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Abstract 
Cost-based abduction attempts to find the best expla- 
nation for a set of facts by finding a minimal cost proof 
for the facts. The costs are computed by summing the 
costs of the assumptions necessary for the proof plus 
the cost of the rules. We examine existing methods 
for constructing explanations (proofs), as a minimiza- 
tion problem on a DAG. We then define a probabilistic 
semantics for the costs, and prove the equivalence of 
the cost minimization problem to the Bayesian network 
MAP solution of the system. 

Introduction 
The deductive nomological theory of explanation has it 
that an explanation is a proof of what is to be explained 
from knowledge of the world plus a set of assumptions. 
While there are well known problems with the theory 
[McDermott, 19871, it is nevertheless an attractive one 
for people in AI, since it ties something we know little 
about (explanation) to something we as a community 
know quite a bit more about (theorem proving). 

From an AI viewpoint the real problems with the de- 
ductive nomological theory are not the abstract ones 
of the philosopher, but rather the immediate one that 
there are many possible sets of assumptions, which to- 
gether with our knowledge of the world would serve to 
explain (prove) the desired fact. Somehow, a choice 
between the sets must be made. Several researchers 
([Kautz and Allen, 19861, [Genesereth, 1984]), have 
used the above technique and graded assumption sets 
by a) only allowing some formulas to be assumed, and 
b) preferring sets with the minimum number of as- 
sumptions. Obviously, these simplifying assumptions 
are severely limiting. 

Cost-based abduction is the obvious generalization of 
these theorem proving techniques. It allows any for- 
mula to be assumed, and assigns all assumed formulas 

*This work has been supported in part by the National 
Science Foundation under grants IST 8416034 and IST 
8515005 and Office of Naval Research under grant N00014- 
‘79-C-0529. We also wish to thank Robert Goldman for 
helpful comments about the semantics, and Randy Calistri 
for proof reading earlier versions of this paper. 

a non-negative real number cost. The best explana- 
tion is then the proof with the minimum cost (a formal 
definition of cost-based abduction will be given in the 
next section). Something very similar to what we are 
calling “cost-based abduction” has been proposed and 
implemented by Hobbs and Stickel [Hobbs and Stickel, 
19881, and it appears to be a promising method for 
handling abductive problems. However, their scheme 
has one immediate drawback; at the present moment 
the “costs” have no adequate semantics: for Hobbs and 
Stickel they are simply numbers pulled out of a hat. 

In what follows we will provide a probabilistic se- 
mantics for cost-based abduction, according to the fol- 
lowing outline. First, we will formalize a cost-based 
proof (explanation) of some facts as an augmented 
DAG, and exploit the similarity of the DAG to a belief 
network (Bayesian network, [Pearl, 19881) to define a 
probability distribution using the topology of the DAG 
plus the costs. A major theorem of the paper will show 
that the maximum a-posteriori (MAP) assignment of 
truth values to the network corresponds to the mini- 
mal cost proof ‘. In the discussion these results will be 
explained in a more intuitive fashion. 

Appelt, in [Appelt, 19901, has attempted to give a 
semantics for the Hobbs-Stickel cost scheme. We will 
discuss the Hobbs-Stickel approach in more detail, and 
show why Appelt’s semantics is not adequate. Lastly, 
we will briefly mention our practical experience with 
an implementation of cost-based abduction. 

AG Representation for 
A rule based system with assumability costs has rules 
of the form: 

R: Pl A P2 A a*- A Pn ---) Q 

with costs c(pi) for each conjunct, and a cost c(R) for 
applying the rule. A conjunct has the same cost in all 
the rules where it appears on the left hand side (LHS). 
The cost of proving q with this rule is the cost of all 
the conjuncts assumed, plus the cost of the rule. For 

‘A MAP assignment is the way to set the values of 
all random variables such that their joint probability is 
highest. 
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the rest of this section and the next one, we assume 
without loss of generality that all rule costs are 0. We 
can do this by adding a po (that appears nowhere else) 
to the LHS, with a cost c(p0) = c(R). We want to 
find a minimal cost proof for some fact set E (“the 
evidence”). 

We now formalize the minimum cost proof problem 
as a minimization problem on a weighted AND/OR 
DAG (acronym WAODAG). We use a three val- 
ued logic (values (T, F, U}), augmented by sym- 
bols for keeping track of assumed nodes, versus 
implied nodes. The values we actually use are 
Q = (TA, T, U, FA, F}, where U stands for undeter- 
mined (intuitively: either true or false), T for true, F 
for false, and the A superscript stands for “assumed”. 
We use U\ v to say that u is an immediate parent of 
21. 

