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Abstract 
We formulate the Dempster-Shafer formalism of belief 
functions [Shafer 761 in the spirit of logical inference 
systems. Our formulation (called the belief calculus) 
explicitly avoids the use of set-theoretic notations. As 
such, it serves as an alternative for the use of the 
Dempster-Shafer formalism for uncertain reasoning. 

I. Pntroduction 
Traditionally, the “syntax” of the Dempster-Shafer (D- 

S) formalism [Shafer 761 has been set-theoretic in nature 
(e.g., [Gordon and Shortliffe 84; Kong 86; Shafer et al. 
87; Yen 891). In some cases, propositions may be used 
for belief specifications (e.g., [Smets 88; Zarley et al. 
881). However, to date, there is no purely logic-oriented 
formulation of this formalism. 

Set-theoretic notations are appropriate when we are 
concerned with general theory rather than applications. 
But on the other hand, we might also find it difficult to 
use set-theoretic notations in some application domains. 
To overcome this notational disadvantage of the D-S 
formalism, we give an alternative formulation of belief 
functions in this paper. Our formulation (called the belief 
calculus) is developed along the lines of natural deduction 
systems, and it explicitly avoids the use of set-theoretic 
notations. This differs from the previous research 
wuspini 87; Fagin and Halpern 891 in which the main 
concern was the “structure” or semantics of the D-S 
formalism and not its syntax. 

To show how the belief calculus may be used for 
uncertain reasoning, we give three examples. These 
examples model different real world situations, and they 
address issues such as independent random variables, belief 
dependency structures, and “distinct” sources of evidence. 

The remainder of this paper is organized as follows. In 
Section 2, we describe the belief calculus. In Section 3, 
we show how the belief calculus may be used for 
uncertain reasoning. In Section 4, we discuss some 
related issues. Finally, Section 5 concludes. 

* This work was supported in part by the DRUMS project 
funded by the Commission of the European Communities 
under the ESPRIT II-Program, Basic Research Project 3085. 
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2. The Belief Calculus 
The multivariate formalism. Our formulation of 
the D-S formalism starts with the multivariate formalism 
[Kong 861. That is, we assume that different aspects of 
the world that are of interests to us are already 
appropriately formulated as questions or variables (e.g., 
“Is the entity capable of flying?“, “Can the object be used 
to cross the river?” etc). Each of these variables is 
associated with a set of mutually exclusive and exhaustive 
values (called the frame of the variable) representing all 
possible answers to the question. A booZean variable is 
one that has an associated frame of (Yes, No}. 

Propositions. Primitive propositions (i.e., atoms) are 
of the form “SomeVariable = SomeValue”. From 
propositions, we build compound propositions using five 
logical connectives (with the usual semantics): 1 (not), v 
(or), A (and), + (if . . . then), H (if and only if). 

As a basic requirement of the multivariate formalism, 
we assume that, for every variable and its associated 
frame, there is a corresponding mutual exclusion axiom. 
For example, if the frame of the variable A is {h, m, I}, 
then the mutual exclusion axiom associated with A and 
its frame is ‘((A = h) A +A = m) A -(A = 1)) v (l(A = h) 
A (A = m) A T(A = 1)) v (T(A = h) A T(A = m) A (A = 
1))‘. We use ME to denote the set of all mutual exclusion 
axioms. For convenience; we also use ‘A’ as an 
abbreviation for ‘A = Yes’ whenever A is a boolean 
variable (and ‘-A’ will be logically equivalent to ‘A = No’ 
under ME). 

Let Al, AZ, . . . , AN be all variables, and let 01,02, 
. . . , 0~ be their respective frames. A valuation is an 
assignment of an element of 0; (1 I i I N) to Ai for 
every i (i.e., an assignment of a value-vector to the 
variable-vector <Ai, AZ, . . . , AN>). A proposition P is 
said to be true under a valuation V if P is true when all 
variables occurring in P are replaced with their 
corresponding values in V; otherwise P is said to be false 
under V. 

