
Distributed Truth Maintenance 
David Murray Bridgeland and Michael N. Huhns 
Microelectronics and Computer Technology Corporation 

Artificial Intelligence Laboratory 
3500 West Balcones Center Drive 

Austin, TX 78759-6509 
bridgeland@mcc.com 

Abstract 
In this paper 1 we define the concept of logical consis- 
tency of belief among a grou- * .p of computational agents 
that are able to reason nonmonotonically. We then pro- 
vide an algorithm for truth maintenance that guaran- 
tees local consistency for each agent and global consis- 
tency for data shared by the agents. Furthermore, we 
show the algorithm to be complete, in the sense that if 
a consistent state exists, the algorithm will either find it 
or report failure. The algorithm has been implemented 
in the RAD distributed expert system shell. 

Introduction 
Two trends have recently become apparent out of the 
widespread use of knowledge-based systems: 1) systems 
are being developed for larger and more complicated do- 
mains, and 2) there are attempts to use several small 
systems in concert when their application domains over- 
lap. Both of these trends argue for knowledge-based 
systems to be developed in a distributed fashion, where 
modules are constructed to interact productively. The 
individual modules then are characteristic of intelli- 
gent agents. The interconnected agents can cooper- 
ate in solving problems, share expertise, work in par- 
allel on common problems, be developed modularly, be 
fault tolerant through redundancy, represent multiple 
viewpoints and the knowledge of multiple experts, and 
be reusable. Additional motivations are presented in 
(Huhns, 1987) and (Gasser and Huhns, 1989). But 
in order for these agents to coordinate their activities 
and cooperate in solving mutual problems, it is essen- 
tial that they be able to communicate with each other. 
Further, in order for them to interact intelligently and 
efficiently, we believe that the agents must be able to 
assess and maintain the integrity of the communicated 
information, as well as of their own knowledge. 

Knowledge Base Integrity 
There are many desirable properties for the knowledge 
base of an expert system or agent, such as complete- 
ness, conciseness, accuracy, and efficiency. For an agent 
that can reason nonmonotonically, there are additional 

properties used to describe the integrity of the agent’s 
knowledge base: stability, well-foundedness, and logical 
consistency. A stable state of a knowledge base is one in 
which 1) each knowledge base element that has a valid 
justification is believed, and 2) each knowledge base el- 
ement that lacks a valid justification is disbelieved. A 
well-founded knowledge base permits no set of its be- 
liefs to be mutually dependent. A logically-consistent 
knowledge base is one that is stable at the time that 
consistency is determined and in which no logical con- 
tradiction exists. Depending on how beliefs, justifica- 
tions, and data are represented, a consistent knowledge 
base may be one in which no datum is both believed 
and disbelieved (or neither), or in which no datum and 
its negation are both believed. These concepts are often 
extended to include other types of contradictions. 

In addition, any algorithm that attempts to maintain 
well-founded stable states of a knowledge base, such 
as one of the many algorithms for truth maintenance 
(Doyle, 1979; de Kleer, 1986; Martins and Shapiro, 
1988; McAllester, 1980; Russinoff, 1985), should be 
complete, in the sense that if a well-founded stable state 
exists, the algorithm will either find it or report failure. 
In general, .we desire each agent in a multiagent envi- 
ronment to have a complete algorithm for maintaining 
the integrity of its own knowledge base. 

However, the above definitions of properties for a sin- 
gle knowledge base are insufficient to characterize the 
multiple knowledge bases in such a multiagent environ- 
ment. When agents that are nonmonotonic reasoners 
exchange beliefs and then make inferences based on the 
exchanged beliefs, then new concepts of knowledge-base 
integrity are needed. In addition, the relevant concept 
of global truth maintenance becomes especially prob- 
lematic if agents must compute their beliefs locally, 
based on beliefs communicated and justified externally. 
The next sections extend the above definitions to the 
multiagent case. 

