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System Architecture 
In a loosely coupled distributed system, an agent 
spends most of its cpu time in computation as op- 
posed to communication. Since theorem proving by 
nature is computationally intensive, we have chosen a 
loosely coupled implementation for our distributed the- 
orem prover. Each theorem prover agent spends most 
of its time performing binary resolution ‘, with the 
balance spent on problem assessment and communica- 
tion. Problem assessment helps determine what course 
of action to take next to further the proof locally. Com- 
munication between agents generally falls into one of 
the following categories: (i) a request is sent to one 
or more agents for information; (ii) an agent returns 
information in response to a request. 

The architecture for our theorem proving agent has 
been tailored to suit the characteristics of the prob- 
lem solving environment mentioned above (i.e. loosely 
coupled, multiple concurrent tasks). The architecture 
of a single theorem proving agent is composed of sev- 
eral processes attached to a communications network. 
The problem solving system is then comprised of sev- 
eral nodes, each having this agent architecture. In each 
agent there is one mail process, and the remaining pro- 
cesses are each associated with a distinct problem solv- 
ing activity. Each process in an agent has equal pri- 
ority and active processes compete for cpu time in a 
round robin fashion. Under normal circumstances, ev- 
ery theorem prover process is active. The mail process 
is typically in a wait state and becomes active when 
new mail is received via the communications channel. 
Each theorem prover process in an agent has its own 
environment and is associated with one automated rea- 
soning task identified by a unique tag. Theorem prover 
processes working on the same reasoning task in dif- 
ferent agents throughout the network bear the same 
tag. In addition, no two theorem prover processes for 
a given agent may work on the same theorem. It need 
not be the case that every agent works on every theo- 
rem. 

Distributed Theorem Proving 
Strategies 

As is the case with single agent theorem provers, dis- 
tributed theorem proving exhibits exponential behav- 
ior. It turns out, however, that some of the strate- 
gies used in classical theorem proving to help mini- 
mize the number of resolvents generated can also be 
used in the distributed case to reduce the content of in- 
formation exchanged between agents. Development of 

‘The binary resolution performed by each agent in 
DARES uses a tautology and subsumption reduction strat- 
egy to minimize the number of resolvents generated, and it 
uses the set of support strategy to limit its search space. 
Furthermore, the set of resolvents generated by each level 
of resolution is sorted by length, so that shorter clauses are 
resolved first during the next level. 

these of strategies is essential, since the performance of 
distributed theorem proving can be greatly enhanced 
by them. If the computational effort in replying to 
a request is significant, it may have not been worth 
making the request in the first place. Similarly, in 
information-intensive domains requests that receive a 
bombardment of replies can be counterproductive. 

Figure 1 is a flow diagram which depicts a high level 
view of our approach to distributed theorem proving. 
DARES is based on a traditional saturation level type 
theorem prover. 

It uncertain I 

Terminate 

Figure I: Distributed automated reasoning flow di+ 
gram. 

We have previously noted that in our distributed en- 
vironment no one agent can achieve the task at hand 
by itself. Therefore, we do not terminate the resolu- 
tion process simply because the current resolution level 
has failed to generate new resolvents. In fact, reaching 
this point triggers a theorem prover agent to attempt 
to import relevant information from other agents as 
shown in Figure 1. If an agent is successful in im- 
porting new knowledge, the resolution process contin- 
ues. Otherwise the distributed theorem proving pro- 
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cess terminates with no conclusion being drawn about 
the current theorem. 

It is not sufficient just to wait for local resolution 
to halt prior to importing new knowledge, since me- 
chanical theorem proving in general may not termi- 
nate when dealing with incomplete knowledge. There- 
fore, as shown in Figure 1, our system must evaluate 
whether or not progress is being made locally towards 
a solution. The Forward Progress test is made at the 
conclusion of each resolution level to heuristically de- 
termine whether the proof has advanced towards a NIL 
resolvent. This test cannot give a definitive answer. It 
can only say ‘Yes, progress has been made,” or that it 
“does not know.” On this basis, local resolution moves 
to the next level only if the Forward Progress test con- 
cludes that progress has been made. Otherwise, non- 
local knowledge is imported just as if the current level 
had failed to produce new resolvents. 

