
From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

System Architecture
In a loosely coupled distributed system, an agent
spends most of its cpu time in computation as op-
posed to communication. Since theorem proving by
nature is computationally intensive, we have chosen a
loosely coupled implementation for our distributed the-
orem prover. Each theorem prover agent spends most
of its time performing binary resolution ‘, with the
balance spent on problem assessment and communica-
tion. Problem assessment helps determine what course
of action to take next to further the proof locally. Com-
munication between agents generally falls into one of
the following categories: (i) a request is sent to one
or more agents for information; (ii) an agent returns
information in response to a request.

The architecture for our theorem proving agent has
been tailored to suit the characteristics of the prob-
lem solving environment mentioned above (i.e. loosely
coupled, multiple concurrent tasks). The architecture
of a single theorem proving agent is composed of sev-
eral processes attached to a communications network.
The problem solving system is then comprised of sev-
eral nodes, each having this agent architecture. In each
agent there is one mail process, and the remaining pro-
cesses are each associated with a distinct problem solv-
ing activity. Each process in an agent has equal pri-
ority and active processes compete for cpu time in a
round robin fashion. Under normal circumstances, ev-
ery theorem prover process is active. The mail process
is typically in a wait state and becomes active when
new mail is received via the communications channel.
Each theorem prover process in an agent has its own
environment and is associated with one automated rea-
soning task identified by a unique tag. Theorem prover
processes working on the same reasoning task in dif-
ferent agents throughout the network bear the same
tag. In addition, no two theorem prover processes for
a given agent may work on the same theorem. It need
not be the case that every agent works on every theo-
rem.

Distributed Theorem Proving
Strategies

As is the case with single agent theorem provers, dis-
tributed theorem proving exhibits exponential behav-
ior. It turns out, however, that some of the strate-
gies used in classical theorem proving to help mini-
mize the number of resolvents generated can also be
used in the distributed case to reduce the content of in-
formation exchanged between agents. Development of

‘The binary resolution performed by each agent in
DARES uses a tautology and subsumption reduction strat-
egy to minimize the number of resolvents generated, and it
uses the set of support strategy to limit its search space.
Furthermore, the set of resolvents generated by each level
of resolution is sorted by length, so that shorter clauses are
resolved first during the next level.

these of strategies is essential, since the performance of
distributed theorem proving can be greatly enhanced
by them. If the computational effort in replying to
a request is significant, it may have not been worth
making the request in the first place. Similarly, in
information-intensive domains requests that receive a
bombardment of replies can be counterproductive.

Figure 1 is a flow diagram which depicts a high level
view of our approach to distributed theorem proving.
DARES is based on a traditional saturation level type
theorem prover.

It uncertain I

Terminate

Figure I: Distributed automated reasoning flow di+
gram.

We have previously noted that in our distributed en-
vironment no one agent can achieve the task at hand
by itself. Therefore, we do not terminate the resolu-
tion process simply because the current resolution level
has failed to generate new resolvents. In fact, reaching
this point triggers a theorem prover agent to attempt
to import relevant information from other agents as
shown in Figure 1. If an agent is successful in im-
porting new knowledge, the resolution process contin-
ues. Otherwise the distributed theorem proving pro-

CONRYETAL. 79

cess terminates with no conclusion being drawn about
the current theorem.

It is not sufficient just to wait for local resolution
to halt prior to importing new knowledge, since me-
chanical theorem proving in general may not termi-
nate when dealing with incomplete knowledge. There-
fore, as shown in Figure 1, our system must evaluate
whether or not progress is being made locally towards
a solution. The Forward Progress test is made at the
conclusion of each resolution level to heuristically de-
termine whether the proof has advanced towards a NIL
resolvent. This test cannot give a definitive answer. It
can only say ‘Yes, progress has been made,” or that it
“does not know.” On this basis, local resolution moves
to the next level only if the Forward Progress test con-
cludes that progress has been made. Otherwise, non-
local knowledge is imported just as if the current level
had failed to produce new resolvents.

Forward Progress Heuristic
Given a negated theorem and a set of axioms that
is adequate for establishing that theorem, a single
agent with complete knowledge will, given enough
time, eventually determine that the theorem is valid by
producing a NIL resolvent . However, when the same
axiom set and theorem are distributed over several
agents, it is possible that no agent will have sufficient
local knowledge to establish the result. It is therefore
possible for each agent under this circumstance, with-
out a Forward Progress heuristic, to perform resolution
forever and not prove a theorem that conventional sys-
tems have no difficulty in proving.