The JTMS 
We presume that each agent has a problem-solving corn- 
ponent, separate from its knowledge base, that makes 

72 AUTOMATEDREASONING 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



inferences and supplies the results to the knowledge agents: there may be a shared datum that one agent 
base. Our discussion applies to the set of beliefs that are believes to be IN and another believes to be OUT. 
held and maintained in-this knowledge base. In partic- 
ular, we focus on the systems for maintaining beliefs 
known as truth-maintenance systems (TMS) (Doyle, 
1979). 

TMSs are a common way to achieve knowledge base 
integrity in a single agent system, because they deal 
with the frame problem, they deal with atomicity, and 
they lead to efficient search. Furthermore, the jus- 
tification networks they create can be used for non- 
monotonic reasoning, problem-solving explanations to 
a user, explanation-based learning, and multiagent ne- 
gotiation. Our research is based on a justification-based 
TMS, in which every datum has a set of justifications 
and an associated status of IN (believed) or OUT (disbe- 
lieved) . 

In the example considered below, an initial state of a 
distributed knowledge base is given and presumed con- 
sistent. Our goal is to construct a consistent extension 
of this state or determine that no such extension exists. 
The distributed TMS (DTMS) algorithm presented for 
this task is most often invoked to restore consistency 
when a consistent state is disrupted by altering the jus- 
tification for a datum. 

Consistent Beliefs among Agents 
Consider a network of many agents, each with a 
partially-independent system of beliefs. The agents in- 
teract by exchanging data, either unsolicited or in re- 
sponse to a query. Each agent has two kinds of data in 
its knowledge base: 

Shared Data Beliefs that the agent has shared with 
another agent sometime in the past. 

Private Data Beliefs that the agent has never shared 
with another agent. 

A private datum might become a shared datum by 
being told to another agent, or by being the answer 
to some other agent’s query. Once shared with other 
agents, a datum can never again be private. Each 
shared datum is shared by a subset of the agents in 
the network-precisely those that have either sent or 
received assertions about the datum. 

We extend the concept of knowledge-base consistency 
stated above by defining four degrees of consistency and 
well-foundedness that are possible in a multiagent sys- 
tem. 

Inconsistency: one or more agents are individually in- 
consistent, i.e., at least one agent has a private datum 
without a valid justification and labeled IN, or a pri- 
vate datum with a valid justification and labeled OUT. 

Local Consistency: each agent is locally consistent, 
i.e., no private OUT datum has a valid justification, 
and each private IN datum has a valid justification. 
However, there may be global inconsistency among 

Local-and-Shared Consistency: each agent is lo- 
cally consistent and each agent is mutually consistent 
about any data shared with another agent, i.e., each 
shared datum is either IN in all the agents that share 
it or OUT in those agents. There is, however, no global 
consistency. 

Global Consistency: the agents are both individu- 
ally and mutually consistent, i.e., their beliefs could 
be merged into one large knowledge base without the 
status of any datum necessarily changing. 
In the absence of interagent communication, and pre- 

suming the local environment of each agent is consis- 
tent, then Local Consistency should hold. The intro- 
duction of interagent communication, however, tends 
to drive the system towards Inconsistency, because the 
agents might receive data that conflict with their cur- 
rent beliefs. The mechanism for truth maintenance we 
describe below enables each agent then to strive for 
Local-and-Shared Consistency. The presumption here 
is that the shared data are the most important, be- 
cause they affect the problem solving of another agent, 
and so special effort should be made to maintain their 
consistency. 

Although our goal is to maintain Local-and-Shared 
Consistency, we at times allow the system to fall short 
of this goal in order to permit agents to have different 
viewpoints. In this case, one agent may hold a belief 
that is known to be contrary to the belief of a second 
agent. The agents do not attempt to resolve this dispute 
if resolution would result in their being individually in- 
consistent. A consequence of this is that these agents 
should then not believe any data originating from each 
other, unless that agent can prove that its belief for 
that data is independent of the disputed data. 

