
Symbolic Probabilistic Inference in Belief Networks 

Ross D. Shachter, Bruce D’ Ambrosio, and Brendan A. Del Favero 

Engineering-Economic Systems Dept. Department of Computer Science Engineering-Economic Systems Dept. 
Stanford University Oregon State University Stanford University 

Stanford, CA 943054025 CorvalIis, OR 97331-3902 Stanford, CA 94305-4025 
shachte@sumex-aim.stanford.edu dambrosic@cs.orst.edu a.apollo@macbetb.stanford.edu 

Abstract 
The Symbolic Probabilistic Inference (SPI) 
Algorithm [D’Ambrosio, 19891 provides an efficient 
framework for resolving general queries on a belief 
network. It applies the concept of dependency-directed 
backward search to probabilistic inference, and is 
incremental with respect to both queries and 
observations. Unlike most belief network 
algorithms, SPI is goal directed, performing only 
those calculations that are required to respond to 
queries. The directed graph of the underlying belief 
network is used to develop a tree structure for 
recursive query processing. This allows effective 
caching of intermediate results and significant 
opportunities for parallel computation. A simple 
preprocessing step ensures that, given the search tree, 
the algorithm will include no unnecessary 
distributions. The preprocessing step eliminates 
dimensions from the intermediate results and prunes 
the search path. 

1. Introduction 
Belief networks, directed graphical stmctores representing 
the probabilistic dependency among a set of variables, are 
an increasingly popular knowledge representation for 
uncertain reasoning. Much of their success is due to a 
growing body of methods for evaluating queries and 
performing probabilistic inference. The most popular 
methods [Jensen et al., 1990; Kim and Pearl, 1983; 
Lam&en and Spiegelhalter, 1988; Pearl, 19861 gain much 
of their performance by efficient precomputation of simple 
queries in response to new observations. 

The Symbolic Probabilistic Inference Algorithm (SPI) 
[D’Ambrosio, 1989; D’Ambrosio and Shachter, 19901, on 
the other hand, is a goal-driven method, which can respond 
to arbitrary conditional or conjunctive queries. SPI is 
incremental with respect to both queries and observations. 
It uses the structural information in the belief network 
graph to construct a search tree of efficiently evaluahle 
factored symbolic expressions, which allows parallel 
computation and caching of intermediate results. By 
incorporating an efficient preprocessing step and 
recognizing when we do not need a full joint distribution, it 
can achieve additional savings in search and computation. 

Section 2 presents an overview of SPI and the key 
concepts which underlie it, while Section 3 is a formal 
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presentation of the framework and proofs of the correcmess 
of SPI. The details of the algorithm are presented in 
Section 4, and conclusions and extensions are in Section 5. 

2. Overview 
SPI reorganizes the nodes in a belief network into a tree 

structure for query processing by a procedure in which every 
node is visited at most twice. Queries are directed to the 
root of the tree, which in tom generates queries for its 
subtrees and so forth until the response to a particular query 
can be determined and returned to the next higher level. 
Once a node has responses from all of its subtrees it can 
compute its own response. This process continues until 
the root of the tree retmns a response for the original query. 
The performance of SPI depends critically on the 
organization of this search !xee. 

There is a condition on the cons!ruction of the search 
tree: if there is an arc between two nodes in the original 
belief network, then one node mast be the root of a subtree 
containing the other. In other words, there can be no arcs 
in the belief net behveen nodes that are in parallel subtrees. 
Conversely, whenever two nodes are “separated” by higher 
root nodes, they can and should be placed in different 
subtrees. (Two nodes are said to be seuarated by a set if 
every undirected path between the nodes contains an 
element from the set.) 

Figure 1. Example belief network. 

For example, consider the belief network shown in 
Figure 1, containing nodes numbered 1 through 9. Any 
node can be chosen to be the root of a search tree, but node 
4 seems like a promising choice, since it separates the 
other nodes into four subtrees, (1,2], (31, (5). and 
(6, 7, 8, 9). A possible search tree for this network is 
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shown in Figure 2a. Some other search trees for the 
network are drawn in Figure 2b and 2c. There are many 
different configurations for the subtree { 6,7,8,9} in a tree 
rooted by node 4. Several of these are shown in Figures 
2d, 2e, 2f, and 2g. Note that in the tree drawn in Figure 
2e, node 7 roots one of the subtrees for node 6. There is no 
requirement that a subtree root, such as node 7, have an arc 
in the belef network to-one of its higher level roots. The 
only requirement is that, since there is an arc (7, 9) in the 
belief net, node 9 must either be higher or lower than node 
7 in the tree. 
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Figure 2. Possible search trees for the network in Fig. I. 

