
The Design of a Marker Passing Architecture

for Knowledge Processing

Wing Lee and Dan Moldovan

Department of Electrical Engineering - Systems
University of Southern California 90089- 1115

Los Angeles, California
wlee@gringo.usc.edu, moldovan@gringo.usc.edu

Abstract

Knowledge processing is very demanding on com-
puter architectures. Knowledge processing generates
subcomputation paths at an exponential rate. It is
memory intensive and has high communication re-
quirements. Marker passing architectures are good
candidates to solve knowledge processing problems.
In this paper, we justify the design decisions made
for the Semantic Network Array Processor (SNAP).
Important aspects of SNAP are: the instruction set,
markers, relations, propagation rules, interconnec-
tion network, and granularity. These features are
compared to those in NETL and the Connection Ma-
chine.

1 Basic Operations in Knowl-
edge Processing

The computations that are typical of knowledge pro-
cessing require the generation of numerous compu-
tation paths that all could potentially be followed in
parallel. The process of spawning a number of rela
tively independent subcomputations, each of which
may spawn other subcomputations, is called bifur-
cation. Bifurcation processes appear to be impor-
tant for a wide range of knowledge based systems.
On a serial computer, the bifurcation of independent
subprocesses leads to large computational demands.
Even a parallel computer does not have the hard-
ware resources to examine all of the parallel paths

‘This research
Foundation Grant No.

been funded by
MIP-89/02426

the National Science

of a problem. The problem with using current par-
allel computers is that the problems bifurcate into
multiple computation paths that share a consider-
able amount of context.

Another basic operation in knowledge processing
is inheritance. Inheritance is the mechanism which
locates properties attached to concepts within a cer-
tain “distance”. Often, the inheritance is not obvi-
ous, or deals with conflicting properties.

Recognition is also important in knowledge pro-
cessing. It deals with the ability to recognize con-
cepts or situations in the knowledge base. Although
similar to ordinary pattern matching, this problem
is far more complex. For example, the properties
may not be available locally and may have to be ex-
tracted via inheritance, or the exact pattern may not
exist and the best match must be determined.

Classification is the process of placing a concept in
the knowledge hierarchy. Once placed, it is very easy
to retrieve information about the concept. However,
classifying a concept is a non-trivial task. It involves
comparing the properties of the new concept with
properties of all the concepts in the knowledge base.

Unification is the process of generalizing two pat-
terns to form a new pattern that match what both
input patterns would have matched. For example,
unification may be used to match an inference rule
with a knowledge base to determine the applicability
of that inference rule.

In probabilistic reasoning, probabilities are at-
tached to concepts in the semantic network. The
probabilites are modified by interactions with other
nodes. Thresholding is used to filter out hypotheses

LEE 59

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

Problem

Bifurcation

Inheritance

Operation

Control the bifurcation process

Find all nodes connected to a
node via some combination of
relations
Find the paths connecting two
nodes
Find the implicit properties of
a concept

Locate entities in the knowledge

~

Classification Place a pattern at the most
appropriate place in the
knowledge base

Unification Bind concepts with compatible
concepts in the knowledge base

~

Learning Change the values of nodes or
links according to some
learning algorithm

Table 1: Important Problems and Operations in
Knowledge Processing

that have low probabilities.

Learning is the ability of a system to adapt to a
problem domain. Commonly, learning involves as-
signing weights to concepts or links, and being able
to change the weights to match the characteristics
of the problem domain.

Table 1 lists some of the important problems and
operations in knowledge processing. Some other im-
portant aspectgs of knowledge representation and
reasoning are described in [Brachman, 19881.

2 SNAP Design

2.1 Marker-Passing Architectures

Marker passing architectures provide efficient im-
plementation of the operations indentified previ-
ously [Hendler, 1988],[Moldovan, 19891. However,
the class of marker passing architectures has been
relatively unexplored. This is due primarly be-
cause knowledge processing operations and algo-
rithms have not really been identifed.

