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Abstract 
Recently-developed techniques have improved the per- 
formance of production systems several times over. 
However, these techniques are not yet adequate for 
continuous problem solving in a dynamically chang- 
ing environment. To achieve adaptive real-time per- 
formance in such environments, we use an organization 
of distributed production system agents, rather than a 
single monolithic production system, to solve prob- 
lems. Organization seZf-design is performed to sat- 
isfy real-time constraints and to adapt to changing 
resource requirements. When overloaded, individual 
agents decompose themselves to increase parallelism, 
and when the load lightens the agents compose with 
each other to free hardware resources. In addition to 
increased performance, generalizations of our compo- 
sition/decomposition approach provide several new di- 
rections for organization self-design, a pressing concern 
in Distributed AI. 

Introduction 
To improve the efficiency of production systems, high- 
speed matching algorithms, such as RETE [Forgy, 
19821, TREAT [M iranker, 19871, and optimization al- 
gorithms [Ishida, 19881 have been investigated. Two 
kinds of parallel processing techniques have also been 
proposed: parallel matching [Stolfo, 1984; Gupta et ad., 
1985; Acharya et al., 19891 to speed-up matching pro- 
cesses and parudlel firing [Ishida et al., 1985; Ishida, 
1990; Tenorio et al., 1985; Moldvan, 19861 to reduce 
the total number of sequential production cycles. The 
motive for all of these studies is to speed up production 
systems several times over. However, these techniques 
are not yet adequate for continuous problem solving 
systems. 

Typical examples can be found in real-time expert 
systems, where new techniques are required to ada.pt 
the systems to dynamically changing environments 
[Laffey et aZ., 19881. T 0 satisfy real-time constraints, 
various agent-centered approaches are currently being 
studied. Lesser et al. [1988] discussed approximate 
processing techniques. Hayes-Roth et aZ. [1989] intro- 
duced adaptive inteZZigent systems that reason about 
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and interact with other dynamic entities in real-time. 
These approaches attempt to meet deadlines by im- 
proving the decision-making of individual agents. In 
this paper we take an organization-centered approach, 
where problems are solved by a society of distributed 
problem-solving agents. This-approach-aims to a.chieve 
adaptive real-time performance through reorganization 
of the society. In a.ddition to improving adaptabil- 
ity, our technique provides several insights and general 
mechanisms for organizational adaptation, a pressing 
concern in DA1 [Gasser et al., 1989a]. Moreover, it has 
the advantage of being grounded in a well-understood 
body of theory and practice: parallel production sys- 
tems. 

To explore the effectiveness of the organization- 
centered approach, we are studying the adaptive 1oa.d 
balancing problem in which a pa.r ticu1a.r problem solver 
shares a collection of processor resources with other 
problem solvers (and so has a.n opportunity for adapt- 
ing its levels of resource use). Problem solving re- 
quests arrive at the organization continuously, at vari- 
a.ble ra.tes. Meaningful results are required wit,hin a 
(possibly changing) time limit. When the problem- 
solver is embedded in an open community of other 
problem solvers, it does not -suffice to simply decom- 
pose to maximal parallelism - the collective must adapt 
itself to take advantage of resources as needed, but-it 
must also adaptively free up resources for others white 
continuing to operate. 

To achieve this goal, we first extended pnralled pro- 
duction systems, where global control exists, into dis- 
tribuied production systems, with distributed control. 
We then introduced organization self-design (OSD) 
[Corkill, 1982; Durfee et al., 1987; Gasser e2 nZ., 
1989a.,b] into these distributed production systems. In 
previous research, reorganiza.tion mechanisms typically 
changed agent roles or inter-a.gent task ordering. In 
this paper, we a.dded new reorganization primitives: 
composition and decomposition of agents. \Vhen prob- 
lem solving requests arrive frequently, and make it 
difficult for the organization to meet its deadlines, 
agents autonomously decompose themselves so that 
parallelism increases. In contrast, when the organi- 
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zational load decreases, two agents compose (combine 
with each other) to save hardware resources. As a re- 
sult, both real-time constraints and efficient resource 
utilization are satisfied through composition and de- 
composition of the agents. 

