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Abstract 
To speed up production systems, many researchers 
have turned to parallel implementations. We describe 
a system called PARS that executes production rules 
in parallel. PARS is novel because it (1) executes 
many rules simultaneously, (2) runs in a highly asyn- 
chronous fashion, and (3) runs on a distributed mem- 
ory machine. Item (1) improves available concur- 
rency over systems that only perform the MATCH 
step in parallel. Item (2) reduces bottlenecks over syn- 
chronous parallel production systems. Item (3) makes 
the techniques more available given the lower cost of 
distributed versus shared memory machines. The two 
main problems regarding correctness, namely serial- 
ization and the maintenance of consistent distributed 
databases, are addressed and solved. Estimates of the 
effectiveness of this approach are also given. 

Introduction 
Production systems have been effective vehicles for im- 
plementing expert systems. The terminology of pro- 
duction systems and the usual serial execution model 
are presented in Figure 1. Unfortunately, large produc- 
tion systems are often slow and many will require sub- 
stantial speed improvements. To speed them up, re- 
searchers have studied parallel implementations, with 
much of that research focusing on OPS5 [Forgy, 19811. 

Since most cpu time in OPS5 is spent in the MATCH 
step (over 90% according to [Forgy, 19’79]), many ef- 
forts (e.g., [Gupta, 1983; Stolfo, 1984; Gupta, 1986; 
Miranker, 1987; Oflazer, 19871) have tried to make par- 
allel that one step while leaving the system to continue 
executing only one rule at a time. Overall, the maxi- 
mum speedups realized by these approaches are about 
ten times the fastest sequential version of OPS5, no 
matter how many processors are used [Gupta, 1986]. 

To gain additional speedup, several researchers have 
investigated systems that execute many rules simulta- 
neously. We call these systems multiple rule execution 
systems. When two or more rule instantiations execute 

*This work was supported in part by the National Sci- 
ence Foundation under grant number IRI-8800163. 

Production Memory: A set of rules or productions. 

Working Memory (WM): A set of facts. 

Working Memory Element (WME): Each fact in 
the WM is a WME. Each is a ground literal consist- 
ing of a class name plus a sequence of arguments. 

Condition Element (CE): A test found in a rule. 

Left-Hand Side (LHS): A sequence of CEs associated 
with a rule that determine when the rule matches 
against a specific sequence of WMEs. 

Action: An operation performed when the rule executes. 
Usually adds or removes a WME. 

Right-Hand Side (RHS): A sequence of actions asso- 
ciated with a rule that determines what to do when the 
rule is executed. 

Basic Loop: The following loop is executed until no 
matches are found in the first step. 

MATCH: For each rule, determine all sequences of 
WMEs that match its LHS. Each match results in an in- 
stantiation, which consists of the rule plus the sequence 
of WMEs matching the unnegated condition elements 
(CEs) of its LHS. A ’ gl sm e rule may have many instan- 
tiations. 

SELECT: Choose exactly one instantiation according to 
some predefined conflict resolution strategy. 

ACT: Perform the actions on the RHS of the rule for the 
selected instantiation. 

Figure 1: Terminology and Serial Execution Model 
for Productioti Systems 

simultaneously in one of these systems, we say they 
co-execute. Multiple rule execution systems have two 
important problems. (1) The order of,rule execution is 
difficult to control. (2) The results produced may not 
be producible under any serial execution scheme, i.e., 
the final results may not be serializable. 

[Boulanger, 1988] and [Morgan, 1988] each take this 
approach and each offers a way to control partially the 
order of rule execution. However, neither guarantees 
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serializable results. In contrast, [Ishida and Stolfo, 
1985; Moldovan, 1986; Pa&k, 1989; Schmolze, 1989; 
Ishida, 19901 do not address the issue of controlling 
the order of rule execution, but each guarantees seri- 
alizability. In addition, each takes advantage of par- 
allel matching algorithms, thereby gaining additional 
speedup. 