The purpose of our Forward Progress heuristic is
to guarantee that no agent in our system will enter a
mode in which it can perform resolution forever, with-
out eventually attempting to import nonlocal knowl-
edge that may lead to an inconsistency. This safeguard
gives DARES the ability to prove any theorem that
conventional systems can prove given the same set of
global system knowledge. What the Forward Progress
heuristic does not do is to give DARES any advantage
over the single agent case when the single agent is faced
with nontermination.

When it is apparent that an agent is not progress-
ing, the Forward Progress heuristic triggers the impor-
tation of nonlocal information in order to increase the
agent’s knowledge relative to the task at hand. Experi-
mental data indicate that this heuristic does indeed en-
hance system performance, even when a DARES agent
is not faced with nontermination.

In defining the Forward Progress heuristic, we make
use of two related heuristics: the Proof Advancing
heuristic and the Monotonic Search heuristic. The
Proof Advancing heuristic is the component of the For-
ward Progress heuristic which is used to detect local
advancement. This heuristic either detects advance-
ment, or is uncertain whether or not the proof is ad-
vancing. The Monotonic Search heuristic is the mech-

anism that the Forward Progress heuristic relies upon
if uncertainty about proof advancement persists.

The Proof Advancing heutistic is determined at each
level of resolution by examination of the newly gener-
ated resolvents. A resolvent R is said to be advancing
the proof if

(a) given two clauses C and D with lit-
eral length c and d respectively, the clause
length P of R is less than (c + d) - 2,

Or (b) R is a single literal,

Or (c) R was generated from a single literal
clause.

If any resolvent generated at saturation level i advances
the proof, then we say the Proof Advancing heuristic
is satisfied at level i.

In general, when two clauses are resolved using bi-
nary resolution, the resolvents will always have length
no greater than the sum of the lengths of the two par-
ent clauses, minus the two literals which are consumed
by the resolution process. Condition (a) in the Proof
Advancing heuristic considers a proof to be advancing
whenever a resolvent is generated with length less than
this upper bound. Conditions (b) and (c) in the Proof
Advancing heuristic definition recognize that some re-
solvents are desirable even though their length equals
the upper bound. For example, when a single literal
clause C is resolved with clause D of length n, the re-
solventhaslengthc+d-2=1+n-2=n-1. The
importance of these resolvents are recognized by the
Unit Preference [ll] strategy.

Whenever condition (a), (b), and/or (c) occurs dur-
ing resolution, the proof is considered to be advancing.
If none of these occur, we do not know if the proof is
making progress. If it is not clear whether or not a
proof is advancing, and this uncertainty persists, some
mechanism for forcing a knowledge request is required.
This is where the Monotonic Search heuristic comes
into play.

The Monotonic Search heuristic is defined as follows:
Let CY,, be the total number of distinct predicate sym-

bols found in the set of newly generated resolvents at
saturation level n. The search for a proof is said to be
monotonic at level i if for i > 1, cyi-1 > cyi.

The Forward Progress heuristic is used to detect an
apparent lack of forward progress in the proof. This
lack of progress is defined in terms of the Proof Ad-
vancing and Monotonic Search heuristics.

A proof is said to exhibit an apparent lack of forward
progress at saturation level i if

(1) the Proof Ad vancing heuristic is not sat-
isfied at saturation level i - 1, -a

(2) the Proof Ad vancing heuristic is not sat-
isfied at saturation level i,

ana (3) th e search is not monotonic at level i.

80 AUTOMATED REASONING

The Forward Progress heuristic guarantees that if
proof advancement is uncertain and the number of
predicate symbols is nondecreasing in successive levels
of resolution, a knowledge request is made. (When-
ever the number of predicate symbols is a decreasing
function in successive levels of resolution, the number
of predicate symbols must eventually shrink to zero. If
this situation occurs, it will be detected by the Neut
Resolvents test (refer to Figure l), since a scenario in-
volving zero predicate symbols can only occur if the
current level of resolution fails to generate new resol-
vents.)

Priority Set
In our environment, when an agent has reached a point
where it is evident that new information must be ac-
quired in order to continue problem solving, it formu-
lates a Priority Set P.

