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Abstract . 

We describe how a behavior hierarchy can be used 
in a protocol that allows AI agents to discover and 
resolve interactions flexibly. Agents that initially 
do not know with whom they might interact use 
this hierarchy to exchange abstractions of their 
anticipated behaviors. By comparing behaviors, 
agents iteratively investigate interactions through 
more focused exchanges of successively detailed in- 
formation. They can also modify their behaviors 
along different dimensions to either avoid conflicts 
or promote cooperation. We explain why our pro- 
tocol gives agents a richer language for coordina- 
tion than they get through exchanging plans or 
goals, and we use a prototype implementation to 
illustrate our protocol. We argue that our hierar- 
chical protocol for coordinating behaviors provides 
a powerful representation for negotiation and can 
act as a common foundation for integrating theo- 
ries about plans and organizations. 

Introduction 
In a world inhabited by numerous active systems 
(agents), the agents often must engage in coopera- 
tive and competitive behavior in order to achieve their 
goals. To decide how they should behave, they need 
to know how agents with whom they might inter- 
act might behave. Just as important, they need to 
avoid expending their limited reasoning resources on 
studying how agents with whom they will not inter- 
act might behave. If potential interactions between 
agents can be predicted because each has some pre- 
defined role (due, for example, to commonly known 
organizational constraints [Corkill and Lesser, 1983; 
Durfee et al., 19871 or to functional or geographical 
relationships [Conry et al., 1988]), then channeling de- 
tailed information about planned actions is straight- 
forward. On the other hand, if agents are ignorant 
about with whom they might interact, then they need 
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to narrow down the possibilities before they exchange 
detailed information, otherwise they might swamp 
the communication channels and each other. Mobile 
robots on a warehouse floor, for example, can have an 
ever-changing group of neighbors, and when plotting 
collision-free paths for the near future should identify 
and converse only with their current neighbors. 

We introduce a hierarchical protocol for this type of 
problem. In our protocol, an agent represents its an- 
ticipated behavior at numerous levels of abstraction. 
When it must decide with whom it might interact, the 
agent blindly broadcasts its most abstract behavioral 
information rather than details about its planned ac- 
tions. Then, as an agent receives abstract information 
from others, it compares anticipated behaviors to de- 
cide with whom it might interact, and then exchanges 
more detailed information with only those agents. In 
essence, the protocol allows the agents to engage in 
a dialogue in which they can move between different 
levels of detail about behavior, feeling each other out 
to discover who they can safely ignore and how they 
should change their behaviors based on anticipated in- 
teractions with agents that they cannot ignore. 

Our protocol advances the field of distributed ar- 
tificial intelligence (DAI) in two ways. The obvious 
way is that it adds to DAI’s arsenal of coordination 
techniques, permitting a form of coordination that has 
been unavailable. By enlarging the set of coordination 
techniques, we both extend the range of coordination 
problems that we can solve and learn more about the 
nature of intelligent coordination. The more subtle but 
potentially far-reaching contribution of our protocol is 
that it introduces the use of behaviors into multi-agent 
coordination. Behaviors subsume the more traditional 
representations of goals and plans, and even blur the 
boundaries between plans and organizations. As a re- 
sult, our protocol has the potential to integrate diverse 
theories and mechanisms for intelligent planning and 
organizational design. We return to these possibilities 
in the concluding section. First, we outline our proto- 
col, relate our protocol to other research, and describe 
a preliminary implementation of the protocol and ex- 
perimental results. 
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lab-robots lab-dlean The Protocol 
At the heart of our protocol is the concept of a be- 
havior hierarchy. To define what this hierarchy is, we 
first indicate what it is not. It is not a plan hierar- 
chy, where plans are represented in varying levels of 
detail and detailed subplans are linked to their more 
abstract counterparts. Similarly, it is not a goal hierar- 
chy, that links goals and their subgoals for a given task. 
Although plan and goal hierarchies are useful for de- 
ciding on actions to achieve results, they only describe 
limited aspects of an agent’s behavior. For example, 
plan hierarchies emphasize how to do things: At the 
abstract levels are vague, encompassing instructions, 
while the detailed levels prescribe specific actions. Al- 
ternatively, goal hierarchies emphasize what to do: At 
the abstract levels are broad objectives, and at the de- 
tailed levels are specific, atomic goals. 

