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Abstract 

Knowledge processing is very demanding on com- 
puter architectures. Knowledge processing generates 
subcomputation paths at an exponential rate. It is 
memory intensive and has high communication re- 
quirements. Marker passing architectures are good 
candidates to solve knowledge processing problems. 
In this paper, we justify the design decisions made 
for the Semantic Network Array Processor (SNAP). 
Important aspects of SNAP are: the instruction set, 
markers, relations, propagation rules, interconnec- 
tion network, and granularity. These features are 
compared to those in NETL and the Connection Ma- 
chine. 

1 Basic Operations in Knowl- 
edge Processing 

The computations that are typical of knowledge pro- 
cessing require the generation of numerous compu- 
tation paths that all could potentially be followed in 
parallel. The process of spawning a number of rela 
tively independent subcomputations, each of which 
may spawn other subcomputations, is called bifur- 
cation. Bifurcation processes appear to be impor- 
tant for a wide range of knowledge based systems. 
On a serial computer, the bifurcation of independent 
subprocesses leads to large computational demands. 
Even a parallel computer does not have the hard- 
ware resources to examine all of the parallel paths 
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of a problem. The problem with using current par- 
allel computers is that the problems bifurcate into 
multiple computation paths that share a consider- 
able amount of context. 

Another basic operation in knowledge processing 
is inheritance. Inheritance is the mechanism which 
locates properties attached to concepts within a cer- 
tain “distance”. Often, the inheritance is not obvi- 
ous, or deals with conflicting properties. 

Recognition is also important in knowledge pro- 
cessing. It deals with the ability to recognize con- 
cepts or situations in the knowledge base. Although 
similar to ordinary pattern matching, this problem 
is far more complex. For example, the properties 
may not be available locally and may have to be ex- 
tracted via inheritance, or the exact pattern may not 
exist and the best match must be determined. 

Classification is the process of placing a concept in 
the knowledge hierarchy. Once placed, it is very easy 
to retrieve information about the concept. However, 
classifying a concept is a non-trivial task. It involves 
comparing the properties of the new concept with 
properties of all the concepts in the knowledge base. 

Unification is the process of generalizing two pat- 
terns to form a new pattern that match what both 
input patterns would have matched. For example, 
unification may be used to match an inference rule 
with a knowledge base to determine the applicability 
of that inference rule. 

In probabilistic reasoning, probabilities are at- 
tached to concepts in the semantic network. The 
probabilites are modified by interactions with other 
nodes. Thresholding is used to filter out hypotheses 
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Problem 

Bifurcation 

Inheritance 

Operation 

Control the bifurcation process 

Find all nodes connected to a 
node via some combination of 
relations 
Find the paths connecting two 
nodes 
Find the implicit properties of 
a concept 

Locate entities in the knowledge 

~ 

Classification Place a pattern at the most 
appropriate place in the 
knowledge base 

Unification Bind concepts with compatible 
concepts in the knowledge base 

~ 

Learning Change the values of nodes or 
links according to some 
learning algorithm 

Table 1: Important Problems and Operations in 
Knowledge Processing 

that have low probabilities. 

Learning is the ability of a system to adapt to a 
problem domain. Commonly, learning involves as- 
signing weights to concepts or links, and being able 
to change the weights to match the characteristics 
of the problem domain. 

Table 1 lists some of the important problems and 
operations in knowledge processing. Some other im- 
portant aspectgs of knowledge representation and 
reasoning are described in [Brachman, 19881. 

2 SNAP Design 

2.1 Marker-Passing Architectures 

Marker passing architectures provide efficient im- 
plementation of the operations indentified previ- 
ously [Hendler, 1988],[Moldovan, 19891. However, 
the class of marker passing architectures has been 
relatively unexplored. This is due primarly be- 
cause knowledge processing operations and algo- 
rithms have not really been identifed. 

Our design approach was to build a machine that 
would achieve efficient performance for the opera- 
tions we described earlier and for a set of Natural 
Language parsing algorithms. In the rest of this pa- 
per, we will be describing some of the features of 
SNAP. In order to better understand these features, 
we will be comparing them with the features of two 
other architectures for knowledge processing: NETL 
and the Connection Machine. 