Formally, a valuation is defined as an assignment of 
values to all variables. But when the situation permits, 
we also use the word ‘valuation’ to mean a (partial) 
valuation of all variables occurring in some proposition. 
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Example 1. “(PLACE = Africa) 4 (TEMP = high)” is 
a proposition. It is false under the valuation <PLACE, 
TEMp> = <Africa, medium> and true under the valuation 
<PLACE, TEMP> = <Europe, medium>. 

A contingent proposition, then, is a proposition that is 
true under one valuation but false under another valuation. 
A va2id proposition (or tautology), denoted as ‘T’, is a 
proposition that is true under every valuation, while an 
unsatisj?able proposition, denoted as ‘F’, is a proposition 
that is false under every valuation (and a satisfiable 
proposition is true under at least one valuation). 

Beliefs 
format: 

i. A belief is a formula specified in the following 

Pl N-4) V P2 b2) V . . . V Pn 0%) 
where 
V i (1 I i I n), Pi is a satisfiable proposition 

andO<m;Il, 
andCmi= 1. (1) 

As a convention, if ‘T’ appears in formula (l), it is 
usually specified at the end (i.e., as Pn). “T (1)” is called 
the vacuous belief. 

Intuitively, each mi (called the “m-value” of Pi) in 
formula (1) represents the amount of belief we specifically 
“allocate” to Pi. That is, formula (1) may be interpreted 
to mean the following: the world, as we understand it, is 
such that P1 holds (with the amount of belief ml being 
allocated to it), or P2 holds (with the amount of belief m2 
being allocated to it), . . . . or Pn holds (with the remaining 
amount of belief mn being allocated to it). This is why 
we use the symbol ‘V’ to delimit the ‘Pi (mi)’ of a belief. 
However, this symbol ‘v’ is not to be confused with the 
usual logical symbol ‘v’ that occurs within a proposition. 

In the following, we use the term ‘intuitive belief (or 
‘intuitive beliefs’) to denote the intuitive belief(s) we have 
in mind, and we also use the word ‘belief (or ‘beliefs’) to 
denote a formula (or formulas). 

Belief sets. We may be able to come up with one 
single belief (i.e., one formula) which appropriately 
formalizes our intuitive belief in (almost) every way. 
However, this is not a very easy task in general, and it 
may be argued whether the specification of such a joint 
belief is always necessary. 

As human problem solvers, we are often capable of 
identifying various “independent” aspects of a problem. 
Once such aspects have been identified, we can then 
specify a (unique) belief for each of these aspects and use 
some kind of inference mechanism to “combine” the 
specified (independent) beliefs. This philosophy is 
embodied in the D-S formalism. Accordingly, the belief 
calculus works with sets of beliefs (called belief sets)l; 
when using this calculus for reasoning, we first try to 

l with singleton sets as special cases. 

infer a singleton set (containing the combined belief) from 
the given belief set. 

A belief set IB is a non-empty set of beliefs. In 
notation, 

IB = (bl; b2; . . . ; br), where 
r 2 1, and V i (1 5 i 5 r), bi is a belief. 

(We use ‘;’ to delimit the specified beliefs. This 
specification of beliefs does not mean that the beliefs are 
implicitly ordered.) 

We now give the inference rules of the belief calculus2. 
The first three rules are trivial. (Notation: Throughout 
this paper, we use ‘I- P’ to mean that “the proposition P is 
provable in the propositional calculus from the set of 
mutual exclusion axioms MB”.) 

1. Commutation: 
I... V Pi (mi) V . . . V Pj (mj) V . . . . b2; b3; . . . ; br) 

(... V Pj (mj) V . . . V Pi (mi) V . . . . b2; b3; . . . ; br) 

2. Addition: 
I- P ++ W, 
{... V P (mi) V . . . V R (mj) V . . . . b2; 

(... V P (mi + mj) V . . . V . . . . b2; b3; . . . ; br} 

3. Substitution: 
I- 0, tj R), { . . . V P (m) V . . . ; b2; b3; . . . ; br) 

{ . . . V R (m) V . . . ; b2; b3; . . . ; br} 

We also need a fourth rule for inferring combined 
beliefs (0 is defined below). 