Forward Progress Heuristic 
Given a negated theorem and a set of axioms that 
is adequate for establishing that theorem, a single 
agent with complete knowledge will, given enough 
time, eventually determine that the theorem is valid by 
producing a NIL resolvent . However, when the same 
axiom set and theorem are distributed over several 
agents, it is possible that no agent will have sufficient 
local knowledge to establish the result. It is therefore 
possible for each agent under this circumstance, with- 
out a Forward Progress heuristic, to perform resolution 
forever and not prove a theorem that conventional sys- 
tems have no difficulty in proving. 

The purpose of our Forward Progress heuristic is 
to guarantee that no agent in our system will enter a 
mode in which it can perform resolution forever, with- 
out eventually attempting to import nonlocal knowl- 
edge that may lead to an inconsistency. This safeguard 
gives DARES the ability to prove any theorem that 
conventional systems can prove given the same set of 
global system knowledge. What the Forward Progress 
heuristic does not do is to give DARES any advantage 
over the single agent case when the single agent is faced 
with nontermination. 

When it is apparent that an agent is not progress- 
ing, the Forward Progress heuristic triggers the impor- 
tation of nonlocal information in order to increase the 
agent’s knowledge relative to the task at hand. Experi- 
mental data indicate that this heuristic does indeed en- 
hance system performance, even when a DARES agent 
is not faced with nontermination. 

In defining the Forward Progress heuristic, we make 
use of two related heuristics: the Proof Advancing 
heuristic and the Monotonic Search heuristic. The 
Proof Advancing heuristic is the component of the For- 
ward Progress heuristic which is used to detect local 
advancement. This heuristic either detects advance- 
ment, or is uncertain whether or not the proof is ad- 
vancing. The Monotonic Search heuristic is the mech- 

anism that the Forward Progress heuristic relies upon 
if uncertainty about proof advancement persists. 

The Proof Advancing heutistic is determined at each 
level of resolution by examination of the newly gener- 
ated resolvents. A resolvent R is said to be advancing 
the proof if 

(a) given two clauses C and D with lit- 
eral length c and d respectively, the clause 
length P of R is less than (c + d) - 2, 

Or (b) R is a single literal, 

Or (c) R was generated from a single literal 
clause. 

If any resolvent generated at saturation level i advances 
the proof, then we say the Proof Advancing heuristic 
is satisfied at level i. 

In general, when two clauses are resolved using bi- 
nary resolution, the resolvents will always have length 
no greater than the sum of the lengths of the two par- 
ent clauses, minus the two literals which are consumed 
by the resolution process. Condition (a) in the Proof 
Advancing heuristic considers a proof to be advancing 
whenever a resolvent is generated with length less than 
this upper bound. Conditions (b) and (c) in the Proof 
Advancing heuristic definition recognize that some re- 
solvents are desirable even though their length equals 
the upper bound. For example, when a single literal 
clause C is resolved with clause D of length n, the re- 
solventhaslengthc+d-2=1+n-2=n-1. The 
importance of these resolvents are recognized by the 
Unit Preference [ll] strategy. 

Whenever condition (a), (b), and/or (c) occurs dur- 
ing resolution, the proof is considered to be advancing. 
If none of these occur, we do not know if the proof is 
making progress. If it is not clear whether or not a 
proof is advancing, and this uncertainty persists, some 
mechanism for forcing a knowledge request is required. 
This is where the Monotonic Search heuristic comes 
into play. 

The Monotonic Search heuristic is defined as follows: 
Let CY,, be the total number of distinct predicate sym- 

bols found in the set of newly generated resolvents at 
saturation level n. The search for a proof is said to be 
monotonic at level i if for i > 1, cyi-1 > cyi. 

The Forward Progress heuristic is used to detect an 
apparent lack of forward progress in the proof. This 
lack of progress is defined in terms of the Proof Ad- 
vancing and Monotonic Search heuristics. 