In general, there are many alternate tree structures possible 
for a given. belief network. We would like to choose a 
structure that facilitates optimal performance for the 
anticipated queries. Since the processing in parallel 
subtrees is independent, it can be performed in parallel and 
using independent information. This suggests that a good 
heuristic might be to branch wherever possible and as high 
as possible in the tree. One rule of thumb might be to 
select that root node for which the largest subtree is as 
small as possible. In this respect the tree drawn in Figure 
2a is better than the ones in 2b and 2c. 

We can illustrate the basic concepts underlying SPI 
with a few simple examples. Corresponding to each node j 
in the belief network is a conditional probability 
distribution 7Cj for the variable Xj, conditioned on j’s 

parents. The joint probability distribution for all of the 
variables is obtained in factored form by multiplying their 
conditional distributions, 
P(Xl’X1, . . . ,Xg=xg} 

= P(Xl’Xl} P(X,=x, I X1=x1} 

. . . ‘(‘9=‘9 ’ ‘4,6,7=‘4,6,7) 
= x1( xl > x2( x1,2 > -*- %j( x4,6,7,9 ) 9 

where ‘4,6,7,9 is a vector whose components are 

symbolically matched to the proper dimensions. 

Suppose that we want to find P( Xl ). Of course, this 

is simply stored in xl, but we can find it by using the 

more general method of summing over the joint 
distribution, 
P( x1=x1 ) =cx2 P( x1=x1, . . . , xg=xg ) 

, a** , 

= =x2 , a** , 
g xlt xlu, 5d x1,2 > a.- + x4,jJCJ >- 

Now we can recognize that n1 does not vary in the 

summation, and thus it can be brought out of the sum. 
Using the property that conditional distributions sum to 1, 
we can eliminate each of the distributions in turn to obtain 
PI x1=x1 > 

= Z1( ‘1 ) cx2 , a-0 , 
g 7c2( ‘1,2 ) -0. “9( ‘4,6,7,9 ) 

= ☺ q ( Xl > l 

In a similar way we can find P( Xl I X2 ) , which can 

easily be computed1 from P( X 1, X2 ) , 

P( x1=x1, x2=x2 ) 

= cx3 
, **a , 

g P( x1=x1, . . . , xg=xg ) 

= x1( Xl )7c2( x1,2 1. 
This approach can also be applied to more complex 

problems, such as P( X5 I X2), 

X5,2=x5,2 ) 

= “1,3,4,6,7,X,9 
P( x1=x1, . . . , xg=xg ) 

= zx1,3,4,6,7,8,9 ?( ‘1 ) .Tc2( ‘1,2 ) 7c9( ‘4,6,7,9 ) 

==x134 %(‘l) E2(x1,2) “3(‘3) 7c4(x1,2,3,4) 
3 , 

Z5(x4,5) - 
We are unable to simplify this final expression any more 
by distributing terms. To compute any further, we must 
use the actual numbers. Nonetheless, it does still pay to 
order the terms so as to minimize the number of 
calculations and the size of intermediate results 
[D’Ambrosio and Shachter, 19901. 

Suppose that X3 has been observed with value x*~. 

The solution for P( X5, X2 I X3 = x*~ ) is similar to the 

one above, except that the specific value for x3 can be 

substituted into all of the distributions and it should not be 
summed, 
P( X5 2=X5 2 I X3=X*3 ) 

= ix1 , , 
,kl(Xl) z2(xl,2) “3(x*3) z4(xl,2 47 x*3) 

7c5(x4,5)- 
Finally, suppose that we want to find P( X5 I X4 ) . 

We could easily obtain this from P( X5, X4), but we can 

save work if we recognize the difference between the two 

‘A conditional probability is defined as 
P(x~=x~lx2=x2} = P{X~‘X~,X2’X2} / cy] 

PW1=y1X2=x2). 
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queries. The former is simply the distribution, 
P{ X5=x5 I X4=x4 ) = ~s(x4,5), while the latter requires 

multiplication and summation. In general, we can 
recognize cases in which we can obtain the conditional 
more easily that the joint distribution. 

The operations shown in these examples correspond 
exactly to those in SPI. There are three basic operators: 
product of distributions, summation of a distribution over a 
set of variables, and substitution of an observed value into 
a distribution. We can apply these operators both 
symbolically and numerically. Symbolic operations help 
us recognize when we can apply the distributive law to pull 
a factor out of a summation. On the other hand, we must 
sooner or later evaluate to numbers. If we maintain a cache 
of numerical results, we can avoid repeating their 
calculation. 