4. Combination3: 
(bl; b2; b3; . . . ; br), bl Q b2 = 

{bc; b3; --- ; h-1 

The combination operator 6. Let @ denote the set 
of all beliefs. The combination operator 8 (read as 
“Dempster’s combination”) is a partial function that maps 
from Ffl x ?Jl to $8. 

Intuitively, 0 (e.g., (A (.8) V (lA) (.2)) 0 (A (S) v 
B (.3) V T (.2))) may be thought of as a two step 
process. 

The first step is to apply the (independence) assumption 
that allocating pi to Pi in the first belief and allocating rj 
to Rj in the second belief should mean allocating pi*rj to 

2The belief calculus is formulated along the lines of natural 
deduction systems. However, due to space limitations, we 
only describe the inference mechanism of this system. 
3This is the only inference rule (in the context of the belief 
calculus) that can be used to reduce the number of beliefs in a 
belief set. 
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Pi A Rj in the combined belief (e.g., ((A A A) (.4) V (A 
A B) (.24) V (A A ‘I’) (.16) V (-A A A) (.l) V (-A A B) 

(.oQ v (1A A T) CW)). 
The second step is to apply the (coherence) assumption 

that the two beliefs that are being combined are meant to 
be coherent; this is done by taking away all “pairs” 
containing unsatisfiable propositions (e.g., (TA A A) (.l)) 
and redistributing their m-values (e.g., .l) to the 
remaining propositions by proportions (e.g., ((A A A) 
(.444) V (A A B) (267) V (A A T) (.178) V (-A A B) 
(.067) V ‘(7A A T) (.O44))). This step is also known as 
“renormalization”. 

Formally, 0 is defined as follows. (Notation: Let S 
be an ordered set of “pairs” (Pi (ml), P;? (mz), . .., Pn 
(m&J, then by ‘V S’, we mean the formula ‘Pi (ml) V 
P2 (m2) V . . . V Pn (mn)‘.) 

(pl (Pl) v p2 (p2) v l -- v PM (PM)) @ 
@I 61) V R2 (r2) V . . . V RN 0~)) 
= 

if 3 (i, j) E (1, . . . . M)x (1, . . . . N} 
such that Pi A Rj is satisfiable, 

then 

Example 3. BEL( ((A + B) (1))) B) = 0. 

Example 4. 
V {(Pi A Rj) @i*rj / (1 - z(h,k& sPh*rlc)) I 

S is the maximum subset of 
{L -a-, M}x( 1, . . . . N) such that 
b’ (h,k) E S, I- ((ph A Rk) H F), 

and 

(A (.8) v (1A) (.2); A (.5) v B (.3) v T (.2)) 

I-DS ((A A A) (444) V (A A B) (.267) V (A A T) (.178) 
V +A A B) (.067) V (-A A T) (.O44)) 

(i, j) E ((1, . . . . M)x (1, . . . . N))\S 
I4 

I-,, (A (.444) V (A A B) (.267) V A (.178) 

other’wise undefined. 
V (--,A A B) (.O67) V -,A (.044)} 

0 is an associative operation (i.e., (bl 0 b2) @ b3, if 
defined, is the same as bl 63 (b2 (33 b3 )). If we use Q to 
denote ‘Xl3 without renormalization”, then Q is obviously 
associative; but more importantly, bl @ b2 $ . . . $ br 
(whatever the order of combinations is), if defined, is the 
same as bl Bb2& . . . Q br followed by one single 
renormalization. 

I-DS (A (622) V (A A B) (267) V +A A B) (.O67) 
v --,A (044)) 

Therefore 
Addition 

BEL(lB , A) = .622 + .267 = .889, and BEL(IB, TA) = 
.067 + .O44 = .lll. 