Production Systems 
To establish our terminology, we give a brief overview 
of production systems. A production system is defined 
by a set of rules or productions called production mem- 
ory (PM), together with an assertion database called 
working memory (WM) that contains a set of working 
memo y elements (WMEs). Each rule comprises a con- 
junction of condition elements called the Zeft-hand side 
(LHS) of the rule, and a set of actions called the right- 
hand side (RHS). Positive condition eZem.ents are sak- 
isfied when a matching WME exists, and negative con- 
dition elements are satisfied when no matching WME 
is found. An instantiation of the rule is a set of WMEs 
that satisfy the positive condition elements. The RHS 
specifies assertions to be added to or deleted from the 
WM? 

A data dependency graph of production systems 
[Ishida et al., 1985; Ishida, 19901 is constructed from 
the following four primitives: 

A production node, which represents a set of insta.n- 
tiations. Production nodes are shown as circles in 
Figure 1 and 2. 

A working memory node, which represents a set 
of WMEs. Working memory nodes are shown as 
squares in Figure 1 and 2. 

A directed edge from a production node to a work- 
ing memory node, which represents the fact that a 
production node modifies a working memory node. 
More precisely, the edge labeled ‘+’ ( ‘- 3 indicates 
that a WME in a working memory node is a.dded 
(deleted) by firing an instantiation in a production 
node. 

A directed edge from a working memory node to a 
production node, which represents the fact that a 
production node refers to a working memory node. 
More precisely, the edge labeled ‘+’ ( ‘- ‘) indicates 
that a WME in a working memory node is referenced 
by positive (negative) condition elements when cre- 
ating an instantiation in a production node. 

Interference exists among rule instantiations when 
the result of parallel execution of the rules is different 
from the results of sequential executions applied in any 
order; it must be avoided by synchronization. 

Figure 1 shows an example of OPS5 rules and their 
data dependency graph. In this example, if either 
ruleA or ruleB is fired first it destroys the other rule’s 

‘In this paper, we assume that each WME contains 
unique information. Operations adding duplicated WMEs 
are ignored. 

(p ruleA 
(class1 . ..) 

G*e class2 . ..)) 

(p ruleI 
(class1 . ..) 

- (class2 . ..) 
--> 
(remove 1)) 

Figure 1: Data Dependency Graph 

preconditions; therefore, interference may occur when 
firing both rules in parallel. If the two rules are dis- 
tributed to different agents, the agents have to syn- 
chronize to prevent firing those rules in parallel. 

Distributed Production Systems 
Overview 
A distributed production system is defined as a set of 
production system agents, each of which contains and 
fires some of the problem solving rules of the overall 
system. Each agent comprises the following three com- 
ponents: 

A problem solver, which continuously repea.ts the 
problem solving cycle described later in this section. 
In parallel production systems, multiple rules are si- 
multaneously fired but globally synchronized at the 
conflict resolution phase [Ishida el al., 1985; Ishida, 
19901. In distributed production systems, on the 
other hand, rules are asynchronously fired by dis- 
tributed agents. Since no global control exists, in- 
terference among the rules is prevented by local syn- 
chronization between individual agents. 

Problem solving knowledge, contained in the PMs and 
WMs. For simplifying the following discussion, we 
assume no overlap between PMs in different agents, 
and assume the union of all PhIs in the organiza- 
tion is sufficient to solve the given problem. Each 
agent’s WM contains only WhIEs that ma.tch the 
LHS of that agent’s rules. Since the same condition 
elements ca.n appear in different rules, the WMs in 
different agents may over1a.p. The union of WhIs 
in an organization logically represents all the facts 
necessary to solve the given problem. In pra.ctice, 
since agents asynchronously fire rules, WMs can be 
temporarily inconsistent. 

Organ.izntionaZ knowledge, representing relationships 
among a.gents. Each agent knows only a.bout the 
others with whom it has data dependency or interfer- 
ence relationships (called its neighbors-see below). 
Since agents asynchronously perform reorga.niza.tion, 
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organizational knowledge can be temporarily incon- 
sistent across agents. 