3. Framework and Notation 
In this section, we provide a formal description of the 
framework for the algorithm, and prove the fundamental 
results underlying it. 

We assume that we are given a fully specified belief 
network, which contains a directed acyclic graph on a set of 
nodes N. Each node j corresponds to a random variable X-, 

J 
which can take on a finite number of possible values 
X.E ~j with conditional nrobabilitv distribution n: 

J 
jw Asa 

convention, a lower case letter represents a single node 
while an upper case letter represents a set of nodes, so that 
XJ denotes the vector of variables indexed by the set J. 

Therefore, the conditional distribution xj for node j can be 

expressed in terms of its parents or conditional nredecessors 
C(i), 

7cj ( Xj"C(i) ) = P{ Xj = Xj I XCci) = XC(i) }. 

If the node j has no parents, C(i) = 0 and “j is an 

unconditional probability distribution. Distribution ni has 

dimensions D(i), 
W)=juC(i), 

J 

and we can think of the distribution as a nonnegative 
function, 7cj: aD(j) + R . We can extend the definition 

of node conditional distributions and their dimensions to 
apply to sets so that 

ZJ ( ‘D(J) ) = =j, J 7cj( ‘D(j) )- 
We say that there is an-undirected path or chain between 

nodes i and j if we can get from node i to node j in the 
network along arcs ignoring their direction. When there is 
a chain between two nodes, they are said to be connected; 
otherwise they are disconnected. Clearly, if node i is 
connected to node j, then node i will be connected to node k 
if and only if j is connected to k. We can therefore identify 
the maximal connected sets of nodes, called components. If 
there is some set S such that every chain between nodes i 
and j contains a node from S , S is said to separate i and j. 
Any set of nodes disjoint from S can be partitioned into 
maximal sets which are the components separated by S. 

A structure on a set of nodes is said to be a tree if 
exactly one of the nodes is identified as its root and the 
others are partitioned into subtrees, which are themselves 
trees. In SPI, all of the nodes are organized into a search 
tree. For each node i, let T(i) be the nodes in the subtree 
rooted at node i and let S(i) be the roots of all subtrees 
containing i. The components of T(i) \ (i} 2 separated 
by S(i) form the subtrees of T(i), and the roots of those 
subtrees are given by R(i). For example, in the tree drawn 
in Figure 2a, T( 6 ) = (6, 8, 9, 7 } , S( 6 ) = ( 4, 6 ) , and 
R( 6 ) = ( 8,9 ) . If there are separate components in the 
original belief network, one can create a “fictitious node” 0 
with no arcs, so D( 0 ) = 0 and no = 1. Each of the 

components is then a subtree in T(0). 
As stated earlier, the search tree has one restriction on 

its organization. If there is an arc between nodes i and j in 
the belief network then either i E S(j) or j E S(i). This is 
enforced automatically by including all (conditionally) 
connected nodes in the same subtree. There is still 
tremendous flexibility in the construction of the search tree, 
since the choice of root node for any tree is arbitrary. 

Generalized Distributions 
A nonnegative function Q: QJuK -+ R will be called a 

(generalized) distribution for J given K if it can be 
normalized to compute P( XJ 1 xK ) , nmdy, 

P( XJ=XJIXK=XK) 

Although the generalized distribution contains sufficient 
information to compute the conditional distribution, it 
might not have enough to compute the joint distribution 
p( XJ”K 1 * We define three operators on these 

distributions: product, summation, and substitution. l 

Given distributions Q I and Q2 on sets Jl and J2, the 

conformal product of the distributions is given by 

where Q( XJ~“J~ ) = Ql( xJI ) Q2( xJ21 - 

The summation over dimensions K is Q = ( c, K, Q1 > 

Lastly, the substitution of observation x*i in dimension i 

is Q = ( k, i, x*i, QI ) 

whereQ(xJI\(i} )=Ql( Xi=x*i,XJl\{i} =xJI\(i} 1. 

Note that the product increases the dimension of the 
resulting distribution, while the summation and 
substitution decrease it. Processing time is proportional to 
the size of the distributions, which are exponential in the 
number of dimensions, so it is advantageous to postpone 
performing the product operation as long as possible, and 
instead to perform summation and substitution as soon as 
possible. 
We can represent a distribution either by the actual 

*The symbol ‘T’ is set subtraction, A \ B = ( j E A : j E B }. 
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function, or by a symbolic expression of operators applied 
to distributions. Symbolic manipulation to the expression 
allows us to reorder terms to reduce computation time. Of 
course, at any time, the expression can be evaluated to 
obtain the numerical distribution. The key to reordering 
operations is given by the following lemma, which just 
states the distributive law for addition and multiplication of 
real numbers in terms of the notation for SPI. 