Also, r beliefs b 1, b2, . . . . br are said to be 
incompatible whenever bl 0 b2 0 . . . 0 br (whatever 
the order of combinations is) is undefined. 

Example 2. (A (1)) 0 ((lA) (1)) is undefined. 

The calculus. The belief set IB2 is Dempster-Shafer 
provable from the belief set lB 1, denoted as ‘ll3 1 I-Ds IB2’, 

if lB2 can be inferred from IB 1 after a finite number of 
applications of the (four) inference rules. 

We are now ready to define the overall belief BEL in an 
arbitrary proposition. Let %g be the set of all belief sets 
and 3 be the set of all propositions. BEL is a partial 

Relating to the “usual” formulation. To see the 
relation between the belief calculus and the usual set- 
theoretic formulation of belief functions [Shafer 761, 
consider the following mapping: let Al, AZ, . . . , AN be 
all the variables, and let 01, 02 , . . . , 0~ be their 
respective frames. Then each proposition P corresponds 
to exactly one subset of the joint frame 01 x 02 x . . . x 
0~ (i.e., the set of all “total” valuations that make P 
true). Similarly, for each subset of the joint frame, there 
is a corresponding set of logically equivalent 
propositions. Let Sp be the subset of the joint frame that 
corresponds to the proposition P and let SR be the subset 
of the joint frame that corresponds to the proposition R, 
then: I- (P + R) if and only if Sp c SR; Sp u SR 
corresponds to P v R; Sp n SR corresponds to P A R; 
and 01 x 02 x . . . x 0~ \ Sp corresponds to -P. This 

4We assume these ‘Pi A Rj’ are lexicographically ordered in (i, 
j). 

function from %I%5 x @ to [0, 11, defined as follows (let 
IB be a belief set and R be a proposition.) 

BEL(B 3 R) = CI-(Pi”R) mi 

where IB I-D, (Pi (ml) V P2 (m2) V . . . V Pn (mn)) . 
p i.e., we must first deduce a singleton from IB */ 

Clearly, BEL(lB , R) will be undefined (for every 
proposition R) whenever the beliefs contained in lB are 
incompatible. 

Note that, even if BEL(IB , R) is defined for some 
contingent proposition R, it can still be zero. This 
simply means that we have no idea whether R holds in 
the world (because we are not aware of anything that 
logically supports it). But having no (intuitive) belief in 
R does not necessarily mean that we have any (intuitive) 
belief in TR (i.e., BEL( lB , -R) > 0), because our degree 
of belief in a proposition (-R in this case), as defined by 
BEL, is always dependent on whether we are aware of 
anything that logically supports it and not on whether we 
are ignorant of anything supporting its negation (i.e., R). 
This is one of the characteristics of the D-S formalism. 

/* i.e., lB */ 

Combination 

Substitution 
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provides a straightforward translation between the 
language of the belief calculus and the language of the 
usual set-theoretic formulation of belief functions. 

Example 5. We now use the belief calculus notations 
to describe the idea of combining the ATMS [de Kleer 
86a] with belief functions (e.g., [Laskey and Lehner 891). 
Let 3 = (PI, P2, . . . . Pn } be the set of (boolean) 
propositional clauses that have been transmitted to the 
ATMS (premises are specified in 3 as “+ C” or “+ 
lC”)5. Let (Al, AZ, . . . . Ak} be a distinguished set of 
primitives (i.e., assumptions) such that either Ai or TAi 
(or both) occurs in 3. Furthermore, let II3 contain the 
following (and only the following) beliefs: (a) for each Pi, 
“Pi (1)” is in IB, (b) for each Ai, “A; (m) V TAi (1 -m)” 
is in lB6. Then for any literal B (i.e., a primitive Q or its 
negation 42) occurring in 3, we can compute BEL( lE3, B) 
using the nogoods and the label associated with B as a 
basis. For more details, see [D’Ambrosio 87, 88; Laskey 
and Lehner 88,89; Provan 89a, 89b]. 

