
An Organizational Approach to
Adaptive Production Systems

Toru Ishida Makoto Yokoo
NTT Communications and

Information Processing Laboratories
l-2356, Take, Yokosuka-shi, 238-03, Japan

ishida/yokoo%nttkb.ntt.jp@relay.cs.net

Abstract
Recently-developed techniques have improved the per-
formance of production systems several times over.
However, these techniques are not yet adequate for
continuous problem solving in a dynamically chang-
ing environment. To achieve adaptive real-time per-
formance in such environments, we use an organization
of distributed production system agents, rather than a
single monolithic production system, to solve prob-
lems. Organization seZf-design is performed to sat-
isfy real-time constraints and to adapt to changing
resource requirements. When overloaded, individual
agents decompose themselves to increase parallelism,
and when the load lightens the agents compose with
each other to free hardware resources. In addition to
increased performance, generalizations of our compo-
sition/decomposition approach provide several new di-
rections for organization self-design, a pressing concern
in Distributed AI.

Introduction
To improve the efficiency of production systems, high-
speed matching algorithms, such as RETE [Forgy,
19821, TREAT [M iranker, 19871, and optimization al-
gorithms [Ishida, 19881 have been investigated. Two
kinds of parallel processing techniques have also been
proposed: parallel matching [Stolfo, 1984; Gupta et ad.,
1985; Acharya et al., 19891 to speed-up matching pro-
cesses and parudlel firing [Ishida et al., 1985; Ishida,
1990; Tenorio et al., 1985; Moldvan, 19861 to reduce
the total number of sequential production cycles. The
motive for all of these studies is to speed up production
systems several times over. However, these techniques
are not yet adequate for continuous problem solving
systems.

Typical examples can be found in real-time expert
systems, where new techniques are required to ada.pt
the systems to dynamically changing environments
[Laffey et aZ., 19881. T 0 satisfy real-time constraints,
various agent-centered approaches are currently being
studied. Lesser et al. [1988] discussed approximate
processing techniques. Hayes-Roth et aZ. [1989] intro-
duced adaptive inteZZigent systems that reason about

52 AUTOMATEDREASONING

Les Gasser
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0782

gasser@pollux.usc.edu

and interact with other dynamic entities in real-time.
These approaches attempt to meet deadlines by im-
proving the decision-making of individual agents. In
this paper we take an organization-centered approach,
where problems are solved by a society of distributed
problem-solving agents. This-approach-aims to a.chieve
adaptive real-time performance through reorganization
of the society. In a.ddition to improving adaptabil-
ity, our technique provides several insights and general
mechanisms for organizational adaptation, a pressing
concern in DA1 [Gasser et al., 1989a]. Moreover, it has
the advantage of being grounded in a well-understood
body of theory and practice: parallel production sys-
tems.

To explore the effectiveness of the organization-
centered approach, we are studying the adaptive 1oa.d
balancing problem in which a pa.r ticu1a.r problem solver
shares a collection of processor resources with other
problem solvers (and so has a.n opportunity for adapt-
ing its levels of resource use). Problem solving re-
quests arrive at the organization continuously, at vari-
a.ble ra.tes. Meaningful results are required wit,hin a
(possibly changing) time limit. When the problem-
solver is embedded in an open community of other
problem solvers, it does not -suffice to simply decom-
pose to maximal parallelism - the collective must adapt
itself to take advantage of resources as needed, but-it
must also adaptively free up resources for others white
continuing to operate.

To achieve this goal, we first extended pnralled pro-
duction systems, where global control exists, into dis-
tribuied production systems, with distributed control.
We then introduced organization self-design (OSD)
[Corkill, 1982; Durfee et al., 1987; Gasser e2 nZ.,
1989a.,b] into these distributed production systems. In
previous research, reorganiza.tion mechanisms typically
changed agent roles or inter-a.gent task ordering. In
this paper, we a.dded new reorganization primitives:
composition and decomposition of agents. \Vhen prob-
lem solving requests arrive frequently, and make it
difficult for the organization to meet its deadlines,
agents autonomously decompose themselves so that
parallelism increases. In contrast, when the organi-

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

zational load decreases, two agents compose (combine
with each other) to save hardware resources. As a re-
sult, both real-time constraints and efficient resource
utilization are satisfied through composition and de-
composition of the agents.