A behavior hierarchy subsumes plan and goal hierar- 
chies because it represents the what and how of agents, 
and also the who, when, where, and why. That is, an 
entry in the behavior hierarchy represents who are be- 
having in a particular way, what they are trying to 
achieve, when they are behaving this way, where they 
are behaving this way, how they are acting to accom- 
plish this behavior, and why they have initiated this 
behavior. Each of these 6 aspects represents a different 
dimension for composition or decomposition.’ In fact, 
we might have hierarchies for each dimension, as well 
as for the overall behavior. Example partial hierarchies 
are shown in Figure 1. Note that moving between en- 
tries in a behavior hierarchy can involve moving along 
several separate dimensions simultaneously. 

Our protocol currently assumes that all agents use 
the same language to describe the different behavioral 
dimensions. The agents thus can map a received be- 
havior into their local representations; in essence, the 
behavioral dimensions describe a 6-dimensional space, 
and an agent can find the region in this space that 
a received behavior occupies. From this mapping, an 
agent can recognize potential behavioral interactions 
when behaviors’ regions overlap or are proximal. The 
ability to recognize interacting behaviors and to move 
along dimensions to find alternative interactions is at 
the core of our protocol. 

With this representation in mind, we now present 
a generalized version of the protocol; a more detailed 
description for a particular application is given later. 
An agent with its own tasks (or a group of agents 
with group tasks) forms a behavior hierarchy repre- 
senting a decomposition of the tasks along the dimen- 
sions that are appropriate given the tasks and the en- 
vironment. Agents then exchange information at the 
highest level of abstraction, and map received informa- 
A:,- z-c, cl.,:.. 1 ,..,l L-l....,.:,.. L.:,,....,l.*. . Dv. :,,,,r.c.w.e 
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‘Other dimensions might be incorporated into the rep- 
resentation in the future. However, the 6 currently included 
were an obvious initial choice. 
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relationships between behaviors along the different di- 
mensions, an agent can recognize potential negative 
interactions (such as resource conflicts) with another 
agent. For example, if the robot Opus, with the be- 
havior hierarchy in Figure lg, receives from Odysseus 
its most abstract behavior (Figure lh), then it finds 
a potential conflict along the when and where dimen- 
sions. The robots will be on the same floor in the same 
time interval, and thus could collide. 

When an agent recognizes a potential negative inter- 
action, it has two alternatives. One choice is to modify 
its own behaviors such that the interaction is avoided. 
To do this, it searches through alternative values along 
the behavioral dimensions that lead to acceptable, but 
no longer interacting, behaviors.2 For example, Opus 
might modify its behavior so that it works on the floor 
next-week instead. The other choice an agent has is 
to refine its view of the potential interaction, so as to 
identify more specifically how the behaviors are inter- 
acting, or possibly to discover upon closer inspection 
that there is no interaction. To pursue this choice, the 
agents move down to the next level of the hierarchy 
and exchange only the behavioral information that is 
relevant to the potential interaction. When it receives 
new behavioral information at less abstract levels, an 
agent maps this information into its hierarchy and the 
process repeats. For example, at the more detailed 
level, Opus learns that he and Odysseus will be work- 
ing in different wings, and so no collision is possible 
(Figures lg and lh). If they discover that their be- 
haviors do not, in fact, interact, the agents discontinue 
their communications. Thus, agents that are not in- 
teracting discover this with minimal communication of 
more detailed information. 

Agents can also interact positively, and at times 
might change their behaviors to capitalize on positive 
interactions. For example, Opus and Odysseus might 
decide that one of them could achieve the goals of 
both. Opus might extend its behaviors for today and 
tomorrow along the “what” dimension (to “containers- 
recycled”) and along the “how” dimension (to “collect- 
containers”), while Odysseus is now free to pursue 
other behaviors. In our protocol, an agent has a choice 
between modifying its behavior at the current level of 
abstraction to improve interactions, or exchanging in- 
formation to probe more deeply into positive interac- 
tions and establish them at a more detailed level. De- 
tailed exchanges can lead to crisper coordination. For 
example, if Odysseus wants to meet Opus to cart away 
the containers collected in the morning, then going to 
more detailed levels allows them to decide more specif- 
ically when and where to meet. 