SNAP is a parallel machine consisting of a central 
controller and a 16K processing nodes. A SNAP 
node is capable of storing a single fact, concept, rule 
pattern, etc. The nodes in the network connect to 
other nodes in the network by a way of relations. 
Each relation type denotes a different relationship 
between concepts (nodes). The primary means of 
computation in SNAP is the processing of markers. 

NETL [Fahlman 19791 was one of the first ar- 
chitectures for knowledge processing. It consisted 
of a central controller and a collection of very sim- 
ple processing nodes. NETL had 8 different node 
types and 8 link types for connecting nodes together. 
A physical wire served as the connection between 
two nodes. The computation model in NETL was 
marker-passing, with the controller playing an active 
role in the movement of markers. Although NETL 
was never built, it served as the basis for several ar- 
chitectures, including the Connection Machine and 
SNAP. 

The Connection Machine [Hillis, 19851 was 
originally developed as an implementation of 
Fahlman’s NETL. The Connection Machine is a fine- 
grained array processor with programmable connec- 
tions between nodes. It consists of 64K single-bit 
processors, with each processor having 4K bits of 
memory and a serial ALU. The processors operate 
in SIMD fashion, with messages being the method 
of communication. 
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2.2 Relations 

The knowledge base in SNAP is built upon relations 
between nodes. SNAP can support 64 user-defined 
relations. The user can extend the number of rela- 
tions by using nodes to act as relations. This con- 
struct is called a Relation-node. Relation-nodes are 
not as efficent as the primitive relation, but they ef- 
fectively enable the user to have as many relations 
as needed. Relations in SNAP also have a weight 
associated with them. The weight can represent 
the strength of the link, the cost of traversing the 
link, etc. Associating weights with relations is es- 
sential for implementing reasoning mechanisms such 
as probabilistic reasoning. 

In NETL, relations are pre-defined. Thus, the 
knowledge base has to be defined using the 8 link 
types (VC, EQ, CANCEL, CANVC, SPLIT, EX- 
FOR, EXIN, SCOPE). This puts a severe constraint 
on the type of knowledge that can be represented. 
NETL has no mechanism for extending the number 
of relations beyond these 8. In addition, NETL re- 
lations cannot carry weights. In fact, NETL has no 
numeric capabilities at all. 

The relations in the Connection Machine are more 
general than those in both NETL and SNAP. Like 
SNAP, the relations are all user-definable. Unlike 
SNAP, the Connection Machine has no limit in the 
number of relations. However, the total amount of 
memory available to the node for storage is limited to 
4K bits. In SNAP, we felt that 64 relations was more 
than adequate for most applications, and that it was 
not worth the hardware resources to extend beyond 
64. We provided the Relation-node construct to sup- 
port those cases where more than 64 relations are 
needed. 

2.3 Markers and Value Passing 

SNAP is a marker-passing architecture. The nodes 
in SNAP communicate by way of messages. The ef- 
fect of a message at a destination node is to manipu- 
late a marker and possibly generate more messages. 
Each SNAP node is capable of simultaneously stor- 
ing up to 24 markers. Each marker consists of a bit 
indicating whether the node possesses that marker, 
a value register and a pointer register. The value 
register can store either data, the current strength 
of the marker, a probability, etc. A marker also con- 
tains a pointer value. This pointer value identifies 

the node that originated the marker. The marker 
pointer allows the same marker to be used for dif- 
ferent hypothesis. The pointer “colors” the marker 
so that we can identify which hypothesis it refers to. 
The marker pointer also enables the easy creation of 
new relations between nodes. This can be used to 
solidify a hypothesis, or be the end result of a series 
of computations (classification of a concept is one 
example where the creation/deletion of links is the 
end result). 

We created markers of this type to support prob- 
abilistic reasoning. Probabilistic reasoning requires 
the passing of not only markers but also values. The 
values contain the probabilities and cost associated 
with the network. They must be included in the 
marker messages that are sent between nodes. Oth- 
erwise, the system has no way to modify the prob- 
abilities in the network. Probabilistic reasoning has 
important applications in the areas of speech recog- 
nition and translation and natural language under- 
standing. 

