 
bandwidth is no larger than b can be solved in time 
O(nb + db+‘) and space O(nb + db). 

One corollary of this theorem is a very simple proof 
of a result first discovered by Monien and Sudborough 
[1985]. 

Corollary 4.2 Any graph of limited bandwidth can be 
colored in polynomial time. 

5 Small Bandwidth Orderings 
Since small bandwidth CSP’s are easy to solve, the 
obvious generalization would be to claim that small 
bandwidth orderings are generally efficient. In fact, the 
method for solving small bandwidth CSP’s described 
above first finds a small bandwidth ordering (by Saxe’s 

Figure 1: Average tree size for a graph-coloring prob- 
lem, with 99% confidence intervals. 
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Figure 2: Average tree size as a function of ordering 
bandwidth, with 99% confidence intervals. 

algorithm), and next uses that ordering to solve the 
search problem. This suggests that there 
special about small bandwidth orderings. 

1s something 

There is both empirical and theoretical evidence 
that 
ties. 
ing small ban 
advantageous 

small bandwidth orderings have special 
Empirically, there is statistical evidence 

.d width 
There 

proper- 
that us- 

orderings for backtrack search is 
are also theoretical evidence that 

links small bandwidth 
tracking. 

orderings with intelligent back- 

5.1 Empirical results 

Statistical analysis of some preliminary experimen- 
tal results suggest that small bandwidth orderings are 
indeed advantageous. The problem that has been 
examined is the graph-coloring problem described in 
[Bruynooghe and Pereira, 19841. This CSP has 1176 
solutions. Depth-first search (sometimes referred to as 
backtracking, or chronological backtracking) has been 
run on the problem several thousand times, under or- 
derings with different bandwidths. 

Figure 1 shows the average number of nodes in the 
search tree as a function of the bandwidth of the order- 
ing, together with the 99% confidence intervals. The 
graph in figure 2 presents the same data in a slightly 
more readable form. The data supports the hypothesis 
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that the search trees resulting from small bandwidth 
orderings are significantly smaller than those resulting 
from orderings with greater bandwidth. 

More precisely, the data suggests that as the band- 
width of the ordering increases, the search tree gets 
larger. Furthermore each increment in bandwidth re- 
sults in a corresponding increase in search tree size 
which is statistically significant at the 99% confidence 
level. For this problem at least, it is not merely the 
case that the very smallest bandwidth orderings are 
better han the very largest. 

Of course, one would like to have evidence from more 
than one problem. The large number of trial runs nec- 
essary to obtain statistically significant results, how- 
ever, makes this something of a challenge. 

5.2 Ordering bandwidth and intelligent 
backtracking 

Why should it be advantageous to use a small band- 
width ordering? Suppose that a CSP is solved by 
chronological backtracking under an ordering with 
bandwidth b. Such a process will construct a search 
tree in the standard manner: the nodes of the search 
tree will consist of labelings which assign values to 
some subset of the variables, the root node will consist 
of the empty labeling, and the children of a node will 
assign a value to one variable that was not assigned a 
value by the parent node. Assuming that the CSP is 
solved under a fixed ordering, each level in the search 
tree will correspond to a single variable which is as- 
signed a value at that depth in the tree.2 Some of the 
leaf nodes of the search tree will be solutions to the 
CSP; the remaining leaf nodes are failures, because all 
the possible values of some unassigned variable are in- 
compatible with the values of the variables that have 
been assigned values. 

At a given node of this search tree, the corresponding 
labeling will have assigned values to certain variables. 
However, only the most recent b variables to have been 
assigned values can have any effect on the remainder 
of the search. Any variables that were assigned values 
earlier will have no edges in the constraint graph con- 
necting them to variables that do not yet have values, 
and hence will have no effect. 

More precisely, consider two labelings at the same 
level in the search tree. If these two labelings assign 
the same values to the most recent b variables, then 
the subtrees underneath the two labelings will be iso- 
morphic. This is the property that the dynamic pro- 
gramming schemes mentioned in section 4.1 exploit. 

This is also an advantageous property for doing 
chronological backtracking. In a small bandwidth or- 

21t is rather straightforward to extend all of the results 
in this paper to rearrangement search strategies such as 
[Purdom et al., 19811. The bandwidth of a dynamic search 
ordering is simply the maximum of the bandwidths of the 
orderings used down any branch of the search tree. 

dering, at any point in the search the only variables 
that matter are a small number of recent ones. 

When using backtrack search, the decision actually 
responsible for a failure can occur significantly before 
the failure itself is detected. This is a well-known mal- 
ady of backtracking which can lead to extremely poor 
performance. The greater the number of intervening 
decisions, the worse backtracking performs. 

Various schemes have been proposed to solve this 
problem. These schemes mostly work by invoking some 
sort of failure analysis to determine where responsibil- 
ity for a failure lies. The results of this analysis are 
then used to discard portions of the search tree which 
can be shown to contain no solution. 