Production Systems
To establish our terminology, we give a brief overview
of production systems. A production system is defined
by a set of rules or productions called production mem-
ory (PM), together with an assertion database called
working memory (WM) that contains a set of working
memo y elements (WMEs). Each rule comprises a con-
junction of condition elements called the Zeft-hand side
(LHS) of the rule, and a set of actions called the right-
hand side (RHS). Positive condition eZem.ents are sak-
isfied when a matching WME exists, and negative con-
dition elements are satisfied when no matching WME
is found. An instantiation of the rule is a set of WMEs
that satisfy the positive condition elements. The RHS
specifies assertions to be added to or deleted from the
WM?

A data dependency graph of production systems
[Ishida et al., 1985; Ishida, 19901 is constructed from
the following four primitives:

A production node, which represents a set of insta.n-
tiations. Production nodes are shown as circles in
Figure 1 and 2.

A working memory node, which represents a set
of WMEs. Working memory nodes are shown as
squares in Figure 1 and 2.

A directed edge from a production node to a work-
ing memory node, which represents the fact that a
production node modifies a working memory node.
More precisely, the edge labeled ‘+’ (‘- 3 indicates
that a WME in a working memory node is a.dded
(deleted) by firing an instantiation in a production
node.

A directed edge from a working memory node to a
production node, which represents the fact that a
production node refers to a working memory node.
More precisely, the edge labeled ‘+’ (‘- ‘) indicates
that a WME in a working memory node is referenced
by positive (negative) condition elements when cre-
ating an instantiation in a production node.

Interference exists among rule instantiations when
the result of parallel execution of the rules is different
from the results of sequential executions applied in any
order; it must be avoided by synchronization.

Figure 1 shows an example of OPS5 rules and their
data dependency graph. In this example, if either
ruleA or ruleB is fired first it destroys the other rule’s

‘In this paper, we assume that each WME contains
unique information. Operations adding duplicated WMEs
are ignored.

(p ruleA
(class1 . ..)

G*e class2 . ..))

(p ruleI
(class1 . ..)

- (class2 . ..)
-->
(remove 1))

Figure 1: Data Dependency Graph

preconditions; therefore, interference may occur when
firing both rules in parallel. If the two rules are dis-
tributed to different agents, the agents have to syn-
chronize to prevent firing those rules in parallel.

Distributed Production Systems
Overview
A distributed production system is defined as a set of
production system agents, each of which contains and
fires some of the problem solving rules of the overall
system. Each agent comprises the following three com-
ponents:

A problem solver, which continuously repea.ts the
problem solving cycle described later in this section.
In parallel production systems, multiple rules are si-
multaneously fired but globally synchronized at the
conflict resolution phase [Ishida el al., 1985; Ishida,
19901. In distributed production systems, on the
other hand, rules are asynchronously fired by dis-
tributed agents. Since no global control exists, in-
terference among the rules is prevented by local syn-
chronization between individual agents.

Problem solving knowledge, contained in the PMs and
WMs. For simplifying the following discussion, we
assume no overlap between PMs in different agents,
and assume the union of all PhIs in the organiza-
tion is sufficient to solve the given problem. Each
agent’s WM contains only WhIEs that ma.tch the
LHS of that agent’s rules. Since the same condition
elements ca.n appear in different rules, the WMs in
different agents may over1a.p. The union of WhIs
in an organization logically represents all the facts
necessary to solve the given problem. In pra.ctice,
since agents asynchronously fire rules, WMs can be
temporarily inconsistent.

Organ.izntionaZ knowledge, representing relationships
among a.gents. Each agent knows only a.bout the
others with whom it has data dependency or interfer-
ence relationships (called its neighbors-see below).
Since agents asynchronously perform reorga.niza.tion,

I~~HDA E-~-AL. 53

organizational knowledge can be temporarily incon-
sistent across agents.