All of the above multiple rule execution systems are 
designed to operate synchronously, i.e., all processors 
execute each step together. To obtain good speedup, 
the work must be effectively distributed for each of 
the three steps. This is likely to prove difficult since re- 
sources must be allocated to solve three different distri- 
bution problems. Unfortunately, no efforts along this 
line have been reported to date. Only the MATCH 
step has so far been studied in this fashion. 

An alternative is to execute a multiple rule execution 
system in a highly asynchronous fashion. This elimi- 
nates the time wasted in synchronous systems where 
some processors are forced to wait for other processors 
to finish the current step. The distribution problem 
is still challenging in an asynchronous system, but it 
is simplified to one distribution problem. Some pre- 
liminary work on an asynchronous parallel production 
system is reported in [Miranker et al., 19891. 

Herein, we address the problem of executing a multi- 
ple rule execution system that operates asynchronously 
on a distributed memory machine. The advantages of 
this approach follow. 

e We obtain speedup over serial and parallel-match- 
only systems by executing all steps in parallel. 

o We obtain speedup over synchronous parallel sys- 
tems by a reduction of bottlenecks and a simplifica- 
tion of the distribution problem. 

l We take advantage of distributed memory technol- 
ogy, which is less expensive and more accessible than 
shared-memory technology given today’s market.’ 

This work is related to distributed database 
(DDBMS) technology, the main difference being the 
source of the transactions. For DDBMSs, they come 
from users, and are highly unpredictable. For pro- 
duction systems (PSs), they come from the rules and 
WM, and are more predictable. Thus, special tech- 
niques that take advantage of off-line rule analysis can 
yield considerable improvement. Sellis et al [Sellis et 
al., 1987; Raschid et al., 19891 take a database ap- 
proach by delaying certain transactions using locks in 
order to guarantee serializability. However, they do 
not take strong advantage of off-line rule analysis, and 
their system can cause deadlock, whose detection and 
resolution may require considerable resources. Given 
that, it is appropriate to pursue other approachs such 
as ours. 

1 Furthermor e Gupta and Tambe [Gupta and Tambe, , 
19891 have argued that distributed memory machines are 
good choices for production systems. 

The remainder of this paper describes the design 
problems we faced, solutions to those problems, and 
estimates of the effectiveness of our solutions. 

The Execution Model 
We assume a distributed memory machine with a set 
of processors, P, and a fast interconnection network 
between them. Any processor can communicate with 
any other, either directly or through intermediaries. 
We are given a set of rules, R, a set of class names, 
C, that comprise all the classes used in R, and an 
initial working memory, WM,. Each WME belongs to 
exactly one class in C. Each processor uses the same 
execution model and each is capable of storing rules 
and WMEs. 

For simplicity, we use a static distribution. Each 
rule in 72 is assigned to exactly one processor from P. 
For each rule r on each processor p,- we store on p all 
classes of WMEs that could match a CE of r’s LHS. If 
a CE in r has a variable appearing as the class, then 
all classes in C are stored on p. By storing a class c on 
p, we mean that all WMEs whose class is c are stored 
on p. Thus, classes that appear on the LHS of several 
rules may be stored in several processors. 

Each processor p executes a variant of the basic loop 
for serial systems, as explained below. Each executes 
the loop at its own pace-in an asynchronous fashion. 

MATCH: In performing the MATCH step, p only 
examines the rules and WMEs stored locally. Since 
all WMEs that could affect the matching of each 
rule (i.e., all WMEs affecting its LHS) are stored 
on the same processor as the rule, no matches are 
missed. We use the TREAT match algorithm [Mi- 
ranker, 19871. 

SELECT: The SELECT step is also performed us- 
ing only local data. As we will explain later, cer- 
tain rules may be temporarily disabled and instan- 
tiations of such rules are ignored here. Since we do 
not guarantee any particular overall order of rule 
execution, each processor arbitrarily selects an in- 
stantiation whose rule is not currently disabled. If 
there are none, p returns to the MATCH step. Oth- 
erwise, p goes to the DISABLE step. Assume for 
now that p selects an instantiation of rule r. 