Ill-Foundedness: individual agents have beliefs that 
are internally ill-founded. 

Local Well-Foundedness: individual agents have 
beliefs that are internally well-founded; however, 
there may be shared data that are IN but have no 
valid justifications in any agent. 

Local-and-Shared Well-Foundedness: individual 
agents have beliefs that are internally well-founded, 
and every IN shared datum has a valid justification 
in some agent; however, there may be ill-founded cir- 
cularities of beliefs among groups of agents. 

Global Well-Foundedness: every datum has a glob- 
ally valid justification and no set of data, whether 
local to an agent or distributed among a group of 
agents, is mutually dependent. 

A Multiagent TMS 
In the classical TMS, a datum can be either IN or OUT. 
For the DTMS, we refine the IN status to two substa- 

BRIDGELANDANDHUHNS 73 



tuses: INTERNAL and EXTERNAL. An INTERNAL datumis 
one that is believed to be true, and that has a valid jus- 
tification. An EXTERNAL datum is believed to be true, 
but need not have a valid justification. Intuitively, the 
justification of an EXTERNAL datum is %o-and-so told 
me.” Hence, only a shared datum can be EXTERNAL. 
For Local-and-Shared Well-Foundedness, a shared da- 
tum must be INTERNAL to at least one of the agents 
that shares it and either INTERNAL or EXTERNAL to the 
rest of the agents. 

In the only complete justification-based TMS labeling 
algorithm (Russinoff, 1985), Russinoff takes a generate 
and test approach, first unlabeling a collection of data, 
then attempting to relabel that collection. On failure 
to relabel, a superset of the last unlabeled collection is 
unlabeled. We take a similar approach in the DTMS. 
Since new data in one agent can change not only the sta- 
tus of that agent’s beliefs, but also that of other agents, 
our unlabeling and subsequent labeling will sometimes 
involve multiple agents. 

The support status of a shared datum is jointly main- 
tained by several agents. Hence, a single agent is gen- 
erally not free to change the status of a shared datum 
on its own accord. It must coordinate with the other 
agents so that they are all consistent on the status of 
the datum. Central to the DTMS then is the single 
agent operation of label-wrt. label-wrt is a variation 
of classical TMS labeling in which the statuses of some 
data-though unlabeled- are fixed by external require- 
ments. 

More precisely, label-wrt is given a network of data. 
Some of the data have statuses of IN, OUT, INTERNAL, or 
EXTERNAL. Other data are unlabeled. For each shared 
datum, there is a desired label of either OUT, INTERNAL, 
or EXTERNAL. label-wrt either finds a consistent well- 
founded labeling of the network that satisfies the shared 
data requirements, or it reports failure. Space prohibits 
a presentation of an algorithm to implement label-wrt. 
Our approach is a variation of Russinoff’s well-founded 
and complete labeling algorithm (Russinoff, 1985). 

Algorithm Schema 
The DTMS is a double generate and test. Relabel- 
ing is invoked by the addition or removal of a justifi- 
cation. When invoked, the DTMS does the following 
three things: 

Unlabel some data, including the newly justified da- 
tum and presumably its consequences. This unla- 
beled data set might be confined to a single agent or 
it might span several agents. If a shared datum is 
unlabeled in some agent, it must be unlabeled in all 
the agents that share it. 

Choose labelings for all the unlabeled shared data, as 
defined above. 

Label each of the affected agents with respect to the 
requirements imposed by the shared data, invoking 

label-wrt as described above. If any of the affected 
agents fails to label, then backtrack. Either choose 
different labelings for the shared data (step 21, or 
unlabel a different set of data (step 1). 

This schema will be refined later, but some nice prop 
erties emerge at this abstract level: 

o Any labeling found by the DTMS will have Local- 
and-Shared Consistency and Well-Foundedness. 