Organizational Knowledge

Organizational knowledge consists of the following
three elements:

Dependencies:
Each agent knows which rules in the organization
have data dependency relationships with its own
rules. We say that ruleA depends on ruleB if ruleA
refers to a working memory node that is changed
by ruleB. We describe this as depends (ruleA,
ruleB). The data dependency knowledge of agentP
is represented as:

DEPENDENCY,S,,tp =
((ruleA, ruleB) I

(ruleAEPA&,,tp V ruleBEPM,,,,tp)
A depends(ruleA, ruleB))

Interference:
Each a.gent knows which rules in the organiza.tion
may interfere with its own rules. Various inter-
ference analysis techniques are reported in [Ishida,
19901. We describe the interference of ruleA and
ruleB as interfere(ruleA, ruleB). The interfer-
ence knowledge of agentP is represented as:

INTERFERENCEagentp =
<(ruleA, ruleB) I

(ruleAEPi&,,tp V ruleBEPMagentp>
A interfere(ruleA, ruleB))

Though an individual agent’s execution cycle is se-
quential, potential interference among its own rules
is analyzed for future distribution of those rules.

Locations:
Each agent, say agentP, knows the location of rules,
say ruleA, appearing in its own data dependency
and interference knowledge. We describe this as
appears(ruleA, agentp). The neighbor knowledge
of agentP is represented as:

LOCATION,,,,tp =
<(ruleA, agentQ) 1
appears(ruleA, agentP) A ruleAEPA4a,,,tQ)

Figure 2 illustrates the organizational knowledge
of agentP. For example, since ruleA and ruleB in-
terfere with each other, agentP has to synchronize
with agentQ when executing ruleA. Also, ruleA’s
WM modification has to be transferred to agents.
We call agentQ a neighbor of agentP when agentQ
has data dependency or interference relationships with
agentP. From this definition, as illustrated in Figure
2, agentP’s organizational knowledge refers only to its
neighbors.

(m) indicatesthesameworkingmemorynode
duplicatively stored indifferent agents.

DEPENDENCYugenrP = ((ruleA, ruleC) (ruleD, ruleA)

INTERFERENCE agentp
(ruleA, ruleE)}

= ((ruleA, ruleB))
LOCATION agentp = ((ruleA, aged) (ruleB, agenta

(ruleC, agentR) (ruleD, agentS)
(ruleE, agentT)}

Figure 2: Organizationa. Knowledge

Problem Solving Cycle

We define a problem solving cycle of distributed pro-
duction system agents by extending the conventional
Match-Select-Act cycle to accommodate inter-agent
data transfers and synchronization. Temporary inter-
agent inconsistency caused by distribution is handled
locally using temporary synchronization via rule de-
activation. (We assume the preservation of message
ordering.) The cycle is:

1. Process messages:
When receiving a synchronization request message
(e.g., deactivate(ruleA)), return an acknowledg-
ment message and deactivate the corresponding rule
(ruleA) until receiving a synchronization release
message (activate (ruleA)). When receiving a
WM m.odification message, update the local WM to
reflect the change ma.de in the other agent’s WM.

54 AUTOMATED REASONING

2.

3.

4.

5.

6.

Match:
For each rule, determine whether the LHS matches
the current WM.
Select:
Choose one instantiation of a rule (e.g., ruleB) that
is not deactivated.

Request synchronization:
Using interference knowledge, send synchroniza-
tion request messages (deactivate (ruleB)) to the
agents requiring synchronization. Await acknowl-
edgment from all synchronized agents2. After com-
plete acknowledgment, handle all WM modification
messages that have arrived during synchronization.
If the selected instantiation is thereby canceled, send
synchronization release messages and restart the
problem solving cycle.

Act:
Fire the selected rule instantiation (ruleB). Using
the data dependency knowledge of agentP, inform
dependent agents with WM modification messages.

Release synchronization:
Send synchronization release messages (act ivat e
(ruleB)) to all synchronized agents.

Organization Self-Design (OSD)
Reorganization Requests
To start reorganization, two kinds of reorganization re-
quests are sent to all agents of the organization. De-
composition requests are issued when the organization
cannot, meet deadlines. Composition requests are is-
sued to release resources when the organization-wide
load is light. For these purposes, the behavior of the
organization must, be continuously observed.

Decomposition requests initiate division in heavily-
loaded agents. Decomposition continues until paral-
lelism increases, response times are shortened, and de-
composition requests disappear. Conversely, composi-
tion requests initiate combining each two lightly-loaded
agents into one. Composition continues until the or-
ganization’s load increases and composition requests
disappear. Both kinds of requests can be issued simul-
t aneousl y.