Definition 1 A WAODAG is a 4-tupte (G, c, r, s), 
where: 

1. G is a connected directed acyclic graph, G = (V, E). 
2. c is a function from (IV x Q} to the non-negative 

reals, called the cost function. For values T, F, U, 
we have zero cost. c(v) - c(v, TA). 

3. r is a function from V to {AND, OR}, called the 
label. A node labeled AND is called an AND node, 
etc. 

4. s is an AND node with outdegree 0 (evidence node). 
Definition 2 A truth assignment for a WAODAG is 
a function f from V to Q. A truth assignment is a (pos- 
sibty partial) model i# the following conditions hold: 

1. If v is a root node (a node with in-degree 0) then 
f (v> E PA, u, FA). 

2. If v is a non-root node, then it can only be assigned 
values consistent with its parents and its label (AND 
or OR), and if its parents do not uniquely deter- 
mine the node’s truth value, it can have any value 
in (TA, FA, U). 

The exact details of consistency are pursued in 
[Charniak and Shimony, 19901, but should be obvious 
from the well-known definitions of AND and OR in 
S-valued logic. Note that in our DAG, an OR node is 
true if at least one of its parents is true, as in belief net- 
works, but not as commonly used for search AND/OR 
trees. A non-root node may still be assumed true if its 
parents determine that it has to be true. 

Intuitively, an assignment is a model if the AND/OR 
constraints are obeyed. A node v where f(v) = TA in 
an assignment, is called an assumed true node relative 
to the assignment. Likewise for other values of f(v). 

Definition 3 A model for a WAODAG is satisfying 
iI-7 f(s) E iTA, Tl. 
Definition 4 The cost of an assignment A for a 
WAODAG is the sum 

c = c +u, f(v)) 
VEV 

The Best Selection Problem is the problem of finding 
a minimal cost (possibly not unique) satisfying model 
for a given WAODAG. The Given Cost Selection Prob- 
lem is that of finding a satisfying model with cost less 
than or equal to a given cost. Note that in a par- 
tial model, assuming a node false is useless, as such 
an assumption cannot contribute towards a satisfying 
model. 
Theorem 1 The Given Cost Selection Problem is 
NP-complete. 

The theorem is easily proved via a reduction from 
Vertex Cover (see [Garey and Johnson, 19791). We 
present the complete proof in [Charniak and Shimony, 
19901. The Best Selection Problem is clearly at least as 
hard as the Given Cost Selection Problem, because if 
we had a minimal cost satisfying model, we can find its 
cost in O(lVj), and give an answer to the Given Cost 
Selection Problem. Thus, the Best Selection Problem 
is NP-hard. 

We will now make the connection between the 
graphs and the rule based system. We assume that 
exactly all possibly relevant rule and fact instances are 
given. How that may be achieved is beyond the scope 
of this paper. 
Theorem 2 The Best Selection Problem subsumes the 
problem of finding a minimal cost proof for the rute- 
based system with assumability costs, assuming that the 
rule based system is acyclic. 

Informal proof: by constructing a WAODAG (i.e. 
constructing the graph G, and assigning labels and 
costs) for the rule instance set, as follows: 

For each literal in any rule2 R’s LHS, construct OR 
node v, and set c(vrTA) to the cost of the literal 
in the system. For each literal appearing only on 
the RHS of rules, construct an OR node v, with 
c(v, TA) = 00. 
For each LHS of a rule R, construct and AND node 
v with c(v,TA) = 00, make it a parent of the node 
constructed for the literal on the RHS of R (in step 
l), and make it a child of all the nodes constructed 
for the literals in the LHS of R. 
Construct an AND node s, with parent nodes corre- 
sponding to the facts to be proved. 
Example: Given the rule instances in the table, used 

for word-sense disambiguation in natural language, 
with rb=river-bank(bankl), sb=savings-bank(bankl), 
w=water(water5), p=plant(plant7), we want to ex- 
plain the evidence: say(bankl)Asay(water5). 

I Rules II Literal Cost 1 

‘We assume that literals with the same name in different 
rules are the same literal. 
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Figure 1: WAODAG for our example rules 

Using the above construction, we get the WAODAG 
in figure 1, with best partial model (total cost 5) 
shown. 