DISABLE: Before executing the selected instantia- 
tion, some synchronization must occur. As we will 
discuss later, we guarantee serializability by pro- 
hibiting the co-execution of certain pairs of rules. 
Thus, in this step, p requests certain other pro- 
cessors to disable certain other rules, namely, those 
rules that cannot co-execute with r. If some of those 
rules are currently executing, then their execution 
is completed, after which their processor disables 
them. -p waits until it receives messages verifying 
that all appropriate rules are disabled. While wait- 
ing, it is possible that p received new actions from 
elsewhere that invalidated the selected instantiation 
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or that another processor disabled r (p responds im- 
mediately to such requests). Thus, p checks this, 
and if so, p does not execute the instantiation and 
jumps to ENABLE. Otherwise, p goes to ACT. 

ACT: The ACT step also requires communication 
since some of the actions may add or remove WMEs 
that are stored on other processors. In such cases, 
the actions are forwarded as appropriate. After ac- 
tions are sent, the processor waits for acknowledge- 
ments from all recipients before re-acknowledging 
and proceeding. The reasons for this will become 
clear when we later explain our solution to the in- 
consistency problem. Thus, at the completion of this 
step, all processors who store the affected WMEs 
have taken the actions into account. Actions that 
affect the local WM are taken immediately. 

ENABLE: Rules on other processors that were previ- 
ously disabled in the DISABLE step are re-enabled. 
p now returns to MATCH. 

Processors accept messages from other processors at 
the start of the MATCH step and while waiting dur- 
ing the DISABLE step. Even though some synchro- 
nization is needed in the DISABLE and ACT steps, it 
comprises a reasonably small portion of the basic cycle 
time (MATCH consumes the most) and thus leaves the 
system highly asynchronous. 

We define the period of the execution of an instantia- 
tion i as extending from the time that the commitment 
to execute i is made to the later of either (1) the time 
that i’s local actions are taken, or (2) the time that 
all acknowledgements have been received regarding the 
delivery of i’s actions. (A commitment to execute i is 
made in the DISABLE step, not the SELECT step.) 
We say that a set of instantiations co-execute iff their 
periods of execution overlaps. 

In addition, we have an algorithm that is guaran- 
teed to determine when all processors have no instan- 
tiations. When this occurs, all processors are termi- 
nated. 

The Serialization Problem 
The parallel execution of a set of instantiations is se- 
rializable if the result produced by the parallel system 
could be produced by executing the same instantia- 
tions in some serial order. The goal of serialization is 
to ensure that every execution sequence by our parallel 
system is serializable. 

There are three causes of non-serializability in our 
parallel model. The first cause is disabling. We say 
that one instantiation disables another if executing the 
first causes the second to no longer match. This occurs 
iff the first adds (removes) a WME that the second 
matched negatively (positively). If we co-execute a 
pair of instantiations where each disables the other, the 
result is not serializable because, in a serial system, one 
instantiation would execute but not both. In general, 

when given a set of instantiations, not all should co- 
execute if there is a cycle of disabling relations among 
them. 

Pl: +(A <x>), -(C <y>) - +(C <x>), +(D <x>) 
P2: +(B <x>), -(C <y>) - +(C <x>), +(E <x>) 

For example, assume that we execute rules Pl 
and P2 rules from an initial WM of {(A l),(B 2)). 
Here, both rules match and, if co-executed, produce 
((A l),(B 2),(C l),(D l),(C 2),(E 2)). However, 
no serial execution can produce this result. If Pl 
alone were executed from the original WM, the re- 
sult would be {(A l),(B 2),(C l),(D l)}, in which 
P2 no longer matches. Similarly, if P2 were exe- 
cuted alone from the original WM, the result would 
kai$%sl),(B 2),(C 2),(E 2)], in which Pl no longer 

. 
We solve this problem by preventing the co- 

execution of any set-of instantiations 
of disabling relations among them. 

that have a cycle 

The second cause is clashing. We say that one in- 
stantiation clashes with another if, whenexecuted, one 
would add a WME that the other would remove. If 
(a) two instantiations clash and (b) one rule can dis- 
able the other, then we might obtain non-serializable 
results. 