This outline of our protocol leaves many unan- 
swered questions. Some deal with the agents’ knowl- 
edge: Where does the hierarchical knowledge come 
from? How can we ensure consistency between agents? 

2 Searching hyp othetical behaviors is similar to searching 
hypothetical cases for argumentation [Ashley, 19881. 

How do we represent constraints that moving along 
one dimension might impose on other dimensions? 
Other questions deal with effectively using the pro- 
tocol: When should agents initiate an exchange of 
abstract behavioral information? How do agents de- 
cide which of them should modify their behavior to 
avoid negative or promote positive interactions? How 
do agents decide which dimensions of their behavior 
to modify? What happens when modifying an inter- 
action with some agents introduces new interactions 
with other agents? Can the protocol guarantee conver- 
gence? What are the computational and communica- 
tion costs of the protocol? Answering these questions 
is an ongoing effort, and our initial answers to some of 
them are only a first step. Before discussing these, we 
relate our protocol to prior research. 

Relationship to Other Research 
Our protocol addresses problems where the spatial and 
functional relationships between agents change over 
time. These issues also arise in the air-traffic control 
problems studied at Rand [Cammarata et al., 1983; 
Steeb et al., 19SS]. Unlike our protocol, the Rand ap- 
proach involves centralizing authority. Specifically, in 
their approach a group of potentially interacting air- 
craft engage in a discussion to choose a group leader. 
Once chosen, the leader collects detailed information 
from each group member, designs a group plan to avoid 
negative interactions (aircraft collisions), and then tells 
each aircraft what it should do. Although the leader 
could send processing tasks to group members during 
the planning phase [Steeb ei al., 19861, control is cen- 
tralized. 

The Contract-Net protocol [Davis and Smith, 19831 
provides a mechanism by which autonomous agents ne- 
gotiate to assign tasks among themselves to balance 
load and connect tasks with the agents that are most 
suited to pursuing them. The view taken by Contract- 
Net is that interactions between agents are due to mu- 
tually agreed upon task assignments; unlike our proto- 
col, the Contract-Net protocol does not anticipate that 
agents might independently take actions that could 
lead to unintended interactions. 

The multistage negotiation protocol developed by 
Conry and her colleagues [Conry et al., 19881 does ad- 
dress the need to identify and recover from resource 
conflicts. Developed in the context of a distributed 
network management task, their approach first propa- 
gates information about tasks (circuits to complete) 
through the network, so that each subnetwork con- 
troller can enumerate the possible ways it can assign its 
resources. The controllers then engage in an iterative 
dialogue where they tentatively choose combinations 
of assignments, exchange information to detect con- 
straint violations (over burdened channels that connect 
their subnetworks), and eventually converge on a con- 
sistent set of assignments (even if it means neglecting 
low-priority tasks). Unlike our protocol, multistage ne- 

88 AUTOMATEDREASONING 



gotiation assumes a fixed topography that controllers 
use to guide communication. Also, their approach as- 
sumes that the agents can enumerate all of the pos- 
sible resource assignments, and so the protocol is a 
constraint labeling process. In our protocol, the space 
of possible behaviors can be intractable, so the search 
for acceptable combinations of behaviors involves mod- 
ifying behaviors on the fly. 