The markers in SNAP differ from those in NETL 
and the Connection Machine. NETL markers consist 
of only a single bit. No pointer or value is associated 
with the marker. Consequently, NETL cannot dis- 
tinguish between two or more hypotheses using the 
same marker nor can it support probabilistic reason- 
ing. The Connection Machine is able to associate a 
pointer and value with a marker. However, this is 
a software construct and is not nearly as efficent in 
utilizing these features as the built-in hardware in 
SNAP. 

2.4 Propagation Rules 

SNAP nodes are capable of communicating with 
other nodes by way of messages. Each message type 
has a built-in “propagation rule” which determines 
the path messages take (i.e. on which relation links 
to place the messages on). When a destination node 
receives a message, it sets a marker, performs a cor- 
responding action, and, depending on the propa- 
gation rule, can “propagate” the message to other 
nodes. Thus, propagation rules permit the trans- 
fer and bifurcation of messages to occur without in- 
tervention from the central controller. This allows 
many different message types, with different propa- 
gation rules, to travel in the network simultaneously. 

In the SNAP design we felt that it was impor- 
tant to implement in hardware some key propagac 
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tion rules. The five propagation rules listed below 
give the programmer considerable freedom to direct 
how markers are to be propagated. 

1. 

2. 

3. 

4. 

5. 

SEQ(R1, R2): the SEQUENCE propagation 
rule allows the marker to propagate through Rl 
once, then to R2 once. 

SPREAD(R1, R2): the SPREAD propagation 
rule allows the marker to traverse through a 
chain of Rl links. For each cell in the Rl path, 
if there exist any R2, the marker switches to R2 
link and continues to propagate until the end of 
the R2 link. 

COMB(R1, R2): the COMBine propagation 
rule allows the marker to propagate to all Rl 
R2 links without limitation. 

END-SPREAD(R1, R2): This propagation rule 
is the same as SPREAD except that it marks 
only the last cells in the paths. 

END-COMB(R1, R2): This propagation rule is 
the same as COMB except that it marks only 
the last cells in the paths. 

By comparison, the propagation rules in NETL 
are primitive. Markers can propagate on only one 
relation type making a propagation rule like Com- 
bination difficult to achieve. In addition, the NETL 
controller plays an active role in monitoring and con- 
trolling the propagation of markers. Consequently, 
only one type of marker can be propagating in the 
network. 

In the Connection Machine, the propagation rules 
can be quite flexible, which allows the Connection 
Machine to easily implement the SNAP propaga- 
tion rules. However, the propagation rules in the 
Connection Machine are software mechanisms. This 
creates several drawbacks. First, marker propaga 
tion in the Connection Machine occurs much more 
slowly than in SNAP. In SNAP, the marker prop- 
agation and processing is built into the hardware. 
Second, since the Connection Machine must execute 
instructions to process markers, marker propagation 
must occur in the foreground. Thus, the Connection 
Machine cannot perform any other function during 
this time. In the majority of cases, only a small por- 
tion of the network participates in marker propaga- 
tion, the rest of the network is idle. In SNAP, how- 
ever, marker propagation occurs in the background. 
Consequently, the SNAP nodes that are not busy 

processing markers are free to do other things. Fi- 
nally, because marker processing in the Connection 
Machine is software based, the Connection Machine 
can propagate only one type of marker at a time. 
A different type of marker would require a differ- 
ent set of software instructions, which would not be 
able to execute at the same time as the first marker 
instructions. In order to solve most problems, sev- 
eral different markers are typically required. SNAP, 
therefore can acheive results with less effort and time 
than the Connection Machine. 