Pl: +(A <x>), -(C <y>) - +(C <x>), +(D <x>) 
P3: +(D <x>), -(C <y>) - -(D <x>), +(E <x>) 

For example, rules Pl and P3 would match in 
{(A l),(D l)), b u executing Pl will disable P3. Thus, t 
there are two possible serial orders. We can execute Pl 
and not P3, or we can execute P3 followed by Pl. If 
the two are co-executed, then the result must be identi- 
cal to that resulting from executing P3 followed by Pl. 
Since P3 deletes (D 1) while Pl adds it, (D 1) must be 
in the final WM. Therefore, if these two rules are co- 
executed, the result must be {(A l),(C l),(D l),(E 1)). 

In our parallel model, we cannot make this guaran- 
tee because our control of the order of rule execution 
is not sufficiently fine. Instead, we solve the problem 
by prohibiting the co-execution of such pairs of instan- 
tiations. 

The third cause arises from temporary inconsisten- 
cies in the distributed WM. We deal with this problem 
two sections hence. 

Solution to the Serialization Problem 
If the execution of two instantiations do not overlap in 
time, i.e., they do not co-execute, then serialization 
is guaranteed. Namely, an appropriate serial order 
simply has the first before the second. We therefore 
concern ourselves only with sets of instantiations that 
co-execute. For now, we assume a consistent WM. 

We solve the serialization problem by: (1) deter- 
mining pairs of rules whose instantiations should not 
co-execute (we say that any such pair of rules are to be 
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. . Collect all pairs of rules from our set of rules, 72, that possibly clash and, for each pair, add an edge to an undirected 
graph called RSynch. RSynch has a node for each rule in 72 and will eventually have an edge between each distinct 
pair A and B iff A and B must be synchronized. 

!. Construct RDO(‘R). Th en, construct a modified subgraph of RDO(R), called M-RDO. We start with RDO(R) and, 
for each edge from A to B in RSynch, remove any edge from A to B or from B to A in RDO(R). 

1. Construct an acyclic sub-graph of M-RDO called A-RDO. The goal is to remove only edges from M-RDO in producing 
A-RDO, and to remove as few edges as possible since each edge removed will create a rule synchronization. We begin 
A-RDO with a node for each rule but no edges. We maintain a reachability matrix, M, for A-RDO such that M[rj,rk] 
is true iff there is a directed path from rj to rk. We examine each edge, e, from M-RDO in turn. Let e go from rj to 
rk. If adding e to A-RDO would not create a cycle, we add e to A-RDO and update M. Otherwise, we add an edge 
from rj to rk in RSynch and, if there is an edge from Q to rj in M-RDO, we remove it. Afterwards, A-RDO is an 
acyclic sub-graph of M-RDO and, for all edges e in M-RDO but not in A-RDO, the undirected version of e appears 
in RSynch. 

1. We synchronize each pair of distinct rules that have an edge between them in RSynch. 

Figure 2: Off-Line Algorithm to Identify Rules to Synchronize 

synchronized 2), and (2) enforcing these rule synchro- 
nizations. We work at the rule, not the instantiation, 
level because the latter requires too much communica- 
tion for our hardware model. 

We say that one rule possibly disables another if any 
instantiation of the first can disable any instantiation 
of the second. We define possibly clashes in a corre- 
sponding fashion. Off-line tests for these two inter-rule 
relations are given in [Schmolze, 1989].3 We define a 
directed graph, called RDO(R), that represents the 
rule disabling order. For each rule in R, there is a 
node in RDO(R). For each A and B in R where B 
possibly disables A, there is an edge from A to B in 
RDO(R) (note the reversal of A and B). This com- 
prises all of RDO(R). Also, we define Rules(Z) as the 
set of rules that have an instantiation in Z. 
Theorem 1: 4 The co-execution of a set of instanti- 
ations, Z, in our parallel model, is serializable if 

1. RDO(Rules(Z)) is acyclic except for self loops, 
2. rules that have self loops in RDO(Rules(Z)) have 

only one instantiation in 2, 
3. no two distinct rules in Rules(Z) can possibly clash, 
4. rules that possibly clash with themselves have only 

one instantiation in Z, and 
5. the WM is consistent. * 

Since each rule appears on exactly one processor in 
our model, we cannot have two instantiations of the 
same rule co-executing. Thus, conditions 2 and 4 are 

2We borrow this term from [Ishida and Stolfo, 19851 
who first proposed this approach to solving the serializa- 
tion problem. Our solution represents an improvement over 
their method along with an adjustment made for our par- 
allel model, which differs from theirs. See [Schmolze, 19891 
for a complete discussion. 