Organizational Knowledge 

Organizational knowledge consists of the following 
three elements: 

Dependencies: 
Each agent knows which rules in the organization 
have data dependency relationships with its own 
rules. We say that ruleA depends on ruleB if ruleA 
refers to a working memory node that is changed 
by ruleB. We describe this as depends (ruleA, 
ruleB). The data dependency knowledge of agentP 
is represented as: 

DEPENDENCY,S,,tp = 
((ruleA, ruleB) I 

(ruleAEPA&,,tp V ruleBEPM,,,,tp) 
A depends(ruleA, ruleB)) 

Interference: 
Each a.gent knows which rules in the organiza.tion 
may interfere with its own rules. Various inter- 
ference analysis techniques are reported in [Ishida, 
19901. We describe the interference of ruleA and 
ruleB as interfere(ruleA, ruleB). The interfer- 
ence knowledge of agentP is represented as: 

INTERFERENCEagentp = 
<(ruleA, ruleB) I 

(ruleAEPi&,,tp V ruleBEPMagentp> 
A interfere(ruleA, ruleB)) 

Though an individual agent’s execution cycle is se- 
quential, potential interference among its own rules 
is analyzed for future distribution of those rules. 

Locations: 
Each agent, say agentP, knows the location of rules, 
say ruleA, appearing in its own data dependency 
and interference knowledge. We describe this as 
appears(ruleA, agentp). The neighbor knowledge 
of agentP is represented as: 

LOCATION,,,,tp = 
<(ruleA, agentQ) 1 
appears(ruleA, agentP) A ruleAEPA4a,,,tQ) 

Figure 2 illustrates the organizational knowledge 
of agentP. For example, since ruleA and ruleB in- 
terfere with each other, agentP has to synchronize 
with agentQ when executing ruleA. Also, ruleA’s 
WM modification has to be transferred to agents. 
We call agentQ a neighbor of agentP when agentQ 
has data dependency or interference relationships with 
agentP. From this definition, as illustrated in Figure 
2, agentP’s organizational knowledge refers only to its 
neighbors. 

(m) indicatesthesameworkingmemorynode 
duplicatively stored indifferent agents. 

DEPENDENCYugenrP = ((ruleA, ruleC) (ruleD, ruleA) 

INTERFERENCE agentp 
(ruleA, ruleE)} 

= ((ruleA, ruleB)) 
LOCATION agentp = ((ruleA, aged) (ruleB, agenta 

(ruleC, agentR) (ruleD, agentS) 
(ruleE, agentT)} 

Figure 2: Organizationa. Knowledge 

Problem Solving Cycle 

We define a problem solving cycle of distributed pro- 
duction system agents by extending the conventional 
Match-Select-Act cycle to accommodate inter-agent 
data transfers and synchronization. Temporary inter- 
agent inconsistency caused by distribution is handled 
locally using temporary synchronization via rule de- 
activation. (We assume the preservation of message 
ordering.) The cycle is: 

1. Process messages: 
When receiving a synchronization request message 
(e.g., deactivate(ruleA)), return an acknowledg- 
ment message and deactivate the corresponding rule 
(ruleA) until receiving a synchronization release 
message (activate (ruleA)). When receiving a 
WM m.odification message, update the local WM to 
reflect the change ma.de in the other agent’s WM. 
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2. 

3. 

4. 

5. 

6. 

Match: 
For each rule, determine whether the LHS matches 
the current WM. 
Select: 
Choose one instantiation of a rule (e.g., ruleB) that 
is not deactivated. 

Request synchronization: 
Using interference knowledge, send synchroniza- 
tion request messages (deactivate (ruleB) ) to the 
agents requiring synchronization. Await acknowl- 
edgment from all synchronized agents2. After com- 
plete acknowledgment, handle all WM modification 
messages that have arrived during synchronization. 
If the selected instantiation is thereby canceled, send 
synchronization release messages and restart the 
problem solving cycle. 

Act: 
Fire the selected rule instantiation (ruleB). Using 
the data dependency knowledge of agentP, inform 
dependent agents with WM modification messages. 

Release synchronization: 
Send synchronization release messages (act ivat e 
(ruleB)) to all synchronized agents. 

Organization Self-Design (OSD) 
Reorganization Requests 
To start reorganization, two kinds of reorganization re- 
quests are sent to all agents of the organization. De- 
composition requests are issued when the organization 
cannot, meet deadlines. Composition requests are is- 
sued to release resources when the organization-wide 
load is light. For these purposes, the behavior of the 
organization must, be continuously observed. 

Decomposition requests initiate division in heavily- 
loaded agents. Decomposition continues until paral- 
lelism increases, response times are shortened, and de- 
composition requests disappear. Conversely, composi- 
tion requests initiate combining each two lightly-loaded 
agents into one. Composition continues until the or- 
ganization’s load increases and composition requests 
disappear. Both kinds of requests can be issued simul- 
t aneousl y. 