2.5 Instruction Set 

We have designed for SNAP a set of 21 pow- 
erful instructions specific to knowledge process- 
ing for SNAP. These instructions are executed 
by the processing nodes and are divided into 6 
groups: Node Maintenance, Search, Logical, Marker, 
Marker-Auxiliary, and Data Retrival. We felt 
that the instructions in these 6 groups represent 
the core functions required for knowledge process- 
ing. The Node Maintenance instructions (CREATE, 
DELETE, SET-COLOR) are used for loading and 
modifying the knowledge base. The Search instruc- 
tions (SEARCH and SEARCH-COLOR) are used 
to select a node or a group of nodes in the ar- 
ray. The Logical functions (AND, OR, NOT) are 
used to manipulate the markers within a node. The 
Marker instructions (MARKER, MARKER-ADD, 
MARKER-SUB, MARKER-MULT, and MARKER- 
DIVIDE) t d in ro uce a marker into the network. Each 
of the Marker instructions has a propagation rule as- 
sociated with it to provide decentralized control. In 
addition, an arithmetic function can be associated 
with a marker to enable manipulation of the numeric 
values in the marker value and the relation weight 
registers. This enables SNAP to support a wide 
range of numeric applications, including probabilis- 
tic reasoning and learning. The Marker-Auxiliary 
functions (CLEAR-MARKER, STOP-MARKER, 
CLEAR-STOP-MARKER, EQUATE, and CLEAR- 
EQUATE) are used to modify the operation of 
the Marker instructions. The STOP-MARKER en- 
ables a node to “eat” a marker and prevent it 
from propagating. This is an important mecha- 
nism for controlling the flow of markers and pre- 
venting the movement of markers into undesired ar- 
eas. The EQUATE instruction enables a relation to 
be treated as if it were another relation type dur- 
ing marker propagation. The CLEAR instructions 
are used to reset the marker portions of nodes. Fi- 
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nally, the Data Retrieval (COLLECT, COLLECT- 
RELATION, COLLECT-MARKER) are used to ob- 
tain information from the nodes. For a more detailed 
look at the SNAP instruction set see [Moldovan 
19891. 

In NETL, there is no real instruction set per se. 
The nodes in NETL are very simple. Control of 
markers is governed by the NETL controller. Rea- 
soning on NETL is done by retrieving patterns from 
the knowledge base. 

The nodes in the Connection Machine have a ba- 
sic instruction set. They can be combined to form 
higher level instructions like those in SNAP. For ex- 
ample, [Chung 19891 created an instruction set simi- 
lar to SNAP’s when he programmed some knowledge 
processing examples on the Connection Machine. 

Our approach was to spend more hardware to cre- 
ate more complex primitive instructions. This allows 
us to perform basic knowledge processing operations 
in a minimal amount of time. 

2.6 Granularity of a SNAP Chip 

In SNAP, we have packaged 32 nodes into a single 
custom-designed chip. Each node can have an av- 
erage of 10 relations. We placed these two limita- 
tions on SNAP to reduce the cost and to save space. 
The advances in VLSI techonology in the last decade 
have enabled us to place more logic onto a chip. Con- 
sequently, we felt it would be much easier to build 
a machine with 512 chips than it would be to build 
one with 16K chips. With the amount of logic that 
each node takes, we have estimated that 32 nodes 
and 320 total relations would easily fit onto a chip. 

There is a tradeoff in terms of placing more nodes 
onto a chip. Each SNAP chip has only 4 data ports 
for communication with other chip. With 32 nodes 
in a chip, the data ports can become a bottleneck in 
the system. [Kim, 19891 has done some preliminary 
analysis into this area. 

In both NETL and the Connection Machine, each 
chip consisted of only one node. 

2.7 Interconnection Network 

The SNAP interconnection network is used to con- 
nect the SNAP chips together. It is used to enable 
message passing between nodes. The SNAP inter- 

connection network is a modified bus hypercube. A 
16K network is made up of 512 SNAP chips. Each 
chip has 4 data ports for communication with other 
chips and a router for determining the message path. 
Messages in SNAP are 50 bits long and are sent as 
five lo-bit packets. The maximum number of inter- 
mediate chips a SNAP message must pass through 
is 3. More details on the SNAP interconnection net- 
work can be found in [Moldovan 19891. The net- 
work has been software simulated and compared 
with other networks [Lee 19891. The results show 
that the network performs favorably when compared 
to the performance of other networks. 

The interconnection network in NETL is vastly 
different. In NETL, all connections between nodes 
are point to point. A physical wire is placed between 
two nodes that share a relation. Thus, NETL mes- 
sages can travel very fast. However, a network of this 
type is unfeasible. In a dense network (more than 
a hundred nodes) it is almost impossible to place a 
physical wire between two nodes and be able to re- 
move it later. A network where we cannot delete 
links can only support monotonic reasoning; in al- 
most all cases, this is unacceptable. 