3. Uncertain Reasoning 
The specification of independent beliefs. The 
D-S formalism encourages the use of the following 
methodology: we first identify the “independent” aspects 
of the problem at hand; and then we specify a belief for 
each of the identified aspects. Therefore, the purpose of 
this section is to show how we can use the belief calculus 
for uncertain reasoning once the independent aspects of the 
problem at hand have been identljied. 

Example 6. (adapted from [Kong 861) Two sites A and 
B are connected by a one-way valve which, when 
working, allows water to flow from A to B. The 
probability that this valve is working (i.e., not blocked) 
is pl. Similarly, sites B and C are connected by a one- 
way valve (with a working probability of ~2). These two 
valves work independently. We have no information as to 
whether there is any water going into A or B or C, but we 
are interested in whether there is any water in each site. 
Therefore, we formulate the working of the two valves as 
two independent random variables, and 18 = {V 1 Working 
(pl) V -7V1Working (1-pl); (VlWorking + (WaterA + 
WaterB)) (1); V2Working (~2) v TV2Working (1-~2); 
(V2Working + (WaterB + WaterC)) (1)) , and the values 
of BEL(IB, WaterA), BEL(lB, WaterB) and BEL(IB, 
WaterC) are zero at the moment. 

%‘he ATMS actually uses a (positive) primitive to represent 
the negation of another (positive) primitive [de Kleer 86b]. 
However, for simplicity, we can think of the ATMS as if it 
accepted a negated primitive directly. 
6A more general specification will be to specify exactly one 
of the following for Ai : “Ai (ml) V T (l-ml)“, “TAi (ml) V T 
(l-ml)“, or “Ai (ml) V TAi (m2) V T (1-ml-m2)” (the 
specification of “T (l-ml-m2)” is optional). 

Suppose we just learned that <WaterB> = <Yes>. 
Then BEL(lE3 u (WaterB (1))) WaterB) = 1, BEL(lB u 
(WaterB (l)), WaterC) = p2, and BEL(IB u (WaterB (l)}, 
WaterA) remains zero. 

Belief dependency structures. In general, the 
uncertainties we want to specify may be intuitively 
related. When this is the case, we can no longer 
formulate these uncertainties as independent random 
variables. Nevertheless, we can try to work out a 
dependency structure (in a sense similar to the idea of the 
Bayesian causal trees Cpearl861) among the variables, and 
we make sure that the way a variable (e.g., A) depends on 
a valuation of other variables (e.g., (B = Yes) A (C = h)) 
is independent of the ways this same variable (i.e., A) 
depends on other valuations of these other variables (i.e., 
(B = Yes) A (C = m); (B = No) A (C = 1); etc.). This is 
the rational behind the following technique which uses a 
method described in [Smets 781 for specifying a belief set 
from independent conditional beliefs: 
Let & = (Al, AZ, . . . , AN) (e.g., (Bird, Penguin, 
Fly}) be a set of variables. We first specify a set (II of 
categorical beliefs about these variables (e.g., (I = 
((Penguin + Bird A -Sly) (1))). Then, we recursively 
apply the following three steps until the variables 
contained in Ai (i 10) do not directly “depend on” each 
other. 

Step 1: From Ai (e.g., &), we identify exactly one 
variable7 A (e.g., Fly) and also a subset 3Bi of ai\ SO 
that A directly “depends on” the valuation of the 
elements of Bi (e.g., So = (Bird, Penguin} is a subset of 
(Bird, Penguin, Fly)\{Fly) so that Fly directly depends 
on the valuation of the two variables Bird and Penguin). 