Our design approach was to build a machine that
would achieve efficient performance for the opera-
tions we described earlier and for a set of Natural
Language parsing algorithms. In the rest of this pa-
per, we will be describing some of the features of
SNAP. In order to better understand these features,
we will be comparing them with the features of two
other architectures for knowledge processing: NETL
and the Connection Machine.

SNAP is a parallel machine consisting of a central
controller and a 16K processing nodes. A SNAP
node is capable of storing a single fact, concept, rule
pattern, etc. The nodes in the network connect to
other nodes in the network by a way of relations.
Each relation type denotes a different relationship
between concepts (nodes). The primary means of
computation in SNAP is the processing of markers.

NETL [Fahlman 19791 was one of the first ar-
chitectures for knowledge processing. It consisted
of a central controller and a collection of very sim-
ple processing nodes. NETL had 8 different node
types and 8 link types for connecting nodes together.
A physical wire served as the connection between
two nodes. The computation model in NETL was
marker-passing, with the controller playing an active
role in the movement of markers. Although NETL
was never built, it served as the basis for several ar-
chitectures, including the Connection Machine and
SNAP.

The Connection Machine [Hillis, 19851 was
originally developed as an implementation of
Fahlman’s NETL. The Connection Machine is a fine-
grained array processor with programmable connec-
tions between nodes. It consists of 64K single-bit
processors, with each processor having 4K bits of
memory and a serial ALU. The processors operate
in SIMD fashion, with messages being the method
of communication.

60 AUTOMATEDREASONING

2.2 Relations

The knowledge base in SNAP is built upon relations
between nodes. SNAP can support 64 user-defined
relations. The user can extend the number of rela-
tions by using nodes to act as relations. This con-
struct is called a Relation-node. Relation-nodes are
not as efficent as the primitive relation, but they ef-
fectively enable the user to have as many relations
as needed. Relations in SNAP also have a weight
associated with them. The weight can represent
the strength of the link, the cost of traversing the
link, etc. Associating weights with relations is es-
sential for implementing reasoning mechanisms such
as probabilistic reasoning.

In NETL, relations are pre-defined. Thus, the
knowledge base has to be defined using the 8 link
types (VC, EQ, CANCEL, CANVC, SPLIT, EX-
FOR, EXIN, SCOPE). This puts a severe constraint
on the type of knowledge that can be represented.
NETL has no mechanism for extending the number
of relations beyond these 8. In addition, NETL re-
lations cannot carry weights. In fact, NETL has no
numeric capabilities at all.

The relations in the Connection Machine are more
general than those in both NETL and SNAP. Like
SNAP, the relations are all user-definable. Unlike
SNAP, the Connection Machine has no limit in the
number of relations. However, the total amount of
memory available to the node for storage is limited to
4K bits. In SNAP, we felt that 64 relations was more
than adequate for most applications, and that it was
not worth the hardware resources to extend beyond
64. We provided the Relation-node construct to sup-
port those cases where more than 64 relations are
needed.

2.3 Markers and Value Passing

SNAP is a marker-passing architecture. The nodes
in SNAP communicate by way of messages. The ef-
fect of a message at a destination node is to manipu-
late a marker and possibly generate more messages.
Each SNAP node is capable of simultaneously stor-
ing up to 24 markers. Each marker consists of a bit
indicating whether the node possesses that marker,
a value register and a pointer register. The value
register can store either data, the current strength
of the marker, a probability, etc. A marker also con-
tains a pointer value. This pointer value identifies

the node that originated the marker. The marker
pointer allows the same marker to be used for dif-
ferent hypothesis. The pointer “colors” the marker
so that we can identify which hypothesis it refers to.
The marker pointer also enables the easy creation of
new relations between nodes. This can be used to
solidify a hypothesis, or be the end result of a series
of computations (classification of a concept is one
example where the creation/deletion of links is the
end result).

We created markers of this type to support prob-
abilistic reasoning. Probabilistic reasoning requires
the passing of not only markers but also values. The
values contain the probabilities and cost associated
with the network. They must be included in the
marker messages that are sent between nodes. Oth-
erwise, the system has no way to modify the prob-
abilities in the network. Probabilistic reasoning has
important applications in the areas of speech recog-
nition and translation and natural language under-
standing.