The two most popular such schemes are dependency- 
directed backtracking [Stallman and Sussman, 19771 
and intelligent backtracking [Bruynooghe, 19811. The 
major difference involves how much pruning of the 
search tree is done. Dependency-directed backtracking 
achieves a much greater reduction in search tree size, 
at the cost of a potentially exponential use of storage 
space. Intelligent backtracking uses very little space, 
but does less pruning. 

Researchers who have studied dependency-directed 
backtracking or intelligent backtracking have generally 
suspected that these schemes have some relationship 
with search order. For instance, it is very difficult to 
construct an example of a problem where dependency- 
directed backtracking is helpful without requiring that 
the problem be solved in a particular order. There is 
usually some other ordering which solves the problem 
without running into this problem. One example is 
the sample problem described by [de Kleer, 1986, page 
1361. 

Suppose that a search problem is being solved by 
chronological backtracking under an ordering with 
bandwidth b. At any point in the search, only the 
last b variables that have been assigned values matter. 
A failure occurs because all the values at a particular 
variable vi have been eliminated. The responsible vari- 
ables must be among the last b to be assigned values, 
as no other variables have an edge connecting them 
with vi. 

This strongly suggests that the number of interven- 
ing decisions between the choice responsible for a fail- 
ure and the failure itself should be bounded by b. It 
is possible to prove a theorem that supports this intu- 
ition. 

The theorem applies to intelligent backtracking 
schemes, which are in fairly wide use in the PRO- 

LOG community. Bruynooghe [1981] gives one intelli- 
gent backtracking algorithm for solving CSP’s. There 
are numerous other very similar schemes, such as 
that given in [Bruynooghe and Pereira, 19841. The 
statement of the theorem, which applies to all these 
schemes, is as follows. 

If a CSP is searched in a fixed order using intelligent 
backtracking, the bandwidth of that ordering provides 
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a bound on the amount of the search tree that intel- 
ligent backtracking will prune. This bound holds at 
almost all nodes in the search tree; the only exception 
is when intelligent backtracking declares the problem 
to be insolvable. It is possible to prove restrictions on 
the nodes in the search tree where these exceptions can 
occur, in terms of the Ic-consistency [Freuder, 19781 of 
the original CSP. 

This theorem and some related results will be dis- 
cussed in detail in a forthcoming paper. They provide 
an interesting relationship between search ordering and 
intelligent backtracking. Intelligent backtracking and 
search order are clearly not orthogonal. Choosing a 
good (i.e., small bandwith) ordering reduces the ad- 
vantages of using intelligent backtracking. A reason- 
able explanation would be that choosing a small band- 
width ordering ameliorates the problem that intelli- 
gent backtracking is designed to solve. This expla- 
nation is consistent with the statistical evidence that 
small bandwidth orderings are useful for (chronologi- 
cal) backtracking. 

5.3 Bandwidth and adjacency 
One final interesting property of small bandwidth or- 
derings is their relationship to the “adjacency” heuris- 
tic. This is one of the simplest and most standard 
ordering heuristics, which is especially common for 
graph-coloring problems. Adjacency simply means 
that the ordering starts at one edge of the graph and 
looks at new vertices that are adjacent (i.e., connected) 
to a vertex that has already been examined. 

The adjacency heuristic is clearly related to minimiz- 
ing ordering bandwidth. A small bandwidth ordering, 
by definition, will examine all of a vertex v’s neighbors 
soon after it examines v. It is not always the case that 
a small bandwidth ordering will next examine a ver- 
tex adjacent to those already examined. However, it is 
usually true, and in any event the next vertex will be 
close to the previously examined vertices. 

5.4 Consequences 
If it is indeed true that small bandwidth orderings are 
in general efficient, then there is a large set of algo- 
rithms developed by numerical analysts that can be 
applied to CSP’s. Bandwidth minimization, as men- 
tioned, is NP-complete. However, because it is an 
important problem in the field of numerical analysis, 
many heuristic procedures for finding small bandwidth 
orderings have been developed. Most of these have rel- 
atively low time overhead. [Zinn et al., 19821 surveys 
some of these algorithms; perhaps the most popular 
one is [Gibbs et al, 19761. 

These algorithms can be applied to CSP’s to yield 
small bandwidth orderings. The CSP may then be 
solved using chronological backtracking under that or- 
dering; or, as an alternative, it can be solved using 
the dynamic programming methods mentioned in sec- 
tion 4.1. 

6 Conclusions 
Graph bandwidth has been defined and shown to have 
applicability to CSP’s. Bandwidth provides a new class 
of tractably solvable constraint satisfaction problems, 
and a possible measure of CSP decomposability. In 
addition, the bandwidth is an important characteristic 
of a search ordering. Small bandwidth orderings seem 
to result in a statistically significant increase in back- 
tracking efficiency, and these or nderings are also 
to intelligent backtracking and to adjacency. 

related 
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