Reorganization Process
To control the reorganization processes, we added to
each agent an organization self-designer, which per-
forms reorganization at the end of each problem solv-
ing cycle. We describe below how one agent, (e.g.,
agentP) decomposes itself into two agents(e.g., agentP
and agentQ). During reorganization, rules, WMEs, de-
pendency and interference knowledge are transferred
from agentP to agentQ, but not modified. Loca.tion

2Deadlock is a possibility. When acknowledge messages
are not received, synchronization release messages are sent
and the problem solving cycle is restarted.

knowledge is
other agents.

1.

2.

3

4

5

6.

7.

modified and changes are propagated to

Create a new agent:
agentP creates a new agent, agentQ, which immedi-
ately starts problem solving cycles.

Select rules to be transferred:
agentP selects active rules to be transferred (e.g.,
ruleA) to agentQ. agentP sends synchronization
request messages (deactivate(ruleA)) to agentQ.
Currently, half of the active rules are arbitrarily se-
lected and transferred, but we are refining a theory of
rule selection based on maximizing intra-agent rule
dependencies and minimizing inter-agent communi-
cation.

Request synchronization:
agentP sends synchronization request messages to
neighbors for all rules that have data depen-
dency or interference relationships with rules to
be transferred (e.g., deactivate(ruleB) is sent, if
depends(ruleA, ruleB), depends(ruleB, ruleA)
or interf ere(ruleA, ruleB))3. agentP waits for
complete acknowledgment (resolving deadlock as be-
fore).

Transfer rules:
agentP transfers rules (ruleA) to agentQ, upda.tes
its own location knowledge, and propagates any
changes to its neighbors.

Transfer WMEs:
agentP copies WMEs that ma.tch the LHS of the
transferred rules (ruleA) to agentQ4. A bookkeep-
ing process follows in both agents to eliminate du-
plicated or unneeded WMEs.

Transfer dependency an,d interference knowledge:
agentP copies its dependency and interference
knowledge to agentQ. Both agents do bookkeeping
to eliminate duplica.ted or unneeded organizationa.
knowledge5.

Release synchronization.:
agentP sends
synchronization release messages (act ivat e (ruleA)
to agentQ and activate(ruleB) to all synchronized
neighbors). This ends reorganization.

‘This is to assure that WM modification and synchro-
nization request messages related to rules to be transferred
are not sent to agentP during the reorganization process.

‘More precisely, to avoid reproducing once-fired instan-
tiations, not only WMEs but also conflict sets are trans-
ferred to agentQ. Before transferring the conflict sets, how-
ever, agentP has to maintain its WM by handling the WM
modification mestiages that have arrived during the syn-
chronization process.

‘Unneeded data dependency and interference knowledge
are the tuples that include none of the agents’ rules. Un-
needed location knowledge is the tuples that include none
of the rules that appear in the agents’ data dependency and
interference knowledge.

ISHIDA ETAL. 55

An agent (e.g., agentp) can compose with another
agent by a similar process. First, agentP sends com.po-
sition request messages to its neighbors. If some agent,
say agentQ, acknowledges, agentP transfers all rules
and organizational knowledge to agent9 and destroys
itself. The transfer method is the same as that for
decomposition.

During the reorganization process, neighboring
agents deactivate rules that have data dependency
or interference relationships with transferred rules.
However, neighboring agents can concurrently perform
other activities including firing and transferring rules
that are not deactivated. This localization helps agents
to modify the organization incrementally.

Experimental Evaluation
To evaluate the effectiveness of our approach, we imple-
mented a simulation environment and solved the Waltz
labeling problem: 36 rules solve the problem that ap-
pears in Figure 3-17 in [Winston, 19771 with 80 rule
firings.

At initiation, only one agent, with all problem-
solving and organizational knowledge, exists in the or-
ganization. We assume the organization knowledge for
the initial a.gent is prepared by analyzing its problem
solving knowledge before execution. Problem-solving
requests continuously arrive at the agent; older pend-
ing requests are processed with higher priority. The
load of each agent is represented by a firing ratio: the
ratio of the number of rule firings to the number of
problem solving cycles. Reorganization is performed
as follows. (Global parameters are adjusta.ble.)