0 If the two generate steps are exhaustive, the DTMS 
is complete: it will find a labeling should one exist. 

Note that these properties are true both of the DTMS 
algorithm described in this paper, and any other algo- 
rithm that conforms to this schema. 

Unlabeling 
When the DTMS algorithm is invoked, it starts by un- 
labeling a collection of data. This collection may be 
confined to a single agent or it may span many agents. 
However, it must meet the following constraints: 

1. It must include the datum that originally acquired 
the new justification. 

2. A shared datum that is unlabeled in one agent must 
be unlabeled in all the agents that share it. 

3. On failure to label the collection, it must generate a 
new collection of unlabeled data. To guarantee com- 
pleteness, the generation must be exhaustive: it must 
eventually generate a collection sufficiently large that 
failure to label it means the whole network cannot be 
labeled. 

Using only these constraints, unlabeling is undercon- 
strained: many algorithms satisfy. For example, on any 
status change one could unlabel all data in all agents. 
This global unlabeling satisfies all the constraints and 
is also quite simple, but also is too inefficient for prac- 
tical use. The global unlabeling does reveal two DTMS 
principles that motivate the more complex algorithm 
presented later: 

Principle 1 Belief changes should be resolved with as 
few agents as possible. 

Principle 2 Belief changes should be resolved by 
changing as few beliefs as possible. 

Most belief changes can be resolved by changing 
things only Udownstream” of the new justification, i.e., 
those data that directly or indirectly depend on the da- 
tum newly justified. It is sometimes necessary to move 
“upstream” as well, and relabel data that directly or 
indirectly support the status of the newly justified da- 
tum. Consider the knowledge base for a single agent 
shown in Figure 1 (Russinoff, 1985). Here, datum Q 
acquires the new justification shown in dotted lines. If 
only P and Q are reassigned, the system is forced to 
report an unsatisfiable circularity. In order to restore 
stability, the status of the data upstream from P must 

74 AUTOMATEDREASONING 



d J \ 
\ R (IN) S (OUT) 

Figure 1: Relabeling upstream data to resolve an odd 
loop 

be changed: if the system makes S OUT and R IN, both 
P and Q can be OUT. 

Principle 3 Belief changes should be resolved down- 
stream if possible; upstream relabeling should be mini- . . 
mszed. 

The above principles motivate the algorithm unla- 
bel. It attempts to minimize both the involvement of 
other agents and the unlabeling of upstream data, but 
prefers the former to the latter. Unlabel is invoked on 
a list containing either the newly justified datum, when 
unlabel is first invoked, or the unlabeled data that 
could not be labeled on a previous invocation. Unla- 
be1 attempts to find yet to be unlabeled private data 
downstream of those already labeled. If there are none, 
it looks for shared data downstream, unlabeling those 
in all the agents that share them, and also unlabeling 
private data downstream of the shared data. Finally, 
if there are no shared data downstream that are yet to 
be unlabeled, it unlabels data just upstream of all the 
downstream data, and all private data downstream of 
that. If there is nothing yet to be unlabeled upstream, 
unlabel fails and, in fact, the data admit no Local-and- 
Shared Consistent and Well-Founded labeling. 

Consider the DTMS network in Figure 2. There are 
two agents, Agent 1 and Agent 2, and they share the 
datum T. As in Fignre 1, the initial labeling shown in 
the diagram is perturbed by the addition of the new 
dotted justification. Agent 1 initially unlabels just the 
changed datum and private data downstream, P and 
Q, but there is no consistent relabeling. Hence, Agent 
1 unlabels all shared data downstream of P and Q, and 
all private data downstream from there: P, Q, both Ts, 
and U. Again labeling fails. Since there is no further 
shared data downstream, Agent 1 and Agent 2 unlabel 
upstream and privately downstream from there: P, Q, 
Ts, U, R, and S. Now labeling succeeds (with S and U IN 
and everything else OUT). Had labeling failed, Unlabel 
would not be able to unlabel more hata, 
report that the network is inconsistent. 

and would 

Distributed System Issues To be implemented, 
the unlabel algorithm needs to be distributed. This 
is straightforward if each agent keeps track of which 
data are currently unlabeled and reports to other agents 
only whether yet to be unlabeled data became unla- 
beled. Upstream and downstream messages mention 

Figure 2: A DTMS network before relabeling 

only which shared datum is affected, and the corre- 
sponding acknowledgements report only whether new 
data were unlabeled. 