Definition A Priority Set P has the form P =
(Cl, .“, Cn} where each Ci for 0 < i s n is a clause
heuristically determined to have a high likelihood of
furthering the proof towards a NIL resolvent. P is
said to have length n, where n is the number of clauses
in P.

The heuristic we use to determine the likelihood of
a clause extracts some ideas found in two conventional
resolution strategies: Set of Support [12] and Unit Pref-
erence [ll]. However, our heuristic is more than just a
combination of these two strategies. Our importation
heuristic determines a likelihood that a clause will be
relevant in furthering a proof towards a NIL resolvent.
This heuristic is based on clause length and clause an-
cestry. Clauses whose ancestry do not lead back to the
negated theorem have no likelihood and are assigned
the value of 0. Clauses having an ancestry link to the
negated theorem have a likelihood whose value is the
reciprocal of the clause length. Single literal clauses
with a negated theorem ancestry have the maximum
likelihood of 1.

As a first cut in distributed theorem proving, one
could simply form the Priority Set P using all clauses
possessing maximum likelihood. Then P could be sent
to all agents, with each agent being requested to return
any clause that can resolve with one or more members
in P. Unfortunately, P could potentially be large, re-
quiring significant processing on behalf of each agent
receiving the request. A better strategy would be to
first remove any clause in P which is subsumed by an-
other clause in P, as any reduction in the size of P
reduces the overhead other agents incur while process-
ing the request.

Though use of subsumption in this way reduces the
size of P, it still has the potential of being relatively
large. An alternative approach makes use of a Mini-
mal Literal Set &in derived from P that is defined as
follows:

Definition Let each clause Ci in a Priority Set
P of length n be of the form Ci = (&I, &,} where

Lij is a literal, and:
1. 15 i< n;
2. m > 0 and is the number of literals in clause

2.

3. ;‘~jpni.
Then the Priority Litercrl Set L is defined to be the
union of literals found in clauses Cl, Cn and has the
formL=ClU...UC,.

Definition Given L, the Priority Literal Set
for P = {Cl, C,), we define Lnrin, the Minimum
Ptiority Literal Set for P as follows:

L min = L - L’, where L’ = {Ljk E L 1 there is a
literal Lpq in L, such that Ljk is subsumed by L,,}.

After computing the Minimal Priority Literal Set
L min from the Priority Set P, the agent could trans
lllit Lmin to other agents and request knowledge about
clauses they may have that resolve with one or more
literals in L&n. If this were done, an agent respond-
ing to this request would then systematically attempt
to perform resolution with each literal in Lmin against
its local clause set, complementing each Lmin literal
and attempting to unify it with a literal in each of its
local clauses. Recognizing this fact, in an attempt to
minimize the effort of an agent replying to a request,
the requesting agent complements each literal in Lmin
prior to making the request. We call the resulting set
the Minimum Priority Negated Literal Set and define
it as follows:

Definition Given a Minimum Priority Literal
Set Lmin = {Qi,&..,I of length n, where each Qi
is a literal for 0 < i 5 n, then the Minimum Prior-
ity Negated Literal Set NLmin has the form NLmin =
(RI, &}, where each & = l&i for 0 < i 5 n.

After computing the Minimal Priority Negated Lit-
eral Set NLmin from the Priority Set P, the agent
transmits NLmin to other agents and requests knowl-
edge about clauses they may have that unify with one
or more literals in NLmin.

Up to now we have concentrated on explaining how
an agent determines when a request needs to be made,
and how it formulates the content of the request. We
have said nothing about what happens if the first at-
tempt to import knowledge fails, nor have we given
much insight into the procedure followed by an agent
replying to the request.

The first thing the requesting agent does is to deter-
mine the range of likelihoods possible for its clause set.
Beginning with the clauses having highest likelihood,
the agent computes its Minimum Literal Priority Set
and broadcasts a request based on this set. This set
is a function of likelihood (NLmin(Z)). If the request
based on maximum likelihood fails to import nonlo-
cal knowledge, the likelihood constraint is relaxed to
its next possible value and the agent makes another
request. This process continues until the requesting
agent is successful in importing knowledge, or the agent
has exhausted its clause set.

CONRYETAL. 81

We have found that it is beneficial for agents reply-
ing to knowledge requests to also incorporate a like-
lihood dependency. When an agent makes a request
with a high likelihood, the knowledge requested is spe-
cific in nature and it should receive information back
which is also relatively specific. As requests are made
based upon lower likelihoods, we have observed that
the requested information encompasses a wider spec-
trum and is more general in nature.