When the organization cannot solve a problem
within a predefined time limit, say 20 problem solving
cycles, decomposition requests are sent to the organi-
zation. We use experimentally-generated firing ra.tio
thresholds to trigger reorganization. Agents whose fir-
ing ratio is greater than 80% start decomposing. Upon
decomposition, rules are arbitrary divided and dis-
tributed between two agents. When the organization-
wide ratio is less than SO%, composition requests are
sent to the organization. Agents whose firing ratio is
less than 30% compose with each other. These thresh-
olds were experimentally found to provide a good bal-
ance between adaptiveness and sensitivity, but further
study is warranted.

Figure 3 shows the simulation results. The line cha.rt
indicates response times normalized by problem solv-
ing cycles, and the step chart represents the number
of agents in the organization. In Figure 3(a), problem
solving requests arrive at constant intervals. In Figure
3(b), the frequency of requests is changed periodically.
From these figures, we can conclude the following:

Adaptiveness of the organization:
In Figure 3(a), the organization reaches a stable
state. Since several composition and decomposition
cycles are performed, the firing ratios of the result-
ing agents are equalized. In Figure 3(b), we can see

(a) - time

@I-
time

- number of agents t
job arrival

response time
0 (organizational approach)

response time
*-a-- (conventional parallel approach)

Figure 3: Simulation Results

56 AUTOMATEDREASONING

the number of agents at the busiest peak slightly
decreases over time. Both charts show that the soci-
ety of agents has gradually adapted to the situation
through repeated reorganization.

Real-time problem solving:
The average number of agents in Figure 3(b) is 8.95.
We compared the organization response times to the
performance of 9 permanent agents with no self-
design (which is the conventional parallel production
system approach, shown as the dashed line in Fig-
ure 3(b)). D ff i erences between the dashed and solid
lines demonstrate how the organizational approach
is effective for adaptive real-time problem solving.
However, the effect of reorganization lags the change
in problem load. To improve the capability to meet
deadlines, time limits must be set shorter than ac-
tual deadlines, and load increases must be detected
as early as possible.

Eficient resource utilization:
In Figure 3(b), the number of required a.gents varies
from 4 to 17. It is obvious tha.t the organiza-
tional approach is more economical than the conven-
tional parallel approach that permanently reserves
17 agents. The resource saving effect of the organi-
zational approach is also supported by the fact tha.t
9 permanent agents (which require almost the same
processing resources as the organizational approa.ch)
cannot meet deadlines.

Conclusion
Techniques for building problem-solving systems that
can adapt to changing problem solving requests and
deadlines are of great interest. This pa.per has pre-
sented an approach that relies on reorganization of
a collection of problem-solvers to track cha.nges in
deadlines and problem solving requests. It exploits
an adaptive trade-off of parallelism for time by mak-
ing new agents and continually reallocating problem-
solving knowledge. The importance of this a.pproa.ch
goes beyond the adaptive performance we have illus-
trated.

With additional decision-making meta-knowledge,
this approach can become a more general organiza-
tion self-design technique. It also has the a.dvantage
of being grounded in a well-understood body of the-
ory and practice: parallel production systems. In the
current version, composition/decomposition decisions
are made solely on the basis of firing ratios, and the
choice of rules to transfer is made arbitrarily. Alloca-
tion decisions could instead be based on the semantics
of rules (i.e., distribution based on the kinds of ta.sks
that need more resources). Partial knowledge trans-
fer among existing agents can be combined with com-
position and decomposition to provide a flexible and
distributed task-sharing system.

Within our existing formulation, avenues for future
research include the implementation and the eva.lua-

tion of this approach on actual message passing multi-
processor systems, evaluating the impact of reorgani-
zation overheads, finer threshold sensitivity analyses,
techniques for incrementally acquiring reorganization
strategy in more dynamic contexts, and applying this
approach to adaptively overcoming local faults and in-
consistency among agents.

Acknowledgments
The basic ideas in this paper were elaborated during
Les Gasser’s visit at NTT Communications and Infor-
mation Processing Laboratories. The authors wish to
thank Kunio Murakami and Ryohei Nakano for their
support to our joint research project, and Nick Rou-
quette for helpful comments.