Step 2: For each and every logically possible 
valuation of the elements of Bi (e.g., <Bird, Penguin> = 
<Yes, No>; <Bird, Penguin> = <Yes, Yes>; <Bird, 
Penguin> = <No, No>), we assess an independent belief 
about the valuation of A (e.g., we assess the belief “(Fly 
= Yes) (.9) V ((Fly = Yes) v (Fly = No)) (.l)” for the 
valuation <Bird, Penguin> = <Yes, No>). If this 
assessed belief is non-vacuous and non-categorical, we 
(need to) translate it into the following beliefi 
(“the valuation” + A’s value is in ValueSetl) (ml) v 
(“the valuation” + A’s value is in ValueSet2) (m2) V 
. . . 
(“the valuation” + A’s value is in ValueSetM) (mM), 
(e.g., “(Bird A TPenguin + (Fly = Yes)) (.9) V (Bird A 
TPenguin + (Fly = Yes) v (Fly = No)) (.l)“, 
or simply, “(Bird A TPenguin + Fly) (.9) V T (.l)“). 

7Actually, we can identify more than one variable if we want. 
Here, just for simplicity, we restrict it to be one. 
*This translation is based on the principle of minimum 
specificity [Dubois and Prade 861. 
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Step 3: Let ai+l be Ai\ (e.g., A 1 = (Bird, 
Penguin, Fly}\{ Fly) = (Bird, Penguin]). 
Once we get to &.id, we can, if we want, specify a 
(non-vacuous) belief for each of the variables remaining 
in Afind (e.g., &find = A2 = (Bird), and we have the 
option of specifying a belief such as “Bird (.7) V T (.3)” 
for the variable Bird; however, we prefer to have “T (1)” 
for Bird in this case). 

Example 8. The belief set 

B = ((Penguin + Bird A -J?ly) (1); 
(Bird A TPenguin + Fly) (.9) v T (. 1); 
(Bird + -Penguin) (.95) v T (.05);) 

is obtained from the following “constraints”: 

valuation belief about some variable 
Bird A -Penguin Fly (.9) v T (.l) 
Bird A Penguin +lY (1) 
lBird A -Penguin T (1) 
--,Bird A Penguin (logically impossible) 
Bird TPenguin (.95) v T (OS) 
-IBid -Penguin (1) 

Therefore, BEL(lB u (Bird (1))) -1Penguin) = .95, 
BEL( IB u (Bird A TPenguin (1))) Fly) = .9, BEL(lJ3 u 
(Bird A -Penguin (1))) -Fly) = 0, etc. 

In addition, BEL(lB, -;Penguin) = .95, BEL(IB , Bird) = 
0, BEL(lB u (Bird (l)), Fly) = 855, BEL(lB u (Bird 
(l)), ~Fly) = 0, BEL(lB u (Fly (l)}, TPenguin) = 1.0, 
BEL(lB u (Fly (l)), Bird) = 0, BEL(IB u (Fly (l)), 
TBird) = 0, etc. 

“Distinct” sources of evidence. We sometimes 
encounter the following situationg: (1) there are one or 
more sources that provide us with information, and each 
source has full confidence in the information it provides; 
(2) the information provided by each source directly 
“indicts” some elements of the frame of the “main 
variable” (i.e., the one we are interested in); (3) we can 
make a reliability estimation for each of these sourceslo; 
(4) the reliabilities of the sources are independent. 

When we are in this kind of situation, we can put our 
evidence about each particular source into a unique group, 
and we specify a belief dependency structure according to 
each group of (related) evidence. The resulting belief set, 
then, consists of several belief dependency structures 
intersecting on the main variable. 

Example 7. Our friend is ill, and doctors can not 
pinpoint the problem. Since it may involve life and 
death, we bring our friend to two doctors B and C that are 
famous in this area. It is reasonable to assume that these 

9The author thanks Nit Wilson and Philippe Smets for 
arriving at this characterization of distinctness. 
‘OA source is reliable (with respect to the information it 
provides) if the information it provides is indeed true. 