In DARES, we have incorporated a simple strategy
into request processing which links the likelihood of a
request to the scope of the search space that an agent
considers when making its reply. We require that the
likelihood I, used to formulate M&in(Z), be used to
determine which clauses in a theorem prover’s envi-
ronment are to be considered when evaluating the re-
quest. In order for a clause to be deemed a candidate
for consideration, it must have length no greater than
the maximum length of any clause found in the Priority
Set used to generate NL,i,(l).

When a clause satisfies the requirements of the re-
quest, it is tagged to be considered later as part of
the reply. The significance of tagging potential clauses
during the unification process is twofold: once a clause
is tagged, it is never again considered when subsequent
requests are made by the same agent with respect to
the current theorem under investigation. Secondly,
subsumption is used among the tagged clauses to min-
imize what is returned to the requesting agent. This
tagging mechanism helps avoid redundancy in what is
returned in response to subsequent requests. In addi-
tion, tagging can be viewed as an aggregation of knowl-
edge about other agents’ activities (not unlike the be-
havior evident in the scientific community metaphor
[3, 4, 5, 9]), although DARES makes no specific use of
this information at this time.

Experimental Results
There are three key issues which have been addressed
in our experiments using DARES. They are:

1.

2.

3.

How is DARES’ problem solving behavior affected
as the number of active agents is varied?
How are anomalies in system behavior which result
from particular knowledge distributions minimized,
so that DARES’ automated reasoning behavior is
not misconstrued?
What affect does the amount of shared knowledge
throughout the network have on system perfor-
mance?
In order to measure the amount of shared knowl-

edge among agents in a distributed reasoning network,
we introduce the notion of a relevant csziom and the
Redundancy Factor.

Very simply, an axiom is considered relevant if it can
be used in some proof of the current reasoning task. If
S is a clause set and P a logical consequence of S, then
in general there may be more than one subset of S from

which P can be deduced. We do not address this issue
here. Instead, we presume that each and every clause
in S is required in order to derive P.

The Redundancy Factor (R) of a network is a global
measure of the amount of relevant knowledge shared
among the agents. When no relevant knowledge is
shared between agents, the Redundancy Factor is 0.
When every agent has complete relevant knowledge
the network Redundancy Factor is 1. For distributions
falling within these boundaries, we define the Redun-
dancy Factor to be:

where k = number of active agents
N = number of relevant-axioms for

the reasoning task
C = f

n&i = number of local axioms known
to agent i

R = is the Redundancy Factor
Each of our experiments corresponds to one dis-

tributed reasoning task. For every experiment, data
is collected over a wide range of values for each sys-
tem parameter. As these parameters are varied, each
new run begins with a different random distribution
of knowledge for the same task. For each distribu-
tion, there are three constraints that must be met.
First, each active agent must initially be given at
least one axiom. Secondly, multiple copies of an ax-
iom are not permitted in an agent’s local environment.
(But n copies of an axiom may exist across several
agents.) Lastly, the total number of axioms distributed
throughout the system must equal the number speci-
fied by the current Redundancy Factor.

There are two data collection txsrameters in each ex-
periment: k and r. Parameter-k corresponds to the
number of agents actively engaged in the reasoning
task, and r is the Redundancy Factor. Given a the-
orem to prove which is comprised of M axioms and N
negated theorem clauses, the experiment is done utiliz-
ing k agents, where k is -varied between 1 and M. For
each value of k, the knowledge distribution is varied
between 0 and 100% Redundancy.

We minimize the effects that a particular knowledge
distribution has on general behavior, by performing
many passes at a given data point (k, r), with each
pass having a different distribution. Likewise, the be-
havioral characteristics of DARES can be determined
by performing many different experiments, where each
experiment is based on a unique automated reasoning
task. In fact, this has been done. The results pre-
sented here are based upon analysis of many different
experiments. The figures incorporated in this paper
reflect the results from one experiment as a vehicle for
demonstrating DARES’ distributed automated reason-
ing behavior.

82 AUTOMATEDREASONING

The performance characteristics for a typical exper-
iment are given in Figure 2. These characteristics are
normalized to the nondistributed case, in which a sin-
gle agent performs the complete reasoning task alone.