In the partial global plannin 
and Lesser, 1987; Durfee, 1988 f 

framework [Durfee 
local plans are ex- 

changed to recognize larger goals to work toward, and 
then the actions taken to achieve these goals are re- 
ordered to improve group performance. In the con- 
text of our new protocol, the information about what 
each problem solver is doing (the results it is trying 
to develop) is mapped into a hierarchy of goals in or- 
der to identify more encompassing results, and then 
the how and when of the plans are revised to improve 
group problem solving. Thus, partial global planning 
is subsumed by our new protocol. In addition, to avoid 
the overhead of unconstrained exchanges of the plans, 
partial global planning insists that the agents have 
static organizational knowledge, which essentially dic- 
tates who each agent should exchange plan informa- 
tion with. Our protocol assumes no such knowledge 
because agents instead broadly exchange abstract be- 
havioral information and use this to focus more de- 
tailed information appropriately. Our approach also 
differs from recent efforts to more generally classify 
plan and goal interactions [Decker and Lesser, 1989; 
von Martial, 19891 because of our extension to agent 
behaviors, not just plans and goals. 

Lansky has developed a formalism for specifying be- 
havioral information about agents, and has investi- 
gated its use for multi-agent domains [Lansky, 19851. 
Her use of the term “behavioral” and ours differ, in 
that she considers behavior in terms of the constraints 
on possible relationships between actions, whereas we 
see behavior in terms of (possibly underspecified) infor- 
mation about the who, what, when, where, how, and 
why of activity in the world. These views are not in- 
compatible, and her formalisms could be incorporated 
into our approach. Davis [Davis, 19811 also has enu- 
merated many of the issues involved in coordinating 
multiagent behavior. While Davis’ treatment is at a 
conceptual level, we have moved toward an experimen- 
tal investigation. 

Implementation and Experiments 
As a preliminary test of our new protocol, we have 
been investigating the general problem of detecting and 
resolving resource conflicts. As a representative ex- 
ample of this problem, consider an application where 
several mobile robots move in common areas and be- 
tween these areas through shared doorways. The com- 
mon space, and especially the space in and around the 
doorways, represents important resources for which the 
robots might contend. 
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Figure 2: A Robot’s Partial Behavior Hierarchy 

We have implemented and evaluated our protocol 
using a simulation of this application. A partial, gener- 
alized behavior hierarchy for the application is shown 
in Figure 2. What sets this type of hierarchy apart 
from more typical plan/goal decomposition hierarchies 
is that the representation at one level summarizes the 
information in the lower levels. For example, in a typi- 
cal plan/goal decomposition, a desire to move to a goal 
location might be decomposed into a sequence of inter- 
mediate locations to achieve, which might be further 
decomposed, and so on. In that type of decomposition, 
an entry at one level only reflects the expected end re- 
sult of the levels below it, and not the behavior of the 
agent in achieving this result. In contrast, the spatial 
(where) information of an entry in our behavior hierar- 
chy is computed as the smallest region that subsumes 
the regions below it, just as the temporal (when) in- 
terval is the shortest interval that includes all of the 
intervals below it. As a result, an entry essentially de- 

to where scribes where the robot might 
it is going) over an interval of 

be (as 
time. 

opposed 

The robots are currently limited to knowing how to 
move, who they are individually (they have no-concept 
of coalitions), and that commands come from external 
sources. They plan paths to goal locations by finding 
a sequence of inter tmediate locations that avoid obsta- 
cles, and represent spatial regions as rectangular areas. 
They use knowledge about their movement speeds to 
compute the time needed to move between locations. 
If they decide that their behaviors might lead to colli- 
sions, the agents can search along either the temporal 
or spatial dimensions to change their behaviors. 

Using the Protocol 

To implement the protocol for our experiments, we 
have made several assumptions to promote structured 
communication and algorithmic convergence. First, 
we assume that each robot is given a unique author- 
ity value, so that robots can decide, when their plans 
are equally ranked, whose should get priority. Sec- 
ond, we assume that there are distinct intervals during 
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which behavioral information is exchanged and mod- 
ified. Third, we assume that robots modify their be- 
haviors either by introducing delays in their actions or 
by choosing alternative routes. This choice is currently 
based on a user-supplied parameter. 