References
[Acharya et al., 19891 A. Acharya and M. Ta.mbe,

“Production Systems on Message Passing Comput-
ers: Simulation Results and Analysis,” Interna-
tional Conferen*ce on Parallel Processing, pp. 246-
254, 1989.

[Corkill, 19821 D.D. Corkill, A Framework for Orga-
nizational Self-Design in Distributed Problem Solv-
ing Networks, PhD Dissertation, COINS-TR-82-33,
University of Massachusetts, 1982.

[Durfee et al., 19871 E. H. Durfee and V. R. Lesser,
“Using Partial Global Plans to Coordinated Dis-
tributed Problem Solvers,” IJCAI-87, pp. 875-883,
1987.

[Forgy, 19821 C. L. Forgy, “A Fast Algorithm for the
Many Pattern / Many Object Pattern hIat& Prob-
lem,” Artificial Intelligen.ce, Vol. 19, pp. 17-37,
1982.

[Gasser et al., 1989a] L. Gasser and M. N. Huhns,
“Themes in Distributed AI Research,” in L. Gasser
and M. N. Huhns, Editors, Distributed Artificial In-
telligence, Volume II, London:Pitman, 1989.

[Gasser et al., 1989b] L. Gasser, N. Rouquette, R. Hill
and J. Lieb, “Representing and Using Organiza-
tional Knowledge in DA1 Systems,” in L. Gasser
and M. N. Huhns, Editors, Distributed Artificial
Intelligen.ce, Volume II, London:Pitma.n, pp. 55-78,
1989.

[Gupta et al., 19881 A. Gupta., C. L. Forgy, D. Kalp,
A. Newell and M. Tambe, “Parallel OPS5 on the
Encore Multimax,” International Conference on
Parallel Processing, pp. 271-280, 1988.

[Ha.yes-Roth et al., 19891 B. Hayes-Roth, R. Washing-
ton, R. Hewett, M. Hewett and A. Seiver, “Intelli-
gent Monitoring and Control,” IJCAI-89, pp. 243-
249, 1989.

[Ishida et al., 19851 T. Ishida and S. J. Stolfo, “To-
wards Parallel Execution of Rules in Production

ISI~DA ETAL. 57

System Programs,” International Conference on
Parallel Processing, pp. 568-575, 1985.

[Ishida, 19881 T. Ishida, “Optimizing Rules in Pro-
duction System Programs,” AAAI-88, pp. 699-704,
1988.

[Ishida, 19901 T. Ishida, “Methods and Effectiveness
of Parallel Rule Firing,” IEEE Conference on Arti-
ficial Intelligence Applications, pp. 116-122, 1990.

[Laffey e-t al., 19881 T. J. Laffey, P. A. Cox, J. L.
Schmidt, S. M. Kao, and J. Y. Read, “Real-Time
Knowledge-Based Systems,” AI Magazine, Vol. 9,
No. 1, pp. 27-45, 1988.

[Lesser et al., 19881 V. R. Lesser, J. Pavlin and E.
H. Durfee, “Approximate Processing in Real Time
Problem Solving,” AI Magazine, Vol. 9, No. 1, pp.
49-61, 1988.

[Miranker, 19871 D. P. Miranker, “TREAT: A Bet-
ter Match Algorithm for AI Production Systems,”
AAAI-87, pp. 42-47, 1987.

[Moldovan, 19861 D. I. Moldovan, “A Model for Par-
allel Processing of Production Systems,” IEEE In-
ternational Conference on Systems, Man, and Cy-
bernetics, pp. 568-573, 1986.

[Stolfo, 19841 S. J. Stolfo, “Five Parallel Algorithms
for Production System Execution on the DAD0
Machine,” AAAI-84, pp. 300-307, 1984.

[Tenorio et al., 19851 F. M. Tenorio and D. I.
Moldovan, “Mapping Production Systems into
Multiprocessors,” International Conference on
Parallel Processing, pp. 56-62, 1985.

[Winston, 19771 P. H. Winston, Artificial Intelligence,
Addison-Wesley, 1977.

58 AUTOMATEDREASONING