31n essence, ri p ossibly disables r2 if an add (remove) 
action of rl unifies with a negative (positive) CE of t-2. r1 
possibly clashes with r2 if an add (remove) action of rl 
unifies with a remove (add) action of r2. 

*The proof can be found in [Schmolze, 19891. 

met. We meet condition 3 by synchronizing every pair 
of rules that possibly clash. We meet condition 1 by 
identifying a near-minimum number of pairs of rules to 
synchronize such that, for any set Z of instantiations 
to co-execute, RDO(Rules(2)) is acyclic. The rules 
requiring synchronization are identified using the off- 
line algorithm in Figure 2. The output is a set of pairs 
of rules that must be synchronized. Condition 5 is 
assumed for now and dealt with in the next section. 

Our method of enforcing rule synchronization was 
given in the explanation of our execution model. To 
reduce the work in enforcing these synchronizations, 
and to prevent deadlock, we take several additional 
steps. First, we remove from this set of pairs of rules 
to synchronize any pair where both are on the same 
processor. No synchronization is needed between such 
pairs as only one can execute at a time. 

Second, we recognize that in order for two rules to 
synchronize, only one of them needs to initiate the 
needed disabling. Let A and B be such a pair and 
let A be the one to initiate the disabling. When B’s 
processor wishes to execute B, it simply does so as 
long as B is not disabled. When A’s processor wishes 
to execute A, it first disables B, then executes A, and 
finally re-enables B. 

If we think of the pairs of rules to synchronize as an 
undirected graph, this simplification has the effect of 
directing each edge. In this case, the undirected edge 
between A and B becomes a directed edge from A to 
B, indicating that A can execute only if B is disabled. 
However, cycles in this directed graph can lead to dead- 
lock. For example, let A require that B be disabled, 
B require that C be disabled and C require that A 
be disabled. Let all three are on separate processors 
and let A, B and C each be selected for execution at 
the same time. Disabling messages go out from each 
processor and each waits for a.cknowledgements before 
responding to the disable request it receives, leading 
to deadlock. 
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oR1: +&++A 

e R3: +A,-B- +S o R4: -A,+B--, +T 

Figure 3: Temporary Inconsistencies Can Cause Non- 
Serializable Effects 

Fortunately, this is easily solved because we can al- 
ways take an undirected graph that has no self loops 
and direct each edge such that there are no cycles. To 
do so, number the M nodes from 1 to M. Go through 
each edge and direct it from the lower numbered node 
to the higher numbered one. Since there no self loops, 
this is an unambiguous choice.5 

As a result, synchronization is simplified and dead- 
lock free. Moreover, the results of our parallel sys- 
tem are serializable with respect to both disablings and 
clashes. In fact, we expect only very small delays from 
the needed synchronizations.6 

Temporary Database Inconsistencies 
Given that our WM is distributed, temporary WM in- 
consistencies can occur while actions are being sent, 
which can lead to non-serializable effects. For an ex- 
ample, we offer a case with four rules as shown in Fig- 
ure 3. Here, Rl and R2 match if there is a WME of 
class Q and they add WMEs of classes A and B, re- 
spectively. R3 matches if there is some WME of class 
A and no WMEs of class B, and it adds a WME of 
class S. R4 matches if there are no WMEs of class A 
and some WME of class B, and it adds a WME of class 
T. We assume there are no other rules. 