The process begins by each robot broadcasting a 
message indicating who it is and what goal it wants 
to pursue. After enough time elapses, the robots build 
a list of robots sorted by their goal priorities. When 
robots have equal priority goals, they are sorted by 
their unique authority values. Because robots develop 
identical lists, the highest authority (superior) robot 
knows who it is. This robot broadcasts its most ab- 
stract behavioral information to the other (inferior) 
robots, who in turn broadcast theirs back to acknowl- 
edge receipt. Each of the inferior robots compares its 
local information with what it has received, and checks 
for conflict. This is simply computed by determining 
whether it expects to be in an overlapping region at 
an overlapping time interval. If no conflict is possible, 
it sends an empty message back to the superior who 
records that no conflict exists. 

If a conflict exists, the inferior can either resolve it 
or more fully explore it. It can resolve the conflict 
by either delaying its activities until after the superior 
has completed its own, or by moving through another 
spatial region (if possible). Alternatively, it can ex- 
plore the conflict by comparing its more detailed an- 
ticipated behavior (at the next level of the hierarchy) 
with what it knows of the superior, and then sending 
information about those aspects of its behavior that 
might be conflicting back to the superior. The supe- 
rior compares these with its more detailed behaviors, 
and sends back only the more detailed behaviors that 
might interact. This process continues until either the 
inferior resolves the conflict at some level or it discovers 
on closer inspection that no conflict will occur. Either 
way, it sends an empty message back to the superior 
who records that no conflict exists anymore. 

When the superior has heard from all inferiors that 
no conflicts exists, it passes control to the next robot in 
the pecking order. The process repeats, and the new 
superior interacts with the remaining inferiors to re- 
move conflicts. When done, the process repeats again, 
and so on. At each repetition, the set of inferiors de- 
creases, until no inferiors remain. At this point, all of 
the conflicts have been removed. 

However, there is one wrinkle: When an inferior 
modifies its behaviors to avoid conflicting with the cur- 
rent superior, it might introduce behaviors that conflict 
with previous superiors. For this reason, before an infe- 
rior sends a message to the current superior indicating 
that no conflict exists anymore, it first communicates 
with previous superiors to ensure no new conflict has 
been introduced. If a new conflict has occurred, the in- 
ferior uses the same techniques as before to resolve the 
conflict with the previous superior, and then checks for 
new conflicts with the current superior. We can guar- 

antee that we will not enter infinite loops of refinement 
because of our assumption that a robot changes its be- 
havior either by introducing delays (always postponing 
actions) or by choosing a route that no superior has 
chosen. Using temporal modification, the robots could 
at worst serialize their actions so that no parallelism 
remains. Fortunately, such worst-case scenarios need 
seldom occur. Using spatial modification, the robots 
at worst pursue very roundabout routes. 

When the last robot in the pecking order is given 
control, it knows that all conflicts have been resolved 
and broadcasts this fact to the others. The robots 
synchronize and then begin carrying out their planned 
activities. As each completes its activities, it again 
broadcasts this fact (along with its next goal’s priority) 
to the others; when all have completed their activities, 
the protocol is initiated again for the next goals. 

This is just one possible implementation of the pro- 
tocol, and is primarily intended to test the implica- 
tions of communicating at different levels of the behav- 
ior hierarchy. To maintain computational tractability, 
to ensure convergence, and to guarantee that conflicts 
will be resolved ahead of time (which typically requires 
that some agent ultimately has authority), this imple- 
mentation assumes a total order on the agents and re- 
stricts how agents can modify their behaviors. We are 
developing more robust implementations in which new 
agents can join in at any time, agents can recover if one 
of them fails during the protocol process, and agents 
can dynamically allocate authority based on current 
circumstances. 

Experiments 
To investigate the performance of this implementa- 
tion of our protocol, we simulated 2 environments in 
MICE (the Michigan Intelligent Coordination Exper- 
iment testbed [Durfee and Montgomery, 19891). The 
first environment consists of 2 robots in 2 rooms that 
are joined by 2 doorways. Each doorway is only large 
enough for one robot (Figure 3a). The second environ- 
ment consist of 3 robots in 2 rooms joined by 1 doorway 
(Figure 3b). In these environments, if the robots at- 
tempt to occupy the same location at the same time, 
they “bounce off” each other and return to their pre- 
vious locations. Robots require 1 simulated time unit 
to move in any direction. 