Definition 5 A root-only assignment for a WAODAG 
is an assignment where only root nodes may be assumed 
(i.e. have values in {FA,TA)). 

It is possible to force root-only assignments for a 
WAODAG to be globally minimal by setting the cost 
of all non-root nodes to infinity (in practice, it suffices 
to set a cost greater than the sum of the root costs). 
We now show that given an WAODAG D, we can cre- 
ate another WAODAG D’, such that the semantics of 
minimal models is not changed, i.e. if a non-root node 
is selected in D, some corresponding new root node is 
selected in D’. 

Proof: by construction, as follows (D’ = D initially): 

1. For each AND node v with cost c(v, TA) < 00 in D’, 
construct an OR node w in D’, and a new root node 
u, where c(u, TA) = c(v, TA), and make both v \w 
and u \ w. Transfer all the children3 of v to zu. 

2. For each OR node v with cost c(v, TA) < 00, create 
a new root-node u, with C(ZL, TA) = c(v, TA). Make 
u\v. 

3. For all non-root nodes v in D’, set c(v, TA) = 00. 

It is clear that each time a node is selected in a 
minimal cost model of D to be assumed true, the node 
constructed from it in D’ will be assumed true in some 
root-only minimal cost model for I)‘. 

Definition 6 An assignment (or model) is complete 
ipAJEV, f(v)#U. - * 

A variant of the Best Selection Problem is one of 
selecting a minimal cost complete model. Clearly, if 
the cost of assuming a node false is 0 for all nodes, 
the solution will be exactly the same as for the par- 
tial model Best Selection Problem. However, in our 

‘If the AND node is s, create a new sink AND node, s’, 

semantics we intend to treat assumability costs as 
negative logarithms of probabilities (so that summing 
costs is akin to multiplying probabilities), and we want 
W(v) = FA> = 1 - P(f(v) = TA) to hold for all 
root nodes. Thus, the cost of assuming a node v false 

c(v, FA) = -log(l - e-+* TA’) 

robabilistic Semantics for WAODAGs 
We now provide a probabilistic semantics for the cost 
based abduction system. We construct a boolean be- 
lief network out of the weighted AND/OR DAG, and 
show the correspondence between the solution to the 
Best Selection Problem and finding the most likely ex- 
planation for a given fact (or set of facts). 

We assume that the rule based system is in the 
WAODAG format with root-only assignment. We now 
construct a belief network from the given WAODAG, 
and show that a minimal cost satisfying complete 
model for the WAODAG corresponds to a maximum- 
probability assignment of root-nodes given the evi- 
dence in the belief network (where the evidence is ex- 
actly the set of facts to be proved using the rule sys- 
tem). 

From a WAODAG D we construct a belief network 
B as follows: 

B has exactly the nodes and arcs of D. Thus, we use 
the same name for a node of B and the corresponding 
node of D. Nodes retain their labels4. 
Each root node v in B has a prior probability of 
e-c(u, TA)e 

The node s is the “evidence node”, i.e. the event of 
node s being true is the evidence & . 

Defining an assignment for the network analogously 
with the WAODAG assignment, we assume, without 
loss of generality, that we are only interested in assign- 
ment to the set of root nodes5. We want to find the 
“best” satisfying model A , which assigns values from 
(TA, FA, V} to the set of all root nodes, i.e. the 
assignment that maximizes P(d ] E). An assignment 
of U to a root node means that it is omitted from the 
calculation of joint probabilities, as P(vi = U) = 1. 
Intuitively, we are searching for the most probable ex- 
planation for the given evidence. This can be done by 
running a Bayesian network algorithm for finding Bel* 
on the root nodes, as defined in [Pearl, 19881. We now 
show the following result: 

Theorem 3 In a boolean belief network B constructed 
as above, a satisfying complete model A that maximizes 

4A belief network AND node has a 1 in its conditional 
distribution array for the case of all parents being true, and 
0 elsewhere. An OR node is defined analogously. 

‘Maximizing the probability over assignments to root 
nodes is equivalent to finding the MAP, when we allow 
only complete models, because a complete assignment for 
the root nodes induces a unique model for all other nodes. and make w\s’. 
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P(dI E) 11 1 b wi a so e a minimal cost satisfying complete prover, as found in typical rule-based systems, the the- 
model for D. orem prover will itself only generate AND/OR DAGS. 