Reorganization Process 
To control the reorganization processes, we added to 
each agent an organization self-designer, which per- 
forms reorganization at the end of each problem solv- 
ing cycle. We describe below how one agent, (e.g., 
agentP) decomposes itself into two agents(e.g., agentP 
and agentQ). During reorganization, rules, WMEs, de- 
pendency and interference knowledge are transferred 
from agentP to agentQ, but not modified. Loca.tion 

2Deadlock is a possibility. When acknowledge messages 
are not received, synchronization release messages are sent 
and the problem solving cycle is restarted. 

knowledge is 
other agents. 

1. 

2. 

3 

4 

5 

6. 

7. 

modified and changes are propagated to 

Create a new agent: 
agentP creates a new agent, agentQ, which immedi- 
ately starts problem solving cycles. 

Select rules to be transferred: 
agentP selects active rules to be transferred (e.g., 
ruleA) to agentQ. agentP sends synchronization 
request messages (deactivate(ruleA)) to agentQ. 
Currently, half of the active rules are arbitrarily se- 
lected and transferred, but we are refining a theory of 
rule selection based on maximizing intra-agent rule 
dependencies and minimizing inter-agent communi- 
cation. 

Request synchronization: 
agentP sends synchronization request messages to 
neighbors for all rules that have data depen- 
dency or interference relationships with rules to 
be transferred (e.g., deactivate(ruleB) is sent, if 
depends(ruleA, ruleB), depends(ruleB, ruleA) 
or interf ere(ruleA, ruleB))3. agentP waits for 
complete acknowledgment (resolving deadlock as be- 
fore). 

Transfer rules: 
agentP transfers rules (ruleA) to agentQ, upda.tes 
its own location knowledge, and propagates any 
changes to its neighbors. 

Transfer WMEs: 
agentP copies WMEs that ma.tch the LHS of the 
transferred rules (ruleA) to agentQ4. A bookkeep- 
ing process follows in both agents to eliminate du- 
plicated or unneeded WMEs. 

Transfer dependency an,d interference knowledge: 
agentP copies its dependency and interference 
knowledge to agentQ. Both agents do bookkeeping 
to eliminate duplica.ted or unneeded organizationa. 
knowledge5. 

Release synchronization.: 
agentP sends 
synchronization release messages (act ivat e (ruleA) 
to agentQ and activate(ruleB) to all synchronized 
neighbors). This ends reorganization. 

‘This is to assure that WM modification and synchro- 
nization request messages related to rules to be transferred 
are not sent to agentP during the reorganization process. 

‘More precisely, to avoid reproducing once-fired instan- 
tiations, not only WMEs but also conflict sets are trans- 
ferred to agentQ. Before transferring the conflict sets, how- 
ever, agentP has to maintain its WM by handling the WM 
modification mestiages that have arrived during the syn- 
chronization process. 

‘Unneeded data dependency and interference knowledge 
are the tuples that include none of the agents’ rules. Un- 
needed location knowledge is the tuples that include none 
of the rules that appear in the agents’ data dependency and 
interference knowledge. 
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An agent (e.g., agentp) can compose with another 
agent by a similar process. First, agentP sends com.po- 
sition request messages to its neighbors. If some agent, 
say agentQ, acknowledges, agentP transfers all rules 
and organizational knowledge to agent9 and destroys 
itself. The transfer method is the same as that for 
decomposition. 

During the reorganization process, neighboring 
agents deactivate rules that have data dependency 
or interference relationships with transferred rules. 
However, neighboring agents can concurrently perform 
other activities including firing and transferring rules 
that are not deactivated. This localization helps agents 
to modify the organization incrementally. 

Experimental Evaluation 
To evaluate the effectiveness of our approach, we imple- 
mented a simulation environment and solved the Waltz 
labeling problem: 36 rules solve the problem that ap- 
pears in Figure 3-17 in [Winston, 19771 with 80 rule 
firings. 

At initiation, only one agent, with all problem- 
solving and organizational knowledge, exists in the or- 
ganization. We assume the organization knowledge for 
the initial a.gent is prepared by analyzing its problem 
solving knowledge before execution. Problem-solving 
requests continuously arrive at the agent; older pend- 
ing requests are processed with higher priority. The 
load of each agent is represented by a firing ratio: the 
ratio of the number of rule firings to the number of 
problem solving cycles. Reorganization is performed 
as follows. (Global parameters are adjusta.ble.) 