Each robot has its own distinct blackboard-based ar- 
chitecture, implemented in GBB [Corkill et al., 19861. 
The robots are given appropriate knowledge sources 
for planning paths to goal positions, for building be- 
haviors based on these plans, for exchanging informa- 
tion at various levels of their behavior hierarchy, and 
for modifying behaviors along temporal and spatial di- 
mensions to avoid potential collisions. 

Communication delay between robots is 1 simu- 
lated time unit. To measure the protocol’s commu- 
nication overhead, we record the number of behav- 
iors exchanged. Similarly, to measure the computa- 
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Table 1: Experiment Summary. 

(4 (b) 
In (a), RobotA ( so i circle) is trying to get to the 1 d 
location marked with a hollow circle, RobotB (solid 
triangle) to the hollow triangle. In (b), RobotC (solid 
square) is also trying to get to the location marked 
with the hollow square. 

Figure 3: Experimental Scenarios in MICE 

tional overhead, we use MICE’s capabilities for charg- 
ing robots for time spent reasoning in the following 
way. As it compares behavioral information, a robot 
keeps track of how many comparisons between local 
and received behaviors it makes. For every n compar- 
isons (where n is a user-modifiable parameter), it tells 
MICE to increment its clock by 1 simulated time unit. 
We also measure the simulated time spent carrying out 
the activities (from the earliest time an agent begins 
moving to the latest time an agent arrives at its goal 
destination), and the overall time to achieve all of the 
goals. For simplicity, we only give each robot one goal. 

In our first set of experiments, consider the 2 robot 
case (Figure 3a). Unhindered, each robot requires 22 
time units to move from start to goal locations. The re- 
sults of our experiments are given in Table 1. Without 
any exchange of behavioral information (experiment 
l), the robots spend a small amount of time initializ- 
ing their plans. The time that robots spend moving 
to their goal destinations, however, is infinite, because 
the robots perpetually collide at the doorway. 

When we allow the exchange of behavioral informa- 
tion, the robots can successfully make it to their goal 
destinations. First, consider the case where robots can 
make 5 comparisons of behaviors per simulated time 
unit. In experiment 2, the robots resolve potential con- 
flicts between their most abstract behaviors. The over- 
all expected regions of movement for the robots overlap 
at the doorway, so RobotB (the lower authority robot) 
changes the timing of its activities so that it does not 
begin moving anywhere in its overall region until Rob- 
otA expects to have finished. In essence, the robots 
have serialized their activities (with 1 extra time unit 
imposed between their activities to ensure no overlap). 

In experiment 3, we make the robots resolve poten- 
tial conflicts at an intermediate level. At this level, 

Ex En M Cps Rs Ex TP TA Done 
1 a - - none 0 5 00 
2 a t 5 abs 2 10 45 ii 
3 a t 5 int 9 16 35 51 
4 a t 5 det 16 77 24 101 
5 a t 50 abs 2 10 45 55 
6 a t 50 int 9 13 35 48 
7 a t 50 det 16 23 24 47 
8 a s 5 abs 2 10 32 42 
9 a s 5 int 8 14 32 46 
10 a s 5 det 13 47 32 79 
11 a s 50 abs 2 10 32 42 
12 a s 50 int 8 13 32 45 
13 a s 50 det 13 17 32 49 
14 a’ - - none 0 5 22 27 
15 a’ t 5 abs 2 10 43 53 
16 a’ t 5 int 8 15 33 48 
17 a’ t 5 det 7 33 22 55 
18 a’ t 50 abs 2 10 43 53 
19 a’ t 50 int 8 13 33 46 
20 a’ t 50 det 7 15 22 37 
21 a’ s 5 abs 2 10 32 42 
22 a’ s 5 int 7 14 32 46 
23 a’ s 5 det 7 33 22 55 
24 a’ s 50 abs 2 10 32 42 
25 a’ s 50 int 7 13 32 45 
26 a’ s 50 det 7 15 22 37 
27 b - - none 0 5 
28 b t 5 abs 6 14 z E 
29 b t 5 int 23 27 54 81 
30 b t 5 det 68 178 25 203 
31 b t 20 abs 6 14 63 77 
32 b t 20 int 23 21 54 75 
33 b t 20 det 68 65 25 90 
34 b t 50 abs 6 14 63 77 
35 b t 50 int 23 21 54 75 
36 b t 50 det 68 44 25 69 