The markers in SNAP differ from those in NETL
and the Connection Machine. NETL markers consist
of only a single bit. No pointer or value is associated
with the marker. Consequently, NETL cannot dis-
tinguish between two or more hypotheses using the
same marker nor can it support probabilistic reason-
ing. The Connection Machine is able to associate a
pointer and value with a marker. However, this is
a software construct and is not nearly as efficent in
utilizing these features as the built-in hardware in
SNAP.

2.4 Propagation Rules

SNAP nodes are capable of communicating with
other nodes by way of messages. Each message type
has a built-in “propagation rule” which determines
the path messages take (i.e. on which relation links
to place the messages on). When a destination node
receives a message, it sets a marker, performs a cor-
responding action, and, depending on the propa-
gation rule, can “propagate” the message to other
nodes. Thus, propagation rules permit the trans-
fer and bifurcation of messages to occur without in-
tervention from the central controller. This allows
many different message types, with different propa-
gation rules, to travel in the network simultaneously.

In the SNAP design we felt that it was impor-
tant to implement in hardware some key propagac

LEE 61

tion rules. The five propagation rules listed below
give the programmer considerable freedom to direct
how markers are to be propagated.

1.

2.

3.

4.

5.

SEQ(R1, R2): the SEQUENCE propagation
rule allows the marker to propagate through Rl
once, then to R2 once.

SPREAD(R1, R2): the SPREAD propagation
rule allows the marker to traverse through a
chain of Rl links. For each cell in the Rl path,
if there exist any R2, the marker switches to R2
link and continues to propagate until the end of
the R2 link.

COMB(R1, R2): the COMBine propagation
rule allows the marker to propagate to all Rl
R2 links without limitation.

END-SPREAD(R1, R2): This propagation rule
is the same as SPREAD except that it marks
only the last cells in the paths.

END-COMB(R1, R2): This propagation rule is
the same as COMB except that it marks only
the last cells in the paths.

By comparison, the propagation rules in NETL
are primitive. Markers can propagate on only one
relation type making a propagation rule like Com-
bination difficult to achieve. In addition, the NETL
controller plays an active role in monitoring and con-
trolling the propagation of markers. Consequently,
only one type of marker can be propagating in the
network.

In the Connection Machine, the propagation rules
can be quite flexible, which allows the Connection
Machine to easily implement the SNAP propaga-
tion rules. However, the propagation rules in the
Connection Machine are software mechanisms. This
creates several drawbacks. First, marker propaga
tion in the Connection Machine occurs much more
slowly than in SNAP. In SNAP, the marker prop-
agation and processing is built into the hardware.
Second, since the Connection Machine must execute
instructions to process markers, marker propagation
must occur in the foreground. Thus, the Connection
Machine cannot perform any other function during
this time. In the majority of cases, only a small por-
tion of the network participates in marker propaga-
tion, the rest of the network is idle. In SNAP, how-
ever, marker propagation occurs in the background.
Consequently, the SNAP nodes that are not busy

processing markers are free to do other things. Fi-
nally, because marker processing in the Connection
Machine is software based, the Connection Machine
can propagate only one type of marker at a time.
A different type of marker would require a differ-
ent set of software instructions, which would not be
able to execute at the same time as the first marker
instructions. In order to solve most problems, sev-
eral different markers are typically required. SNAP,
therefore can acheive results with less effort and time
than the Connection Machine.