When a group of agents are labeling, their beliefs 
are in a state not suitable for reasoning. Hence, queries 
from other agents must be queued until labeling is com- 
plete. However, if two agents share a datum, and are 
involved in separate unlabeling tasks (i.e., initiated by 
different changes to beliefs), deadlock could occur. For- 
tunately, the separate unlabeling tasks can be combined 
into a single one, with a corresponding combination of 
the subsequent labeling. 

Labeling 
Once an area of data is unlabeled, the DTMS must 
pick candidate labels for the shared data, such that 
each datum is either OUT in all the agents that share 
it,or INTERNAL in at least one agent and INTERNALor 
EXTERNAL in the rest. Any exhaustive means of picking 
will guarantee completeness. The following Prolog code 
shows one means: 

label-shared([], Shared-labels, Shared-labels). 

label-shared([AgentlAgents], So-far, Final) <-- 
label-one-shared(Agent, So-far, New), 
label-shared(Agents, New, Final). 

label-shared relates its first argument-a list of 
agents-and its third argument-a l&t of shared data 
and their labels. The second argument is used to pass 
commitments about labels for shared data to recursive 
calls to label-shared. The relation calls label-one- 
shared, attempting to assign labels to a single agent 

BRIDGELAND AND HUHNS 75 



that are consistent with those already assigned to oth- 
ers. lf it finds such an assignment, it recursively at- 
tempts to find labels for the other agents. On failure, 
it bactracks and looks for alternatives to the previous 
single-agent labeling. 

This algorithm could be implemented on a fully con- 
nected multiagent system by having each agent respon- 
sible for generating labels that are consistent with oth- 
ers already generated, as in label-one-shared, and im- 
plementing the recursive nature of label-shared with 
a message passed depth-first from agent to agent. This 
message needs to contain a list of agents already vis- 
ited, so that none are revisited, and a list of the al- 
ready labeled shared data. Also, before an agent passes 
a message to another, it needs to record its state for 
future backtracking. The shared-data labeling fits into 
the larger labeling process as follows: 

label(Agents) <-- 
label-shared(Agents, [I, Shared), 
label-private(Agents, Shared). 

label-private([],Shared). 

label-private([AgentIAgents],Shared) <-- 
local-shared(Agent, Shared, Local-Shared), 
label-wrt(Agent, Local-Shared), 
label-private(Agents, Shared). 

The private labeling follows the shared data labeling. 
The private data are labeled one agent at a time. First 
the relation local-Shared extracts the shared labels 
relevant to a single agent from the list of all the shared 
labels. Then label-wrt attempts to label the private 
data consistently with the shared data. Any failure to 
label causes backtracking. This algorithm will find a 
Local-and-Shared Consistent and Well-Founded label- 
ing of an unlabeled area in a collection of agents. 

Unfortunately, this algorithm has poor computa- 
tional performance. If there is no consistent labeling 
of the agents, the DTMS will generate all shared data 
labelings and attempt to label each privately. The per- 
formance can be improved by interleaving the labeling 
of the shared data and the private data. Failure in a sin- 
gle agent to find a private labeling consistent with the 
labels of the shared data will then cause earlier back- 
tracking: 

label(Agents) <-- label-internal(Agents, [I). 

label-internal([], Shared). 

label-internal([AgentlAgents], So-far) <-- 
label-one-shared(Agent, So-far, New), 
local-shared(Agent, New, Local-shared), 
label-wrt(Agent, Local-shared), 
label-internal(Agents, New). 