The two system parameters for DARES:’ data col-
lection experiment, k and r, correspond to the UNum-
ber of Agents” and “Redundancy Factor” axes in Fig-
ure 2, respectively. Since DARES performs distributed
automated reasoning approximately one order of mag-
nitude faster than its nondistributed counterpart, we
have taken the natural log of the elapsed time data
for the experiment. Furthermore, we have normalized
this data so that the single agent case has a value of
unity. The Redundancy Factor axis has been scaled by
a factor of 10 for legibility.

In general, when there is a very high level of re-
dundancy among the agent’s local knowledge, DARES’
runtime rapidly begins to approach that of the single
agent. This behavior can be attributed to a very low
interaction rate among agents, since each agent has
sufficient local knowledge to advance the proof to near
completion. The Forward Progress heuristic detects
this advancement and does not initiate any knowledge
importation requests. Instead, local advancement con-
tinues until resolution fails to generate any new resol-
vents. It is at this point that a knowledge request is
made to import nonlocal information.

We observe that requests made in high redundancy
environments tend to be very specific in nature, since
an agent has advanced the proof nearly to completion
prior to making the request. We have also observed
that when a request of this sort is made, the knowl-
edge sought is readily available in the network. This
is a direct consequence of the other agents having near
complete knowledge, and of the fact that they have
had ample time to advance their local efforts.

In general, we find that as the number of agents in a
network increases, replies to knowledge requests tend
to have better informational content. This relation-
ship between network size and reply content is a di-
rect consequence of simply having more agents in the
network to query, each agent having a different local
perspective derived from its differing initial knowledge
distribution. In Figure 2 the effect of this relationship
is evident in the high redundancy areas. Note that
as the number of agents increases, the slope associ-
ated with the rapid approach towards the single agent
case becomes steeper and the width of these peaks de-
creases.

Figure 2 also suggests that performing distributed
theorem proving is best done by many agents possess-
ing little redundancy. In this situation, each agent can
be viewed as a specialist. At the start of the distributed
theorem proving process, each agent advances its part
of the proof as far as it can before making a knowl-
edge request. At the time such a request is made, the
agent has begun to concentrate its efforts on its local
advancement and imports knowledge relative to this

acquired focus. Since redundancy is low, we see the
agents becoming specialized in different areas, which
reduces search space overlap between agents and leads
to enhanced system performance.

Although system performance is best with many
agents in a low redundancy environment, there is only
a small increase in system performance as the num-
ber of agents is increased. What we see happening
as network size becomes larger, is that initial knowl-
edge importation requests occur earlier. These re-
quests are based on less local effort and are more gen-
eral in nature, thus leading to the initial importation
of larger volumes of knowledge. Therefore, agents in
smaller networks acquire a focus sooner than agents
in larger networks. However, as the distributed effort
nears completion, we see larger networks outperform-
ing smaller ones, since requested information near the
end of the proof is more readily available in larger net-
works due to network size and the local efforts of more
agents. It appears that the performance of larger net-
works near the end of the proof is sufficient to offset
the advantage smaller networks have at the start, thus
we see a slight improvement in system performance as
network size increases.

The behavioral characteristics displayed in Figure 2
reflect DARES’ general runtime characteristics. This
surface plot was generated from data recorded by
DARES and represents the average value of all passes
made for each data point. The validity of our conclu-
sions is supported by a comparison of the characteris-
tics of both the lower and upper bound surfaces. These
surfaces are shown in Figures 3 and 4 respectively.

The lower bound characteristic surface is a plot of
the minimum runtime over all passes made for a given
data point. Note that there are no major discrepancies
in the plateau regions between the general and mini-
mum surfaces. In fact, the smoothness of the plateau
in the average value surface suggests that we have in-
deed minimized dependencies associated with particu-
lar distributions.

The upper bound characteristic surface shown in
Figure 4 is a plot of the maximum of all runtimes
recorded by DARES for a given data point. This plot
also has (to a limited degree) the same general shape
as the average time characteristic surface in Figure 2.
Rowever, the most notable feature of this surface is
that it is very spiked. This is a demonstration of
how sensitive distributed automated reasoning is to its
knowledge distribution. Each one of the peaks (spikes)
represents reduced system performance directly related
to the knowledge distribution used.

There are two important observations to be made
with respect to the upper bound surface: First, since
its overall shape is basically that of the average time
surface, we have further evidence supporting the hy-
pothesis that the average time characteristics do rep
resent those of general behavior; Secondly, the noise
in this plot indicates how a relatively poor distribution

CONRYETAL. 83

can affect system performance. But more importantly,
it demonstrates that DARES in its worst case environ-
ment performs automated reasoning at a reasonable
rate relative to the that of the nondistributed case.