Proof: In a belief network, all root nodes (given no 
evidence) are mutually independent. Thus, for any as- 
signment of values to root nodes, A = (al, a2, . . . . a,,), 
where ai = (vi, s(i) and qi E {FA, TA}6. 

q1, a2, “*) %a 1 = P(a1) P(a2) . . . P(an) 

However, we also have (by definition of conditional 
probabilities): 

w I W(A) P(d 1 E)= 
P(E) 

But as P(z? I d) = 1 when the assignment is a satis- 
fying model (because all nodes are strict OR and AND 
nodes), and 0 otherwise, and P(E) is a constant, we can 
eliminate everything but P(d) from the maximization. 
Also, we have: - - - 

n n 

P(d) = P(u;) = e-+;) = e- x;=, 44 

i=l i=l 

Since es is monotonically increasing in Z, we see that 
maximizing P(d I 8) is equivalent to minimizing the 
cost of the assignment, Q.E.D. 

We now generalize the DAG so that nodes can have 
any gating function 7. The definition of a model is ex- 
tended in the obvious way. 

Theorem 4 Given a gate-only belief network, with a 
single evidence node, the problem of finding the most 
probable complete satisfying model given the evidence 
is equivalent to finding a minimal cost complete model 
for the weighted gated DAG. 

So unless one is willing to add capabilities to the the- 
orem prover, arbitrary gates are pointless. Also, since 
AND/OR gates do not require the labels FA and F, 
they are marginally simplier to implement. (However, 
as we will note in the section on implementation, we 
found that we needed the capabilities of arbitrary gates 
for our domain.). 

The second distinction is between partial and com- 
plete models. The distinction here is whether we sim- 
ply assign costs to those facts which we must assume 
true (or false) to make the proof work, or go on to make 
decisions about every fact in the domain, whether or 
not it plays a role in the proof. Intuitively the former 
makes more sense. Unfortunately, our theorem (that 
we would get the MAP assignment) is only true for 
complete models, and counterexamples exist for non- 
complete models. Also, the minimal cost complete 
model will not agree, in general, with the minimal 
cost partial model, even if we compare only the sets 
of nodes assumed. However, the minimal solution of 
the complete model problem will be a nearly minimal 
solution for the partial model, provided a) there is no 
other complete model with nearly the same cost as the 
minimum, and b) the cost for assuming nodes false is 
low. These are reasonable assumptions in many cases. 
For example, the probabilistic semantics presented in 
[Charniak and Goldman, 19881 is characterized by low 
prior probabilities, thus low costs for assuming nodes 
false. 

Lastly, a further word is required about the relation 
between the costs and the probabilities. In our defini- 
tion of cost-based abduction there were three sorts of 
entities which received costs: rules, root nodes, and in- 
terior nodes. By the time we reached theorems 3 and 
4, however, we had reduced this to one, by showing 
that rule and interior node costs could be replaced by 
added root node costs. But how do these transforma- 
tions affect our interpretation of what the costs mean 
in terms of probabilities? 

Proof: The proof of theorem 3 relies only on the fact 
that the probability of the evidence given a satisfying 
model is 1, and 0 given any other complete model. 
Thus, we can use exactly the same proof here. 

If we want to find the best partial model, and are 
only interested in satisfying models, the above theorem 
still holds. It is no longer true, however, that finding 
the minimum cost model is equivalent to finding the 
MAP over the entire belief net. 

Evaluation of Cost Based Abduction 
In essence, the theorems of the last two section serve 
to define not one scheme of cost-based abduction, but 
four. The most obvious distinction is between Theo- 
rems 3 and 4. The first restricts itself to WAODAGs, 
while the second generalizes to arbitrary gating func- 
tions. There are two things to keep in mind about this 
distinction. First, if one is using a standard theorem 

‘Additionally, we use the a;‘s to denote the event of 
node vi having value qi. 

7Gate nodes are any p robabilistic nodes which have only 
entries of 1 and 0 in their conditional distribution arrays. 