Label-internal could be implemented by a message 
passed depth-first from agent to agent. This message 

76 AUTOMATEDREASONING 

needs to contain a list of the agents visited so far, and 
a record of the labels given so far to the shared data. 

Consider again Figure 2. R, S, P, Q, U, and both Ts 
have now been unlabeled. Agent 1 chooses labels for T 
and attempts to label his private data in a consistent 
manner. If Agent 1 chooses INTERNAL as T's label, he 
finds there is no labeling of his private data to make 
T internally justified. A next attempt with EXTERNAL 
is consistent (with S IN and everything else OUT), and 
Agent 1 passes his label of T to Agent 2. Agent 2 must 
then label T INTERNAL, but finds there is no way to 
label U. Agent 2 then backtracks and Agent 1 tries a 
final attempt to label T, this time as OUT. This succeeds 
with S IN and everything else OUT, and Agent 2 can also 
label T OUT by labeling U IN. 

Optimizations 
This DTMS algorithm admits several local optimiza- 
tions: 

An agent can forgo the labeling of its unlabeled 
shared data by label-one-shared and instead la- 
bel everything that is unlabeled with label-wrt. 
This requires a more sophisticated label-wrt that 
can generate INTERNAL and EXTERNAL labels for the 
shared data, as well as IN and OUT labels for the pri- 
vate data. 

An agent can keep a record of label attempts, caching 
for each combination of shared data labels whether 
it succeeded or failed to find a private labeling. A 
call to label-wrt will first consult the cache, thus 
avoiding redundant work. Ordering the shared data 
and then indexing the combinations in a discrimina- 
tion net seems to be a good implementation for this 
cache. 

In the above algorithm, only one agent is active at 
a time. However, there is something productive that 
the other agents can do: fill in their label caches by 
attempting to find private labelings for shared data 
combinations not yet examined. In fact, this effort 
could be guided by other agents. lf agent 1 shares 
data with agents 2, 3, and 4, when agent 1 passes 
a label-internal message to agent 2, it could advise 
agents 3 and 4 about its decisions on the labels of 
shared data. Then other agents could work only on 
that portion of their caches that are consistent with 
agent l's decision. 

Discussion 
There have been many other attempts to develop sys- 
tems of cooperating agents or knowledge sources. Early 
attempts, based on the blackboard model, involved 
agents with independent knowledge bases. The in- 
dependence was achieved by restricting agent interac- 
tions to modifications of a global data structure-a 
blackboard-and by minimizing overlap in the agents’ 



knowledge. Later systems allowed richer agent interac- 
tions and overlapping knowledge, but the agents were 
required to have consistent knowledge and to reason 
monotonically. This led to representational problems, 
because different experts in the same domain often have 
different perspectives and confEic tang knowledge, mak- 
ing it difficult to construct a coherent problem-solving 
system for that domain. Earlier solutions were to allow 
inconsistent knowledge bases; this enabled the conflict- 
ing knowledge to be represented, but it did not confront 
the problem of how to resolve the conflicts. 

Other researchers have explored negotiation as a 
means to mediate among conflicting agents. These sys- 
tems have involved either monotonic reasoners, such as 
(Sycara, 1989), or nonmonotonic, but memoryless, rea- 
soners, such as (Zlotkin and Rosenschein, 1989), i.e., 
reasoners that simply discard old solutions and re-solve 
in the face of conflicts. 

Another approach is to consider the research ef- 
forts in multiple-context truth-maintenance systems (de 
Kleer, 1986; Martins and Shapiro, 1988) from a dis- 
tributed viewpoint. These systems manipulate belief 
spaces, or contexts, in order to remove inconsistent 
ones. One might imagine each belief space represented 
by a different agent, who then maintains it. However, 
in this model, the belief spaces themselves do not inter- 
act and, in fact, the belief revision system treats each 
space separately. 