A proof is said to exhibit an apparent lack of forward 
progress at saturation level i if 

(1) the Proof Ad vancing heuristic is not sat- 
isfied at saturation level i - 1, -a 

(2) the Proof Ad vancing heuristic is not sat- 
isfied at saturation level i, 

ana (3) th e search is not monotonic at level i. 
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The Forward Progress heuristic guarantees that if 
proof advancement is uncertain and the number of 
predicate symbols is nondecreasing in successive levels 
of resolution, a knowledge request is made. (When- 
ever the number of predicate symbols is a decreasing 
function in successive levels of resolution, the number 
of predicate symbols must eventually shrink to zero. If 
this situation occurs, it will be detected by the Neut 
Resolvents test (refer to Figure l), since a scenario in- 
volving zero predicate symbols can only occur if the 
current level of resolution fails to generate new resol- 
vents.) 

Priority Set 
In our environment, when an agent has reached a point 
where it is evident that new information must be ac- 
quired in order to continue problem solving, it formu- 
lates a Priority Set P. 

Definition A Priority Set P has the form P = 
(Cl, .“, Cn} where each Ci for 0 < i s n is a clause 
heuristically determined to have a high likelihood of 
furthering the proof towards a NIL resolvent. P is 
said to have length n, where n is the number of clauses 
in P. 

The heuristic we use to determine the likelihood of 
a clause extracts some ideas found in two conventional 
resolution strategies: Set of Support [12] and Unit Pref- 
erence [ll]. However, our heuristic is more than just a 
combination of these two strategies. Our importation 
heuristic determines a likelihood that a clause will be 
relevant in furthering a proof towards a NIL resolvent. 
This heuristic is based on clause length and clause an- 
cestry. Clauses whose ancestry do not lead back to the 
negated theorem have no likelihood and are assigned 
the value of 0. Clauses having an ancestry link to the 
negated theorem have a likelihood whose value is the 
reciprocal of the clause length. Single literal clauses 
with a negated theorem ancestry have the maximum 
likelihood of 1. 

As a first cut in distributed theorem proving, one 
could simply form the Priority Set P using all clauses 
possessing maximum likelihood. Then P could be sent 
to all agents, with each agent being requested to return 
any clause that can resolve with one or more members 
in P. Unfortunately, P could potentially be large, re- 
quiring significant processing on behalf of each agent 
receiving the request. A better strategy would be to 
first remove any clause in P which is subsumed by an- 
other clause in P, as any reduction in the size of P 
reduces the overhead other agents incur while process- 
ing the request. 

Though use of subsumption in this way reduces the 
size of P, it still has the potential of being relatively 
large. An alternative approach makes use of a Mini- 
mal Literal Set &in derived from P that is defined as 
follows: 

Definition Let each clause Ci in a Priority Set 
P of length n be of the form Ci = (&I, . . . . &,} where 

Lij is a literal, and: 
1. 15 i< n; 
2. m > 0 and is the number of literals in clause 

2. 

3. ;‘~jpni. 
Then the Priority Litercrl Set L is defined to be the 
union of literals found in clauses Cl, . . . . Cn and has the 
formL=ClU...UC,. 

Definition Given L, the Priority Literal Set 
for P = {Cl, . . . . C,), we define Lnrin, the Minimum 
Ptiority Literal Set for P as follows: 

L min = L - L’, where L’ = {Ljk E L 1 there is a 
literal Lpq in L, such that Ljk is subsumed by L,,}. 

After computing the Minimal Priority Literal Set 
L min from the Priority Set P, the agent could trans 
lllit Lmin to other agents and request knowledge about 
clauses they may have that resolve with one or more 
literals in L&n. If this were done, an agent respond- 
ing to this request would then systematically attempt 
to perform resolution with each literal in Lmin against 
its local clause set, complementing each Lmin literal 
and attempting to unify it with a literal in each of its 
local clauses. Recognizing this fact, in an attempt to 
minimize the effort of an agent replying to a request, 
the requesting agent complements each literal in Lmin 
prior to making the request. We call the resulting set 
the Minimum Priority Negated Literal Set and define 
it as follows: 

Definition Given a Minimum Priority Literal 
Set Lmin = {Qi, . . ..&..,I of length n, where each Qi 
is a literal for 0 < i 5 n, then the Minimum Prior- 
ity Negated Literal Set NLmin has the form NLmin = 
(RI, . . . . &}, where each & = l&i for 0 < i 5 n. 