Let us examine all serial orders that can arise from 
an initial WM of {Q}. Both Rl and R2 match, but 
R3 and R4 do not. Let Rl execute, which adds an A 
WME. Now, R3 matches as well as R2. Let R3 execute, 
which adds an S WME. Only R2 matches, so we exe- 
cute it, which adds a B WME. R4 never matched and 
still does not due to the presence of the the A WME. 
Thus, our first serial order is (1) Rl, R3 followed by 
R2. There are three other serial orders, namely, (2) R2, 
R4 followed by RI, (3) R2 followed by Rl , and finally, 
(4) Rl followed by R2. However, there is no serial 
order in which all four rules execute. 

Unfortunately, with temporary WM inconsistencies 
in our parallel model, all four rules can execute. As- 
sume that each of these rules is on its own processor. 
Let Rl and R2 co-execute and let each send out its re- 
spective action at the same time. Furthermore, let the 

51f there were a loop, it must involve at least two nodes, 
and thus must have an edge from a higher numbered node 
to a lower numbered node, which is impossible.0 

6 We note that I/O should also be serialized. We accom- 
plish this by assigning all rules that perform I/O to a single 
processor. Thus, only one I/O rule executes at a time. 

time of message delivery be small between Rl and R3 
and between R2 and R4. Conversely, let the time of de- 
livery be large between Rl and R4 and between R2 and 
R3. Thus, R3 will receive the +A action from Rl be- 
fore receiving the +B action from R2. Let us assume 
that after receiving the +A and before receiving the 
+B, R3’s processor commits to execute R3 (remem- 
ber, the processors run asynchronously). Note that no 
rule synchronization is necessary here since there are 
no possible disabling cycles and no possible clashes. In 
a similar fashion, R4 receives the +B action before the 
+A action, and during the interim period, R4’s pro- 
cessor commits to executing R4. As a result, we get 
all four rules executing, which is not serializable. 

Solution to the Inconsistency Problem 
We solve this problem by incorporating a double ac- 
knowledgement protocol when sending actions. The 
protocol for the sender of actions is as follows. 
1. Send actions to all appropriate processors. 
2. Wait for all recipients to acknowledge receipt of the 

actions. 
3. Send re-acknowledgements to all recipients. 
The protocol for the receiver of actions is as follows. 
1. Send an acknowledgement to the original sender. 
2. Disable all rules affected by the actions. 
3. Continue with the basic loop. 
4. Upon re-acknowledgement from the original sender, 

re-enable the rules disabled by the actions. 
The basic idea here is that the original receipt of 

actions from another processor indicates that certain 
WMEs will be added or removed. However, to prevent 
inconsistency problems, the receiver prevents the use 
of this information until it is sure that all appropriate 
processors have received it. It is sure of this upon 
receipt of the re-acknowledgement . 

The rules disabled by the receiver are those rules 
having CEs that might test either positively or nega- 
tively for the WMEs affected by the action. The reason 
the receiver disables and re-enables rules is that, while 
waiting for re-acknowledgements, it can continue with 
its basic 10op.~ 

For an example, we return to Figure 3 when Rl and 
R2 are about to send out their respective actions to 
both R3 and R4’s processors. R3’s processor receives 
the +A action, disables rule R3 since it tests for a 
WME of class A, and sends an acknowledgement to 
R 1 ‘s processor. At about the same time, R4’s pro- 
cessor receives the +B action, disables rule R4, and 

‘In an alternative design, the processor could simply 
wait for the re-acknowledgements instead of continuing on 
with its basic loop. It thus would not need to disable and 
re-enable rules. However, this alternative is wasteful of 
time, so we reject it. 
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No. Non I&S PARS 
I/O Rules 

Mapper 77 13.2 6.9 
ToruWaltz 31 15.2 6.9 

Weighted Average 
Avg. Improvement 

Over I&S 

, 
13.8 6.9 

1.0 2.0 

Table 1: Comparison of Number of Synchronizations 
per Rule 

sends an acknowledgement to R2’s processor. Similar 
activities occur when R3’s processor receives the +B 
action and when R4’s processor receives the +A ac- 
tion. Soon thereafter, Rl’s processor has received the 
two acknowledgements it wants, and so it sends out re- 
acknowledgements. At about the same time, R2 does 
the same. Note that each of the rules R3 and R4 have 
been disabled twice. Thus, neither is re-enabled until 
both re-acknowledgements are received. By the time 
this occurs, both R3 and R4’s processors have received 
both actions so, in this case, neither R3 nor R4 exe- 
cute. 