Ex: 
En: 
M: 
cps: 
Res: 

Ex: 
TP: 
TA: 
Done: 

Abbreviations 
Experiment number 
Environment 
Modification (temporal or spatial) 
Comparisons per simulated time unit 
Level where behavior conflicts are resolved: 
ABStract, INTermediate, or DETailed. 
Number of behaviors exchanged 
Time for planning non-conflicting behaviors 
Elapsed time for robot activities 
Time at which all robot goals achieved 

each has broken its overall behavior into 3 parts: to get 
in front of the door, to get to the other side of the door, 
and to get to the goal location. In the initial, abstract 
behavior exchange, they detect the potential conflict, 
and so RobotB requests intermediate information from 
RobotA. At first, RobotB changes its activities so that 
it will not begin its first intermediate behavior (going 
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to the door) until RobotA begins its second behavior 
(entering the door). However, because RobotA’s sec- 
ond behavior includes being in front of the door, and 
because this overlaps with the region of RobotB’s first 
behavior, RobotB further delays its first behavior until 
RobotA has actually moved through the door. RobotB 
propagates the effects of this delay on the rest of its 
behaviors, and because subsequent time intervals are 
modified, no further conflicts between the robots’ be- 
haviors exist. The data shows that resolving potential 
conflicts at this level incurs more communication and 
further delays the start of the plans (compared to ex- 
periment 2), but results in more movement parallelism 
in the robots’ actions. As a result, the overall time to 
achieve the goals is lower. 

In experiment 4, the robots exchange abstract, 
then intermediate, and finally fully detailed behaviors 
(down to locations they will occupy at specific times). 
Based on this information, RobotB again modifies the 
intervals of its behaviors, but this time recognizes that 
it need not delay from the very start. Instead, it de- 
termines that trying to get in front of the door is what 
conflicts with RobotA, and delays this detailed behav- 
ior. Propagating this change removes all other con- 
flicts. The movements of the robots in this case have 
substantial parallelism so the time spent carrying out 
the plans is reduced, but the amount of communica- 
tion and the time spent resolving the conflicting plans 
is much greater. In fact, the overall time is much worse 
than the previous 2 experiments. 

Experiments 5-7 are the same as 2-4, except the 
number of comparisons per simulated time unit is 50. 
This serves to make computation cheaper with respect 
to movement, but does not change the quality of coor- 
dination. The implication of this change is that exert- 
ing computational effort to increase parallel movement 
is more worthwhile, so resolving conflicts at more de- 
tailed levels is better. 

In experiments 8-13, RobotB resolves the conflict 
along the spatial dimension by moving through the fur- 
ther doorway. This results in identical plans regardless 
of the level at which the conflicts are resolved, because 
once RobotB plans its new path, the robots’ behaviors 
no longer interact at any level of abstraction. To save 
on overhead, resolving conflicts at less detailed levels 
is thus better. 

Experiments 1426 are the same as 1-13, but now 
RobotA starts slightly closer to the door (environment 
a’). As a result, the robots’ actions will not conflict, 
and the best results are achieved without any coordi- 
nation (experiment 14). When the robots coordinate 
at the abstract and intermediate levels, they cannot 
ensure that no conflict will occur, so they modify their 
plans either temporally (experiments 15, 16, 18, 19) 
or spatially (experiments 21, 22, 24, 25). At the de- 
tailed level, the robots recognize that no resolution is 
needed, but only after substantial investment of effort. 
Sometimes this effort is worthwhile (experiments 20, 

26) while at other times it is not (experiments 17, 23). 
Finally, experiments 27-36 are based on the 3 robot 

environment (Figure 3b). Without any conflict avoid- 
ance, the robots once again perpetually collide at the 
doorway (experiment 27). The addition of a third 
robot can dramatically increase the amount of informa- 
tion exchanged at the detailed and intermediate levels. 
As a result, when robots can do only 5 comparisons 
per simulated time unit (experiments 28-30), resolving 
conflicts at the abstract level is better than the inter- 
mediate level which is better than the detailed level. 
As the number of comparisons per simulated time unit 
increases (experiments 31-36), first the intermediate 
and then the detailed levels are best. Note that the 
time spent resolving conflicts at more detailed levels is 
always greater regardless of comparisons allowed per 
time unit, because of the communication delay. Sev- 
eral messages might be in transit at the same time, 
however, so the time spent resolving conflicts can be 
less than the number of behaviors exchanged (such as 
in experiments 35 and 36). 