The Connection Machine has special routing chips 
for sending messages. This frees the nodes from hav- 
ing to participate in message routing. In a 64K Con- 
nection Machine, there are 4K routers, with each 
router servicing 16 nodes. The routers are arranged 
in a 12-dimensional hypercube and can process l-bit 
at a time. In SNAP, we chose not to create a special 
router chip, because we felt that incorporating the 
routing function into the node chip was a better al- 
ternative. Unlike the Connection Machine, marker 
propagation in SNAP can proceed in the background 
without intervention from the controller. Thus an 
integrated router fits right into that concept. In the 
Connection Machine, however, actual instructions 
have to be executed to process a message. Incorpo- 
rating the routing function in the node would further 
complicate the long process of marker propagation. 

3 Simulation 

We have built a simulator of SNAP to test some of 
the concepts we have discussed in this paper. We 
have run several examples on the SNAP simulator. 
Table 2 summarizes the simulation results for these 
examples. Example 1 is a non-obvious inheritance 
problem involving 30 concepts (nodes). Example 
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SNAP 1 CM Tcm/ 
Cycle 1 Time Time Tsnap 

Table 2: Comparsion between SNAP and Connec- 
tion Machine 

2 is a inheritance problem over an imaginary two- 
dimensional 10 x 10 network. Example 3 deals with 
recognition with multiple properties. Example 4 is 
a small classification problem [Lipkis, 19831. A com- 
plete description of the examples can be found in 
[Moldovan 19901. 

Some of these examples have been implemented on 
the Connection Machine at USC-IX Those times 
are listed along with the SNAP times in Table 2. 
Note, for SNAP we considered the speed to be 
the same clock as the Connection Machine (6.47443 
MHz). 

4 Conclusions 

SNAP combines several features which collectively 
make SNAP a powerful knowledge processing engine. 
Some of these features are: a powerful instruction 
set implemented in hardware, marker passing archi- 
tecture, associative array processing, and a modified 
hypercube interconnection network. The instruction 
set has been carefully designed to provide hardware 
implementation of the most often used knowledge 
processing operations. Special attention has been 
given to marker propagation rules. 

The results shown in Table 2 between SNAP and 
the Connection Machine are not suprising consid- 
ering the differences between the two machines de- 
scribed in this paper. The fundamental reason for 
the superior performance of SNAP is that it imple- 
ments in hardware features that require software in- 
structions in the Connection Machine. 

References 

Brachman, R. [1988]. “The basics of knowledge rep- 
resentation and reasoning”, AT&T Technical 
Journal, 67: 1, 7-24. 

Chung, S., Moldovan, D. and Tung, Y. [1989]. “Rea 
soning on the Connection Machine”, Techni- 
cal Report CENG-89-13. University of Southern 
California Department of EE Systems. 

Fahlman, S. [1979]. “NETL: A system for represent- 
ing and using real-world knowledge”. The MIT 
Press, Cambridge, MA. 

Hendler, J. [1988] “Integrating Marker-Passing and 
Problem-Solving”. Lawerence Erlbaum Asso- 
ciates, Inc. 

Hillis, W. [1985] “The Connection Machine”. The 
MIT Press, Cambridge, MA. 

Kim, J. and Moldovan, D. [1989]. “Parallel Classifl- 
caton for Knowledge Representation on SNAP”. 
Proceedings of the 1990 International Confer- 
ence on Parallel Processing. Department of 
Electrical Engineering Systems, Univ. of South- 
ern California. 

Lee, W. “Bandwidth Analysis of Message Pass- 
ing Networks”. Technical Report CENG 89-24, 
Department of Electrical Engineering-Systems. 
University of Southern California. 

Lipkis, T. and Schmolze, J. [1983]. “Classification 
in the KL-ONE knowledge representation sys- 
tem”, Proceedings of the Eighth International 
Joint Conference on Art$cial Intelligence, Vol. 
1, 330-332. 

Moldovan, D., Lee, W., and Lin, C. [1989]. “SNAP: 
A Marker-Propagation Architecture for Knowl- 
edge Processing”, Technical Report No: 89-10. 
Department of Electrical Engineering Systems, 
Univ. of Southern California. 

Moldovan, D., Lee, W., Lin, C., and Chung, 
S. [1990]. “Parallel K nowledge Processing on 
SNAP”. Proceedings of the 1990 International 
Conference on Parallel Processing. 

64 AUTOMATEDREASONING 