After computing the Minimal Priority Negated Lit- 
eral Set NLmin from the Priority Set P, the agent 
transmits NLmin to other agents and requests knowl- 
edge about clauses they may have that unify with one 
or more literals in NLmin. 

Up to now we have concentrated on explaining how 
an agent determines when a request needs to be made, 
and how it formulates the content of the request. We 
have said nothing about what happens if the first at- 
tempt to import knowledge fails, nor have we given 
much insight into the procedure followed by an agent 
replying to the request. 

The first thing the requesting agent does is to deter- 
mine the range of likelihoods possible for its clause set. 
Beginning with the clauses having highest likelihood, 
the agent computes its Minimum Literal Priority Set 
and broadcasts a request based on this set. This set 
is a function of likelihood (NLmin(Z)). If the request 
based on maximum likelihood fails to import nonlo- 
cal knowledge, the likelihood constraint is relaxed to 
its next possible value and the agent makes another 
request. This process continues until the requesting 
agent is successful in importing knowledge, or the agent 
has exhausted its clause set. 
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We have found that it is beneficial for agents reply- 
ing to knowledge requests to also incorporate a like- 
lihood dependency. When an agent makes a request 
with a high likelihood, the knowledge requested is spe- 
cific in nature and it should receive information back 
which is also relatively specific. As requests are made 
based upon lower likelihoods, we have observed that 
the requested information encompasses a wider spec- 
trum and is more general in nature. 

In DARES, we have incorporated a simple strategy 
into request processing which links the likelihood of a 
request to the scope of the search space that an agent 
considers when making its reply. We require that the 
likelihood I, used to formulate M&in(Z), be used to 
determine which clauses in a theorem prover’s envi- 
ronment are to be considered when evaluating the re- 
quest. In order for a clause to be deemed a candidate 
for consideration, it must have length no greater than 
the maximum length of any clause found in the Priority 
Set used to generate NL,i,(l). 

When a clause satisfies the requirements of the re- 
quest, it is tagged to be considered later as part of 
the reply. The significance of tagging potential clauses 
during the unification process is twofold: once a clause 
is tagged, it is never again considered when subsequent 
requests are made by the same agent with respect to 
the current theorem under investigation. Secondly, 
subsumption is used among the tagged clauses to min- 
imize what is returned to the requesting agent. This 
tagging mechanism helps avoid redundancy in what is 
returned in response to subsequent requests. In addi- 
tion, tagging can be viewed as an aggregation of knowl- 
edge about other agents’ activities (not unlike the be- 
havior evident in the scientific community metaphor 
[3, 4, 5, 9]), although DARES makes no specific use of 
this information at this time. 

Experimental Results 
There are three key issues which have been addressed 
in our experiments using DARES. They are: 

1. 

2. 

3. 

How is DARES’ problem solving behavior affected 
as the number of active agents is varied? 
How are anomalies in system behavior which result 
from particular knowledge distributions minimized, 
so that DARES’ automated reasoning behavior is 
not misconstrued? 
What affect does the amount of shared knowledge 
throughout the network have on system perfor- 
mance? 
In order to measure the amount of shared knowl- 

edge among agents in a distributed reasoning network, 
we introduce the notion of a relevant csziom and the 
Redundancy Factor. 

Very simply, an axiom is considered relevant if it can 
be used in some proof of the current reasoning task. If 
S is a clause set and P a logical consequence of S, then 
in general there may be more than one subset of S from 

which P can be deduced. We do not address this issue 
here. Instead, we presume that each and every clause 
in S is required in order to derive P. 