Things are most obvious for root nodes. As stated 
earlier, the cost of assuming a root node must be 
-log( P(node)). F or rules and interior nodes, however, 
things are slightly more complex. The cost of a rule got 
moved to the cost of a new root node. Suppose for rule 
R we add the new root node R’. We can, of course, say 
that the cost of a rule must be -log(P(R’)). However, 
R’ does not correspond to anything in our model of the 
world (it is merely a mathematical fiction designed to 
make the proof simpler). We need to define the cost in 
terms of elements of our world model. Thus, suppose 
R is the rule: 

and we will denote the AND node corresponding to 
its left-hand side as AR’. We will refer to the AND 
node without the added cost root attached as AR. 
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Suppose that the other rules which can prove q” are 
RI, ...I R, with the corresponding AND nodes (with- 
out attached cost roots) ARK, . . . . AR,. It is easy to 
see that P(q I AR A BARD A . . . A -AR,) = P(R’). 
That is, the cost of a rule is minus log probability of 
its consequent being true given that a) its antecedent 
is true, and b) none of the other ways of proving (or 
assuming) the consequent are true. 

Analogously, we can show that the cost of assuming 
an interior OR node v is -log(P(v I all the ways of 
proving it are false)). Finally, since in practice there 
is never a need for assuming an AND node, we will 
ignore it here. The above analysis only holds when 
we are considering complete assignments. When par- 
tial assignments are allowed, a case may be made for 
setting the cost of assuming an interior OR node to 
k-hlw4)), b ecause if non of its parents are assigned 
(i.e. we are not proving the node, just assuming it), 
then presumably the probability of the node reverts to 
its prior probability. Given that the notion of partial 
MAP’s is not well defined in the literature, we defer 
the solution to this problem to future research. We 
believe, however, that decision theoretic methods may 
have to be applied in the latter case. 

Appelt’s Semantics for Hobbs-Stickel 
In [Hobbs and Stickel, 19881, Hobbs and Stickel have 
proposed a scheme very similar to what we have pro- 
posed. In their scheme, the initial facts to be explained 
are each assigned an assumption cost ci. All inference 
rules are of the form: 

The cost of the pi’s are then given by cost(p;) = 
?lJi cost(q). 

However, if two separate portions of the proof-tree 
require the same assumption, the proof is only charged 
once for the assumption (and is charged the minimum 
of the two costs being charged for the fact). 

Hobbs and Stickel point out that C = Cr==, wi does 
not have to equal 1. If C < 1 then the system will 
prefer to assume pr , . . . . pn, since that will be less ex- 
pensive than assuming q. They refer to this as most- 
specific abduction. On the other hand, if C > 1, then, 
everything else being equal, the system will tend to 
just assume q (least-specific abduction). Note, how- 
ever, that even with least-specific abduction, cost shar- 
ing on common assumptions can make a more specific 
scenario cost less. Hobbs and Stickel believe that least- 
specific abduction (with cost sharing) is the way to go, 
at least for the abductive problems they are concerned 
with (natural language comprehension). In general we 
agree with this assessment. 

As we have noted, Hobbs and Stickel did not give 
a semantics for their weights, and Appelt in [Appelt, 
19901 is concerned with overcoming this deficit. Appelt 
takes as his starting point Selman and Kautz’s theory 
of default reasoning [Selman and Kautz, 19891 called 

model preference theory. In this theory a default rule 
p + q is interpreted as meaning that in all models in 
which p is true, the models in which q is also true are 
to be preferred. Appelt, in the spirit of abduction, re- 
verses this by saying that a rule p”p ---) q where wp < 1 
is to be interpreted as a model preference among those 
models which have q for those which have p was well. 
However, it is possible to have another rule ~~~ ----) s 
(where wr < l), but where p and f are not compatible. 
Thus if s is also in our model we must choose which 
rules to use. Appelt specifies that if wp < w1 then 
use p --) q, and vice versa. Appelt calls this scheme 
weighted abduction. 

The most obvious difference between Hobbs-Stickel, 
and weighted abduction is that the former use rules of 
the form: 

p;’ A . . . A pzn ---) q 

where weighted abduction only has rules of the form 
wp P --) q. We assume that what Appelt has in mind is 

recasting the Hobbs Stickel rules as (pr A . . . A P,)~P ---) 
q. With wp = xi wi. Assuming this is correct, there 
are two immediate problems with Appelt’s semantics. 
First, it only handles the case where the sum of the 
wi’s is less than 1. This is what Hobbs and Stickel call 
more-specific abduction. But as they note, less-specific 
abduction seems to be the more important case, and 
Appelt says nothing about it8. Secondly, Appelt can 
give no obvious guidance to how to apportion We into 
the individual wi’s required by Hobbs-Stickel. 