In summary, these experiments highlight the fact 
that different circumst antes demand different amounts 
of communication and coordination. Sometimes not 
communicating or coordinating is best (experiment 
14), but at other times such a strategy can be catas- 
trophic (experiments 1 and 27). Sometimes it is more 
cost effective to coordinate at a high-level, because it 
involves less overhead and results in relatively accept- 
able coordination (such as in experiments 8, 11,2 1, and 
28). Coordinating at detailed levels has advantages in 
situations where the chances for parallelism are greater 
(such as in experiments 7 and 36), or where the robots 
can only ensure that they will not conflict when the 
examine their behaviors in detail (such as in experi- 
ment 26). And coordinating at an intermediate level 
is sometimes the best policy (such as in experiments 3 
and 32). In short, conflicts should be resolved at differ- 
ent levels in different cases. Unlike previous protocols 
that work at a single level of detail, our new proto- 
col allows the robots to coordinate at different levels 
flexibly. 

The experiments also point toward further research 
directions. Issues in mediating between different per- 
spectives (which our current implementation avoids by 
imposing a total ordering on agents) and in deciding 
along what dimensions and at what level to resolve 
conflicts (recall our current implementation depends on 
user-supplied parameters) are focuses of our current re- 
search. In addition, using other dimensions for resolv- 
ing conflicts (or promoting cooperation) is important, 
and we are exploring issues in getting agents to adopt 
each other’s (or joint) goals or having them choose 
methods that achieve their goals in non-conflicting 
ways. The challenge in this research is in exploiting 
the richness of the behavior hierarchy while heuristi- 
cally restricting the search among behaviors to main- 
tain computational tractability. 
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Conclusions 

As we have demonstrated experimentally, our proto- 
col allows a form of coordination that is well suited 
to domains where interacting agents do not know, a 
priori, with whom they will interact. This is accom- 
plished through a dialogue between the agents in which 
they are free to exchange information at different lev- 
els of abstraction about their anticipated behavior. In 
essence, this dialogue is a rudimentary form of nego- 
tiation between the agents: Although our specific im- 
plementation identified which agent involved in a con- 
flict should modify its behavior, our protocol admits 
to more flexible (and arguably more computationally 
expensive) encounters, where each agent involved in a 
conflict moves along some of its behavioral dimensions 
until a compromise is found that eliminates the conflict 
and yet allows each agent to retain important behav- 
ioral attributes. Our work thus paves the way for a 
new investigation into intelligent negotiation. 

Another observation that we have made is that the 
dimensions of our behavior hierarchy correspond to 
problem decomposition directions found in human or- 
ganizations [Malone, 19871. If we decompose a behav- 
ior along the what dimension, for example, we are de- 
composing based on results (or products) of behavior, 
which leads to a product hierarchy. Similarly, decom- 
posing along the how dimension leads to a type of 
functional hierarchy. From other dimensions, we see 
personnel hierarchies, temporal hierarchies, spatial hi- 
erarchies, and even motivational hierarchies. We are 
intrigued by the possible relationship between our ap- 
proach and organizational theory, and indeed are work- 
ing toward experiments where groups of robots team 
up and represent their overall behavior in the behav- 
ior hierarchy. As a result, groups (or organizations) of 
individuals are viewed as single entities, and can ne- 
gotiate as a unit; yet, by traversing the hierarchy the 
behaviors of individuals are still represented. Based on 
these insights, we are currently exfiloring how to inte- 
grate organizational and planning theories within our 
single protocol. 
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