The Redundancy Factor (R) of a network is a global 
measure of the amount of relevant knowledge shared 
among the agents. When no relevant knowledge is 
shared between agents, the Redundancy Factor is 0. 
When every agent has complete relevant knowledge 
the network Redundancy Factor is 1. For distributions 
falling within these boundaries, we define the Redun- 
dancy Factor to be: 

where k = number of active agents 
N = number of relevant-axioms for 

the reasoning task 
C = f 

n&i = number of local axioms known 
to agent i 

R = is the Redundancy Factor 
Each of our experiments corresponds to one dis- 

tributed reasoning task. For every experiment, data 
is collected over a wide range of values for each sys- 
tem parameter. As these parameters are varied, each 
new run begins with a different random distribution 
of knowledge for the same task. For each distribu- 
tion, there are three constraints that must be met. 
First, each active agent must initially be given at 
least one axiom. Secondly, multiple copies of an ax- 
iom are not permitted in an agent’s local environment. 
(But n copies of an axiom may exist across several 
agents.) Lastly, the total number of axioms distributed 
throughout the system must equal the number speci- 
fied by the current Redundancy Factor. 

There are two data collection txsrameters in each ex- 
periment: k and r. Parameter-k corresponds to the 
number of agents actively engaged in the reasoning 
task, and r is the Redundancy Factor. Given a the- 
orem to prove which is comprised of M axioms and N 
negated theorem clauses, the experiment is done utiliz- 
ing k agents, where k is -varied between 1 and M. For 
each value of k, the knowledge distribution is varied 
between 0 and 100% Redundancy. 

We minimize the effects that a particular knowledge 
distribution has on general behavior, by performing 
many passes at a given data point (k, r), with each 
pass having a different distribution. Likewise, the be- 
havioral characteristics of DARES can be determined 
by performing many different experiments, where each 
experiment is based on a unique automated reasoning 
task. In fact, this has been done. The results pre- 
sented here are based upon analysis of many different 
experiments. The figures incorporated in this paper 
reflect the results from one experiment as a vehicle for 
demonstrating DARES’ distributed automated reason- 
ing behavior. 

82 AUTOMATEDREASONING 



The performance characteristics for a typical exper- 
iment are given in Figure 2. These characteristics are 
normalized to the nondistributed case, in which a sin- 
gle agent performs the complete reasoning task alone. 

The two system parameters for DARES:’ data col- 
lection experiment, k and r, correspond to the UNum- 
ber of Agents” and “Redundancy Factor” axes in Fig- 
ure 2, respectively. Since DARES performs distributed 
automated reasoning approximately one order of mag- 
nitude faster than its nondistributed counterpart, we 
have taken the natural log of the elapsed time data 
for the experiment. Furthermore, we have normalized 
this data so that the single agent case has a value of 
unity. The Redundancy Factor axis has been scaled by 
a factor of 10 for legibility. 

In general, when there is a very high level of re- 
dundancy among the agent’s local knowledge, DARES’ 
runtime rapidly begins to approach that of the single 
agent. This behavior can be attributed to a very low 
interaction rate among agents, since each agent has 
sufficient local knowledge to advance the proof to near 
completion. The Forward Progress heuristic detects 
this advancement and does not initiate any knowledge 
importation requests. Instead, local advancement con- 
tinues until resolution fails to generate any new resol- 
vents. It is at this point that a knowledge request is 
made to import nonlocal information. 

We observe that requests made in high redundancy 
environments tend to be very specific in nature, since 
an agent has advanced the proof nearly to completion 
prior to making the request. We have also observed 
that when a request of this sort is made, the knowl- 
edge sought is readily available in the network. This 
is a direct consequence of the other agents having near 
complete knowledge, and of the fact that they have 
had ample time to advance their local efforts. 

In general, we find that as the number of agents in a 
network increases, replies to knowledge requests tend 
to have better informational content. This relation- 
ship between network size and reply content is a di- 
rect consequence of simply having more agents in the 
network to query, each agent having a different local 
perspective derived from its differing initial knowledge 
distribution. In Figure 2 the effect of this relationship 
is evident in the high redundancy areas. Note that 
as the number of agents increases, the slope associ- 
ated with the rapid approach towards the single agent 
case becomes steeper and the width of these peaks de- 
creases. 