But even if we restrict ourselves to finding the single 
wp, and also restrict ourselves to more-specific abduc- 
tion, it would seem that Appelt’s semantics gives little 
guidance when trying to judge if a number is “right”. 
Suppose we have a system with a group of w’s for var- 
ious rules (w,, wb . . . wy} and we now want to add a 
rule with the number wz , and we want to know what 
w, should be. Following Appelt we will look for models 
in which the rules wa, wb, . . . wY are used but where 
the rule Z conflicts with their use. In each case we see 
which rule takes precedence. But this is not sufficient. 
Suppose we have a model in which A and B are used 
but where Z makes both unusable. Since costs are ad- 
ditive we have several possibilities: {A + B > 2, but 
A < Z}, (B < 2 but A + B < 23, etc. Depending 
on the numbers, in some cases we should prefer using 
rules A and B together over Z, in other cases not. But 
this is not sufficient either, what about A + C, and 
A + B + C, and B + C, etc. In fact, the number of 
models which need to be checked grows exponentially 
with the number of costs in the system. 

‘In his talk at the Symposium on Abduction 1990, Ap- 
pelt has extended the scheme for some cases where the 
weights sum to more than 1. We doubt, however, whether 
this extension can be generalized. 
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Implementation 
As we have showed in this paper, anything that can be 
done with cost-based abduction can also be done by 
probabilistic methods. One might then ask, why not 
use the more standard probability theory? The rea- 
son would have to be that the standard probabilistic 
methods are computationally expensive. Evaluating 
general belief nets is NP-hard. Unfortunately, as we 
saw in Theorem 1, so is the minimal cost proof prob- 
lem. However, as the mathematics is quite a bit sim- 
pler for minimal cost proofs, one might hope that the 
constant in front is a lot less. Also, thinking in terms 
of minimal-cost proofs suggests different ways of look- 
ing for solutions. There are well known techniques for 
doing best first search on AND/OR search spaces, and 
this looks like an obvious application. 

We have implemented a best-first search scheme for 
finding minimal cost 
the work described in Charniak and Goldman, 19881, P 

roofs. We have applied it to 

which uses belief nets to make abductive decisions on 
problems that come up in natural language under- 
standing, such as noun-phrase reference, or plan recog- 
nition. Thus, we had a ready-made source of networks 
and probabilities upon which we could test the system, 
and a benchmark (the speed of our current probabilis- 
tic methods). 

The approach seems to have some promise. We were 
able to adapt our networks to the new scheme with lit- 
tle difficulty. (Of the four versions of cost-based abduc- 
tion mentioned above, we found that complete models 
did not seem to be required for our networks, but we 
did need general gates, and not just WAODAGs.). Be- 
cause we did not use MAP labelings in our earlier work, 
but rather decided what to believe on the basis of the 
probability of individual statements, we simulated this 
by looking for multiple MAP solutions when there were 
several within some epsilon of each other, and only be- 
lieving the statements which were in all of them. For 
the examples we have tried it on, this gave the same 
results as our belief network calculations. 

After minor tuning, our cost algorithm seems to be 
running significantly faster than the belief-network up- 
dating scheme we were using. However, we have not yet 
done formal timing comparisons between them, and at 
the moment both the cost algorithm, and the belief- 
network updating scheme, are very sensitive to effi- 
ciency measures. Thus it is unclear how much the tim- 
ing will prove. It does, however, seem safe to say that 
cost-based abduction deserves serious consideration. 

We should note that this speed-up occurs despite the 
fact that we do not have a good admissible heuristic 
cost estimator for our best-first search. We are using 
the simplest heuristic imaginable - at any point in a 
partial proof, we assume that the final cost of the proof 
will be the costs incurred to date. This is a very poor 
estimator because the bulk of a proof’s cost comes from 
the root assumptions, and they are not found until the 
end. We are currently exploring other estimator pos- 

sibilities, such as logic minimization approaches and 
factoring in assumption costs earlier in the search. 

Conclusion 
We have shown that cost-based abduction can be given 
an adequate semantics based upon probability theory, 
and that under the appropriate circumstances it is 
guaranteed to find the best MAP assignment of truth 
values to the propositions in our theory. Initial experi- 
ments with the model show that it does produce results 
consistent with full blown posterior probability calcu- 
lation, and does so quickly compared to our current 
probabilistic methods. However, further experimenta- 
tion is clearly required. 
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