2.5 Instruction Set

We have designed for SNAP a set of 21 pow-
erful instructions specific to knowledge process-
ing for SNAP. These instructions are executed
by the processing nodes and are divided into 6
groups: Node Maintenance, Search, Logical, Marker,
Marker-Auxiliary, and Data Retrival. We felt
that the instructions in these 6 groups represent
the core functions required for knowledge process-
ing. The Node Maintenance instructions (CREATE,
DELETE, SET-COLOR) are used for loading and
modifying the knowledge base. The Search instruc-
tions (SEARCH and SEARCH-COLOR) are used
to select a node or a group of nodes in the ar-
ray. The Logical functions (AND, OR, NOT) are
used to manipulate the markers within a node. The
Marker instructions (MARKER, MARKER-ADD,
MARKER-SUB, MARKER-MULT, and MARKER-
DIVIDE) t d in ro uce a marker into the network. Each
of the Marker instructions has a propagation rule as-
sociated with it to provide decentralized control. In
addition, an arithmetic function can be associated
with a marker to enable manipulation of the numeric
values in the marker value and the relation weight
registers. This enables SNAP to support a wide
range of numeric applications, including probabilis-
tic reasoning and learning. The Marker-Auxiliary
functions (CLEAR-MARKER, STOP-MARKER,
CLEAR-STOP-MARKER, EQUATE, and CLEAR-
EQUATE) are used to modify the operation of
the Marker instructions. The STOP-MARKER en-
ables a node to “eat” a marker and prevent it
from propagating. This is an important mecha-
nism for controlling the flow of markers and pre-
venting the movement of markers into undesired ar-
eas. The EQUATE instruction enables a relation to
be treated as if it were another relation type dur-
ing marker propagation. The CLEAR instructions
are used to reset the marker portions of nodes. Fi-

62 AUTOMATEDREASONING

nally, the Data Retrieval (COLLECT, COLLECT-
RELATION, COLLECT-MARKER) are used to ob-
tain information from the nodes. For a more detailed
look at the SNAP instruction set see [Moldovan
19891.

In NETL, there is no real instruction set per se.
The nodes in NETL are very simple. Control of
markers is governed by the NETL controller. Rea-
soning on NETL is done by retrieving patterns from
the knowledge base.

The nodes in the Connection Machine have a ba-
sic instruction set. They can be combined to form
higher level instructions like those in SNAP. For ex-
ample, [Chung 19891 created an instruction set simi-
lar to SNAP’s when he programmed some knowledge
processing examples on the Connection Machine.

Our approach was to spend more hardware to cre-
ate more complex primitive instructions. This allows
us to perform basic knowledge processing operations
in a minimal amount of time.

2.6 Granularity of a SNAP Chip

In SNAP, we have packaged 32 nodes into a single
custom-designed chip. Each node can have an av-
erage of 10 relations. We placed these two limita-
tions on SNAP to reduce the cost and to save space.
The advances in VLSI techonology in the last decade
have enabled us to place more logic onto a chip. Con-
sequently, we felt it would be much easier to build
a machine with 512 chips than it would be to build
one with 16K chips. With the amount of logic that
each node takes, we have estimated that 32 nodes
and 320 total relations would easily fit onto a chip.

There is a tradeoff in terms of placing more nodes
onto a chip. Each SNAP chip has only 4 data ports
for communication with other chip. With 32 nodes
in a chip, the data ports can become a bottleneck in
the system. [Kim, 19891 has done some preliminary
analysis into this area.

In both NETL and the Connection Machine, each
chip consisted of only one node.

2.7 Interconnection Network

The SNAP interconnection network is used to con-
nect the SNAP chips together. It is used to enable
message passing between nodes. The SNAP inter-

connection network is a modified bus hypercube. A
16K network is made up of 512 SNAP chips. Each
chip has 4 data ports for communication with other
chips and a router for determining the message path.
Messages in SNAP are 50 bits long and are sent as
five lo-bit packets. The maximum number of inter-
mediate chips a SNAP message must pass through
is 3. More details on the SNAP interconnection net-
work can be found in [Moldovan 19891. The net-
work has been software simulated and compared
with other networks [Lee 19891. The results show
that the network performs favorably when compared
to the performance of other networks.

The interconnection network in NETL is vastly
different. In NETL, all connections between nodes
are point to point. A physical wire is placed between
two nodes that share a relation. Thus, NETL mes-
sages can travel very fast. However, a network of this
type is unfeasible. In a dense network (more than
a hundred nodes) it is almost impossible to place a
physical wire between two nodes and be able to re-
move it later. A network where we cannot delete
links can only support monotonic reasoning; in al-
most all cases, this is unacceptable.