As a result, we have a protocol that prevents non- 
serializable effects due to temporary inconsistencies in 
our distributed WM. The cost of this guarantee is that 
additional messages must be sent and, for certain pe- 
riods of time, certain rules are disabled. However, 
these periods are short as they last only long enough 
for an acknowledgement and re-acknowledgement mes- 
sages to be sent. Overall, we estimate this to be a rea- 
sonably small fraction of the basic cycle time, leading 
to a small cost for this guarantee. 

Assessment of Effectiveness 
An implementation of PARS is currently under con- 
struction, so we are not able to report on actual 
speedups realized. Instead, we estimate speedup in 
terms of increased numbers of co-executing instantia- 
tions. 

We applied our rule analysis method to two produc- 
tion systems that are commonly used as benchmarks 
for parallel production systems. These systems are 
(1) the Manhattan Mapper [Lerner and Cheng, 19831, 
which provides travel schedules for trips through Man- 
hattan, and (2) T oruwaltz, which applies Dave Waltz’s 
constraint propagation algorithm to identify objects 
from line drawings [Waltz, 19751. First, we measured 
the number of pairs of rules to be synchronized. Sec- 
ond, we examined a number of conflict sets from serial 
execution traces and determined how many instantia- 
tions would co-execute in our system if it were running 
synchronously. 

We compare our system to that of Ishida and Stolfo’s 
(I&S) [Ishida and Stolfo, 19851 as their’s is the most 
influential work in the area of multiple rule execution 

. . 

~ 

Table 2: Concurrency Estimates using Number of Co- 
Executions Available 

systems. Thus, we are comparing a synchronous ver- 
sion of our approach to another synchronous system. 

Table 1 compares the number of rules to be synchro- 
nized for the method of I&S versus ours. As shown 
in the table, we improve upon their method by having 
each rule synchronize with, on the average, about half 
the number of rules that I&S require. Table 2 compares 
the number of instantiations that could co-execute in 
our sample traces. For 8 processors, our system co- 
executes over twice as many instantiations than does 
I&S. For 32 processors, our system co-executes almost 
four times as many. While this demonstrates improve- 
ment, it does not take into account the cost of our 
differing execution model, including message passing 
times. We are thus optimistic that our system will 
show notable improvements in speedup. However, fi- 
nal results must await actual run times. 

Conclusions 
We presented a parallel production system called 
PARS. Novel about PARS is that it (1) executes many 
rules simultaneously, (2) runs mostly asynchronously, 
and (3) uses a distributed memory machine. Its ad- 
vantages are that it (1) improves the available concur- 
rency over serial and match-only parallel approaches 
by having multiple rule executions, (2) reduces a num- 
ber of bottlenecks found in synchronous multiple rule 
execution systems, (3) simplifies the distribution prob- 
lem over these synchronous systems, and (4) makes the 
techniques more generally available by using lower cost 
distributed versus shared memory machines. 

PARS guarantees that the final results it produces 
are serializable. However, like other similar systems, 
PARS does not guarantee any particular order of rule 
execution. To help with this, we have added non-OPS5 
control constructs. Unfortunately, space does not al- 
low their presentation here (but see [Schmolze, 1988]).8 

Overall, the speedups estimated for PARS are better 
than those for other similar systems. However, these 
speedups are not spectacular. This arises from the 

8Space also does not allow us to present our distribution 
algorithm (but see [Goel, 19901). 
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benchmarks having been written for serial systems. 
In the future, we will write and use more appropri- 
ate benchmarks. We will experiment with variations 
of the strategies presented herein, including dynamic 
distribution schemes. We will incorporate rule de- 
composition strategies (e.g., [Pasik and Stolfo, 1987; 
Pasik, 19891). Finally, we will continue to design new 
control strategies for multiple rule execution systems. 
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