Figure 2 also suggests that performing distributed 
theorem proving is best done by many agents possess- 
ing little redundancy. In this situation, each agent can 
be viewed as a specialist. At the start of the distributed 
theorem proving process, each agent advances its part 
of the proof as far as it can before making a knowl- 
edge request. At the time such a request is made, the 
agent has begun to concentrate its efforts on its local 
advancement and imports knowledge relative to this 

acquired focus. Since redundancy is low, we see the 
agents becoming specialized in different areas, which 
reduces search space overlap between agents and leads 
to enhanced system performance. 

Although system performance is best with many 
agents in a low redundancy environment, there is only 
a small increase in system performance as the num- 
ber of agents is increased. What we see happening 
as network size becomes larger, is that initial knowl- 
edge importation requests occur earlier. These re- 
quests are based on less local effort and are more gen- 
eral in nature, thus leading to the initial importation 
of larger volumes of knowledge. Therefore, agents in 
smaller networks acquire a focus sooner than agents 
in larger networks. However, as the distributed effort 
nears completion, we see larger networks outperform- 
ing smaller ones, since requested information near the 
end of the proof is more readily available in larger net- 
works due to network size and the local efforts of more 
agents. It appears that the performance of larger net- 
works near the end of the proof is sufficient to offset 
the advantage smaller networks have at the start, thus 
we see a slight improvement in system performance as 
network size increases. 

The behavioral characteristics displayed in Figure 2 
reflect DARES’ general runtime characteristics. This 
surface plot was generated from data recorded by 
DARES and represents the average value of all passes 
made for each data point. The validity of our conclu- 
sions is supported by a comparison of the characteris- 
tics of both the lower and upper bound surfaces. These 
surfaces are shown in Figures 3 and 4 respectively. 

The lower bound characteristic surface is a plot of 
the minimum runtime over all passes made for a given 
data point. Note that there are no major discrepancies 
in the plateau regions between the general and mini- 
mum surfaces. In fact, the smoothness of the plateau 
in the average value surface suggests that we have in- 
deed minimized dependencies associated with particu- 
lar distributions. 

The upper bound characteristic surface shown in 
Figure 4 is a plot of the maximum of all runtimes 
recorded by DARES for a given data point. This plot 
also has (to a limited degree) the same general shape 
as the average time characteristic surface in Figure 2. 
Rowever, the most notable feature of this surface is 
that it is very spiked. This is a demonstration of 
how sensitive distributed automated reasoning is to its 
knowledge distribution. Each one of the peaks (spikes) 
represents reduced system performance directly related 
to the knowledge distribution used. 

There are two important observations to be made 
with respect to the upper bound surface: First, since 
its overall shape is basically that of the average time 
surface, we have further evidence supporting the hy- 
pothesis that the average time characteristics do rep 
resent those of general behavior; Secondly, the noise 
in this plot indicates how a relatively poor distribution 
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can affect system performance. But more importantly, 
it demonstrates that DARES in its worst case environ- 
ment performs automated reasoning at a reasonable 
rate relative to the that of the nondistributed case. 

Concluding Remarks 
In this paper, we have described DARES, our dis- 
tributed automated reasoning system. Experiments 
with DARES have provided us with enhanced insight 
into the role of knowledge in distributed problem solv- 
ing. We have seen cases in which performance can be 
very sensitive to initial knowledge distribution, but the 
average case statistics indicate that one must be un- 
lucky to encounter such a distribution when knowledge 
is randomly distributed. 

More importantly, the experimental results we have 
presented demonstrate that agents in a loosely cou- 
pled network of problem solvers can work semi- 
inflq=enrlentlv vd. f&i~s their at.t.fmt.inn wjt;h_ the &d a&A-Y YYYYAAY’J, J VY -“~~-“~-I 

of relatively simple heuristics when cooperation is ap- 
propriate. These results suggest that we have devel- 
oped an effective cooperation strategy which is iargeiy 
independent of initial knowledge distribution. 

DARES has been implemented in a distributed 
testbed facility, SIMULACT [6], that runs on a net- 
work of Lisp machines. SIMULACT has provided a 
- -13 1--  -A------ ---A - _I well mwrumentea environment in which appiications 
of this kind are easily developed and maintained. A 
number of additional experiments have been performed 
using DARES [7], but discussion of these experiments 
is beyond the scope of this paper. 
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