The Connection Machine has special routing chips
for sending messages. This frees the nodes from hav-
ing to participate in message routing. In a 64K Con-
nection Machine, there are 4K routers, with each
router servicing 16 nodes. The routers are arranged
in a 12-dimensional hypercube and can process l-bit
at a time. In SNAP, we chose not to create a special
router chip, because we felt that incorporating the
routing function into the node chip was a better al-
ternative. Unlike the Connection Machine, marker
propagation in SNAP can proceed in the background
without intervention from the controller. Thus an
integrated router fits right into that concept. In the
Connection Machine, however, actual instructions
have to be executed to process a message. Incorpo-
rating the routing function in the node would further
complicate the long process of marker propagation.

3 Simulation

We have built a simulator of SNAP to test some of
the concepts we have discussed in this paper. We
have run several examples on the SNAP simulator.
Table 2 summarizes the simulation results for these
examples. Example 1 is a non-obvious inheritance
problem involving 30 concepts (nodes). Example

LEE 63

SNAP 1 CM Tcm/
Cycle 1 Time Time Tsnap

Table 2: Comparsion between SNAP and Connec-
tion Machine

2 is a inheritance problem over an imaginary two-
dimensional 10 x 10 network. Example 3 deals with
recognition with multiple properties. Example 4 is
a small classification problem [Lipkis, 19831. A com-
plete description of the examples can be found in
[Moldovan 19901.

Some of these examples have been implemented on
the Connection Machine at USC-IX Those times
are listed along with the SNAP times in Table 2.
Note, for SNAP we considered the speed to be
the same clock as the Connection Machine (6.47443
MHz).

4 Conclusions

SNAP combines several features which collectively
make SNAP a powerful knowledge processing engine.
Some of these features are: a powerful instruction
set implemented in hardware, marker passing archi-
tecture, associative array processing, and a modified
hypercube interconnection network. The instruction
set has been carefully designed to provide hardware
implementation of the most often used knowledge
processing operations. Special attention has been
given to marker propagation rules.

The results shown in Table 2 between SNAP and
the Connection Machine are not suprising consid-
ering the differences between the two machines de-
scribed in this paper. The fundamental reason for
the superior performance of SNAP is that it imple-
ments in hardware features that require software in-
structions in the Connection Machine.

References

Brachman, R. [1988]. “The basics of knowledge rep-
resentation and reasoning”, AT&T Technical
Journal, 67: 1, 7-24.

Chung, S., Moldovan, D. and Tung, Y. [1989]. “Rea
soning on the Connection Machine”, Techni-
cal Report CENG-89-13. University of Southern
California Department of EE Systems.

Fahlman, S. [1979]. “NETL: A system for represent-
ing and using real-world knowledge”. The MIT
Press, Cambridge, MA.

Hendler, J. [1988] “Integrating Marker-Passing and
Problem-Solving”. Lawerence Erlbaum Asso-
ciates, Inc.

Hillis, W. [1985] “The Connection Machine”. The
MIT Press, Cambridge, MA.

Kim, J. and Moldovan, D. [1989]. “Parallel Classifl-
caton for Knowledge Representation on SNAP”.
Proceedings of the 1990 International Confer-
ence on Parallel Processing. Department of
Electrical Engineering Systems, Univ. of South-
ern California.

Lee, W. “Bandwidth Analysis of Message Pass-
ing Networks”. Technical Report CENG 89-24,
Department of Electrical Engineering-Systems.
University of Southern California.

Lipkis, T. and Schmolze, J. [1983]. “Classification
in the KL-ONE knowledge representation sys-
tem”, Proceedings of the Eighth International
Joint Conference on Art$cial Intelligence, Vol.
1, 330-332.

Moldovan, D., Lee, W., and Lin, C. [1989]. “SNAP:
A Marker-Propagation Architecture for Knowl-
edge Processing”, Technical Report No: 89-10.
Department of Electrical Engineering Systems,
Univ. of Southern California.

Moldovan, D., Lee, W., Lin, C., and Chung,
S. [1990]. “Parallel K nowledge Processing on
SNAP”. Proceedings of the 1990 International
Conference on Parallel Processing.

64 AUTOMATEDREASONING