two doctors are independent in making their diagnoses 
(because they received their trainings in different medical 
doctrines, they live in different cities, they do not confer 
to each other, etc.). We also did some background study 
about the two doctors. Therefore we know that B is 
extremely busy, B has more authority in this area than C 
does, and C has a reputation of always doing his best for 
his patients. Also, our actual experience with the two 
doctors seems to confirm this background information. 
We are interested in the reliabilities of the two doctors. 
We are also concerned that B’s being busy may mean that 
B does not spend enough time examining our friend’s 
case. Therefore we formulate our knowledge about the 
two doctors as two belief sets IB 1 and lB 2, with each IBi 
containing our (intuitive) beliefs about a doctor: 

IB 1 = ((AuthorityB A BusyB) (1); 
(BusyB + LessCaseStudyB) (8) v 
(BusyB + -LessCaseStudyB) (.2); 
AuthorityB A LessCaseStudyB + ReliableB) (.7) V 
AuthorityB A LessCaseStudyB + -ReliableB) (.3); 
(AuthorityB A -LessCaseStudyB + ReliableB) (95) V 
(AuthorityB A ~LessCaseStudyB + -ReliableB) (.05)) 

l6 2 = ((SemiAuthorityC A ReputationC) (1); 
(SemiAuthorityC A ReputationC + ReliableC) (.8) V 
(SemiAuthorityC A ReputationC + -ReliableC) (.2)) 

After diagnosis, doctor B determines with full 
confidence that the patient has either illness X or illness 
Y. Also after diagnosis, doctor C determines with full 
confidence that the patient has either illness Y or illness 
2. It is a medical fact that a person can not have any two 
of these three illnesses at the same time. Therefore we let 
the frame of (the main variable) Illness to be (X, Y, Z, 
OTHER}, and we specify three more categorical beliefs: 

833 = ((BSaysXY A CSaysYZ) (1); 
(BSaysXY A ReliableB + (Illness = Y) V (Illness = Z)) 
(1); 
(CSaysYZ A ReliableC + (Illness = Y) V (Illness = Z)) 
(1)). 

With IB = lB1 u lB2 u IB3, we get: BEL(& (Illness = 
X)) = 0; BEL(lB , (Illness = Z)) = 0; BEL(lB, (Illness = 
Y)) = .6; BEL(ll3, (Illness = X) v (illness = Y)) = .75; 
BEL( lB , (Illness = Y) v (Illness = Z)) = 8; BEL(lB , 
(Illness = X) v (Illness = Y) v (Illness = Z)) = -95, etc. 

4. Discussion 
Appropriateness of the notation. The belief 
calculus serves as a (notational) alternative for the the use 
of the D-S formalism for uncertain reasoning. As such, 
the appropriateness of the belief calculus (as a notation) 
will have to depend on the application domain, and there 
may well be situations in which set-theoretic notations 
are more appropriate. 
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However, it may be worthwhile to point out a 
superficial but nevertheless important “difference” between 
the (uses of the) two notations: with the belief calculus, 
we can sometimes explicitly specify what our evidence is 
and how this evidence induces beliefs; whereas with the 
usual set-theoretic notations, the evidence is generally 
regarded as “outside of” our specifications of beliefs. 

Tractability. The computational complexity of the 
belief calculus is exponential with respect to the number 
of variables in a belief set, and there are ways for 
improving the speed of this computation (e.g., [Kennes 
and Smets 90; Shafer et al. 87; Wilson 891). 

We might also look at this complexity problem from a 
different perspective: if we treat propositional provability 
(which is well known for its NP-completeness!) as the 
basic operator, then the complexity of the belief calculus 
is exponential with respect to the number of beliefs in a 
belief set. Thus, if we have many variables but only a 
few beliefs in a belief set, then a deduction-based approach 
such as ATMS + D-S (see movan 89b] for a complexity 
analysis of ATMS + D-S) may turn out to be a more 
attractive way for computing BEL. 

5. Conclusion 
We formulated the D-S formalism along the lines of 
natural deduction systems. This formulation (called the 
belief calculus) allows us to infer beliefs from beliefs 
without ever appealing to the use of set-theoretic 
notations. 

To show how the belief calculus may be used for 
uncertain reasoning, we gave three examples. These 
examples suggested different ways for modelling real 
world situations. 
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