When the organization cannot solve a problem 
within a predefined time limit, say 20 problem solving 
cycles, decomposition requests are sent to the organi- 
zation. We use experimentally-generated firing ra.tio 
thresholds to trigger reorganization. Agents whose fir- 
ing ratio is greater than 80% start decomposing. Upon 
decomposition, rules are arbitrary divided and dis- 
tributed between two agents. When the organization- 
wide ratio is less than SO%, composition requests are 
sent to the organization. Agents whose firing ratio is 
less than 30% compose with each other. These thresh- 
olds were experimentally found to provide a good bal- 
ance between adaptiveness and sensitivity, but further 
study is warranted. 

Figure 3 shows the simulation results. The line cha.rt 
indicates response times normalized by problem solv- 
ing cycles, and the step chart represents the number 
of agents in the organization. In Figure 3(a), problem 
solving requests arrive at constant intervals. In Figure 
3(b), the frequency of requests is changed periodically. 
From these figures, we can conclude the following: 

Adaptiveness of the organization: 
In Figure 3(a), the organization reaches a stable 
state. Since several composition and decomposition 
cycles are performed, the firing ratios of the result- 
ing agents are equalized. In Figure 3(b), we can see 

(a) - time 

@I- 
time 

- number of agents t 
job arrival 

response time 
0 (organizational approach) 

response time 
*-a-- (conventional parallel approach) 

Figure 3: Simulation Results 
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the number of agents at the busiest peak slightly 
decreases over time. Both charts show that the soci- 
ety of agents has gradually adapted to the situation 
through repeated reorganization. 

Real-time problem solving: 
The average number of agents in Figure 3(b) is 8.95. 
We compared the organization response times to the 
performance of 9 permanent agents with no self- 
design (which is the conventional parallel production 
system approach, shown as the dashed line in Fig- 
ure 3(b)). D ff i erences between the dashed and solid 
lines demonstrate how the organizational approach 
is effective for adaptive real-time problem solving. 
However, the effect of reorganization lags the change 
in problem load. To improve the capability to meet 
deadlines, time limits must be set shorter than ac- 
tual deadlines, and load increases must be detected 
as early as possible. 

Eficient resource utilization: 
In Figure 3(b), the number of required a.gents varies 
from 4 to 17. It is obvious tha.t the organiza- 
tional approach is more economical than the conven- 
tional parallel approach that permanently reserves 
17 agents. The resource saving effect of the organi- 
zational approach is also supported by the fact tha.t 
9 permanent agents (which require almost the same 
processing resources as the organizational approa.ch) 
cannot meet deadlines. 

Conclusion 
Techniques for building problem-solving systems that 
can adapt to changing problem solving requests and 
deadlines are of great interest. This pa.per has pre- 
sented an approach that relies on reorganization of 
a collection of problem-solvers to track cha.nges in 
deadlines and problem solving requests. It exploits 
an adaptive trade-off of parallelism for time by mak- 
ing new agents and continually reallocating problem- 
solving knowledge. The importance of this a.pproa.ch 
goes beyond the adaptive performance we have illus- 
trated. 

With additional decision-making meta-knowledge, 
this approach can become a more general organiza- 
tion self-design technique. It also has the a.dvantage 
of being grounded in a well-understood body of the- 
ory and practice: parallel production systems. In the 
current version, composition/decomposition decisions 
are made solely on the basis of firing ratios, and the 
choice of rules to transfer is made arbitrarily. Alloca- 
tion decisions could instead be based on the semantics 
of rules (i.e., distribution based on the kinds of ta.sks 
that need more resources). Partial knowledge trans- 
fer among existing agents can be combined with com- 
position and decomposition to provide a flexible and 
distributed task-sharing system. 

Within our existing formulation, avenues for future 
research include the implementation and the eva.lua- 

tion of this approach on actual message passing multi- 
processor systems, evaluating the impact of reorgani- 
zation overheads, finer threshold sensitivity analyses, 
techniques for incrementally acquiring reorganization 
strategy in more dynamic contexts, and applying this 
approach to adaptively overcoming local faults and in- 
consistency among agents. 
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