A notable exception to this is the work of (Ma- 
son and Johnson, 1989), who developed a distributed 
assumption-based TMS. In this system, agents inter- 
act by exchanging data, with their associated assump- 
tion sets, and NOGOODS, i.e., bad assumption sets. The 
agents maintain separate belief spaces and may dis- 
agree about an exchanged datum. The agents therefore 
have Local-and-Shared Well-Foundedness, but only Lo- 
cal Consistency. 

The system presented herein, although an improve- 
ment in that it achieves Local-and-Shared Consistency, 
nevertheless suffers from several deficiencies: 

o First, by not supporting some form of explicit nega- 
tion or reasons for disbelief in a datum, the system 
allows an agent with less information to dominate an 
agent with more. For example, if two agents each 
have an identical justification for belief in a shared 
datum, and one agent learns a fact that invalidates 
its justification, the other agent’s still-valid justifica- 
tion will be sufficient for both to continue believing 
in the datum. 

0 Second, our algorithm can involve significant compu- 
tational overhead if the agents have shared a large 
amount of data, if the data have many connections 
to the rest of the agents’ belief networks, and if the 
status of their beliefs changes frequently. 

We are currently investigating the likelihood and sever- 
ity of these deficiencies in real-world application do- 
mains. We are also developing a mechanism for negoti- 
ation that uses the beliefs supplied by our DTMS. 

The above algorithm has been implemented in the 
RAD distributed expert system shell, which includes a 
framework within which computational agents can be 
integrated. RAD is a first step toward cooperative dis- 
tributed problem solving among multiple agents. It pro- 
vides the low-level communication and reasoning prim- 
itives necessary for beneficial agent interactions, but it 
does not yet guarantee successful and efficient coopera- 
tion. The next steps will require increased intelligence 
and capabilities for each agent, resulting in more sophis- 
ticated agent interactions occurring at a higher level. 

eferences 
Johan de Kleer. An Assumption-Based TMS, Ex- 
tending the ATMS, and Problem Solving with the 
ATMS. Artificial Intelligence, 28(2):127-224, March 
1986. 

Jon Doyle. A Truth Maintenance System. Artificial 
Intelligence, 12(3):231-272, 1979. 

Les Gasser and Michael N. Huhns. Distributed Ar- 
tificial Intelligence, Volume II. Pitman Publishing, 
London, 1989. 

Michael N. Huhns. Distributed Artificial Intelligence. 
Pitman Publishing, London, 1987. 

Joao P. Martins and Stuart 6. Shapiro. A Model for 
Belief Revision. Artificial Intelligence, 35(1):25-79, 
May 1988. 

Cindy L. Mason and R. R. Johnson. Datms: A 
Framework for Distributed Assumption Based Rea- 
soning. In Les Gasser and Michael N. Huhns, editors, 
Distributed Artificial Intelligence, Volume II, pages 
293-317. Pitman Publishing, London, 1989. 

David A. McAllester. An Outlook on Truth Main- 
tenance. AI Memo No. 551, Artificial Intelligence 
Laboratory, MIT, Cambridge, MA, August 1980. 

David M. Russinoff. An Algorithm for Truth Mainte- 
nance. MCC Technical Report No. ACA-AI-062-85, 
Microelectronics and Computer Technology Corpo- 
ration, Austin, TX, April 1985. 

Katia Sycara. Multiagent Compromise Via Negotia- 
tion. In Les Gasser and Michael N. Huhns, editors, 
Distributed Artificial Intelligence, Volume II, pages 
119-137. Pitman Publishing, London, 1989. 

Gilad Zlotkin and Jeffrey S. Rosenschein. Negotia- 
tion and Task Sharing among Autonomous Agents 
in Cooperative Domains. In Proceedings IJCAI-89, 
pages 912-917, Detroit, MI, August 1989. 

o Third, we believe unsatisfiable circularities are more 
likely in a distributed system. 

BRIDGELAND AND HUHNS 77 