Concluding Remarks
In this paper, we have described DARES, our dis-
tributed automated reasoning system. Experiments
with DARES have provided us with enhanced insight
into the role of knowledge in distributed problem solv-
ing. We have seen cases in which performance can be
very sensitive to initial knowledge distribution, but the
average case statistics indicate that one must be un-
lucky to encounter such a distribution when knowledge
is randomly distributed.

More importantly, the experimental results we have
presented demonstrate that agents in a loosely cou-
pled network of problem solvers can work semi-
inflq=enrlentlv vd. f&i~s their at.t.fmt.inn wjt;h_ the &d a&A-Y YYYYAAY’J, J VY -“~~-“~-I

of relatively simple heuristics when cooperation is ap-
propriate. These results suggest that we have devel-
oped an effective cooperation strategy which is iargeiy
independent of initial knowledge distribution.

DARES has been implemented in a distributed
testbed facility, SIMULACT [6], that runs on a net-
work of Lisp machines. SIMULACT has provided a
- -13 1-- -A------ ---A - _I well mwrumentea environment in which appiications
of this kind are easily developed and maintained. A
number of additional experiments have been performed
using DARES [7], but discussion of these experiments
is beyond the scope of this paper.

References
[l] P. E. Allen, S. Bose, E. M. Clarke, and

S. Michaylov. PARTHENON: A parallel theorem
prover for non-horn clauses. In 9th International
Conference on Automated Deduction, pages 764-
765. Springer-Verlag, May 1988.

[2] M. P. Cline. A Fast Parallel Algorithm for N-ary
Unification with AI. Applications. PhD thesis,
Clarkson University, Potsdam, NY 13676, April
1989.

[3] M. S. Fox. An organizational view of distributed
systems. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-1 l(1):70-80, January 1981.

[4] W. A. Kornfeld and C. E. Hewitt. The scientific
communitv metanhnr. IEEl? 7hnrnctinnc on SW- -----------J ----1- r---- - -.-v-L-------L -_- -*L
terns, Man, and Cybernetics, SMC-ll(1):24-33,
January 1981.

[5] V. R. Lesser and D. D. Corkill. Functionally ac-
curate, cooperative distributed systems. IEEE
%“a aA ,J:s.l. s. A” @..!..,4,, a RI”, 1m J /T.a,L- ar.‘,,
A 1 ulcocb~o~uILa VW ilyJocllc3, A.4 c&w, Ul‘U vyvcr WC&6CO)

SMC-11(1):81-96, January 1981.
[G] De J. Ma.rTnt.nsh ad C. F. Cnnrv. SIMT_TT,-A-C!‘I’: -A_ -- -.--------L-- --- L. 2. d’-‘d.

generic tool for simulating distributed systems. In
Proceedinos of the Eastern Simulation Conference.

1’71

PI

191

WI

Pll

WI

pages 18-23, Orlando, Florida, April 1987. The
Society for Computer Simulation. (also available
as NA,IC Technical Report TR-8713).
D. J. Macintosh. Distributed Automated Reason-
ing: The Role of Knowledge in Distributed Prob-
lem Solving. PhD thesis, Clarkson University,
Potsdam, NY 13699, December 1989.
J. A. Robinson. A machine-oriented logic based
on the resolution principle. Journal of the As-
sociation for Computing Machineq, 12(1):23-41,
January 1965.
R. G. Smith and R. Davis. Frameworks for co-
operation in distributed problem solving. IEEE
Transactions on Systems, Man, and Cybernetics,
SMC-11(1):61-70, January 1981.
L. Wos. Automated Reasoning: .93 Basic Research
Problems. Prentice-Hall, Engelwood Cliffs, NJ.,
1 QQQ A”““.

L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Auto-
mated Reasoning: Introduction and Applications.
Prentice-Hall, Engelwood Cliffs, NJ ., 1984.
L. Wos and G. A. Robinson. Paramodulation and
set of support. In Proceedings of the IRIA Sym-
posium on Automatic Demonstration, pages 267-
$10 cnr;rrrr*r-Vcrrlar 1 Q&Q . "yIIIIBN.a- . bArrug, A""".

CONRYETAL. 85