Lemma 1. Distributive Law for Distributions 
Given distributions Ql and 42 on sets JI and J2 

(C, K ( *, Q1, Q2 > > 

The lemma states that instead of summing after 
multiplying two distributions, we can sum one dis&bution 
over dimensions for which the other distribution does not 
vary before multiplying the distributions. Since this 
reduces the number of dimensions processed in the outer 
sum, it can lead to substantial savings. We will try to 
exploit this property whenever possible in evaluating a 
query. Consider the search tree shown in Figure 3, in 
which A, B, and C are now sets of nodes. This represents 
the general case in SPI, in which B is a subtree, C is the 
union of B’s sibling subtrees, if any, and A is the remainder 
of the nodes N in the network. If we want to find P( XM } 

for some subset M of N, then the distributive law can be 
applied to this search tree, by the following theorem. 

Figure 3. General Network for the Proof of SPI. 

Theorem 1. 
Given an arbitrary subset M of N, and a partition of N 
into sets A, B, and C, such that B and C are separated 
by A, then the generalized distribution 
Q(xM) = P( XM =xM] is 

Q=(C,M'\M,(*, ~A,(*~(C,B\M’J$), 

(ZC\M’,“c)HL 
where M’ = M u D(A) . 

Proof: 
Q can be obtained by summing all variables except M 
from the joint distribution, which is just the product of 
the node distributions, 
Q=(C,N\MP( XN 1) 

=(C,N\M,(*,~A,(*,~~B,~C))). 
Since dimensions D(A) appear in distributions XA we 

cannot pull ‘rcA out of the sum for D(A). Nonetheless, 

the construction of the search tree ensures that 

D(B) A D(C) c D(A), so three applications of Lemma 
1 yield 
Q=(C,M'\MA*, ZA, (c, 0, ( *, ( c, B \M’, Kg), 

cLC\M’JcH)H. 

In general, the response to a query is a generalized 
distribution and not necessarily a full joint distribution. 
Suppose that the desired distribution has dimensions M and 
is obtained by multiplying the distributions in nodes L, 
where D(L) = MuL. The resulting distribution, 
p( XMnL I xm 1, is then obtained by summing over 

L/M. For example, Theorem 1 is the special case for 
which L = N. The search tree in Figure 3 can now be 
applied to the conditional case. 

Theorem 2, 
Given arbitrary subsets M and L of N such that D( L ) = 
M u L, and a partition of N into sets A, B, and C, such 
that B and C are separated by A, then the generalized 
distribution 
Q( xM ) = p( XMnL=XMnL I Xm=xm ) is 

Q=(C,M’\M, 
( *? ~EA~L,(*,(C,B~L\M’,~~~,L), 

(C,CnL\M,xc,L)))), 
where M’ = L n [ M u D(AnL) ] . 

proof: 
Because D( L ) = M u L, summation and product yield 
Q=(~,L\M,(*,KAnL,(*,“BnL,~CnL))) 

=(C,M’\M,(*,“A,--,L, 

C,ar,(*,(C,BnL\M’,xg,L), 

(C,CnL\M,~cnL)))), 
by the same logic as Theorem 1. 

Incorporating Evidence 
Evidence is entered in the system in the form of exact 
observations of the values of variables. The set of 
variables which have been observed is denoted by E. 
Suppose that Xi has been observed with the value x*i. The 

substitution operator ( k, i, X*i, Q ) can now be applied to 

any distribution Q to incorporate that evidence into the 
distribution. There is no longer any need to sum out 
dimension i and, in fact, it would be an error to do so. 
Because dimension i can no longer be summed over and the 
substitution operator eliminates all instances of it, it can be 
freely distributed within all products, down to the node 
distributions themselves. This substitution at each node 
distribution can be performed at every computation, but it 
is much simpler to substitute for dimension i in every 
distribution in which it appears whenever its observation is 
reported. Those distributions in which dimension i appears 
belong to node i and its children. Therefore, the node 
distributions Zj for those nodes should be modified by 

“j( ‘D(j)w ) t “j( xD(j)/E, X*i ) = ( &, i, X*i, ~j > . 

Once the evidence has been incorporated into the node 
distributions, all of our earlier results can be applied, using 
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the new dimensions of the distributions. For example, obtained by multiplying the distributions in nodes L and 
suppose that a desired distribution has dimensions M and is summing over dimensions L \ ( E u M ), which must 
obtained by multiplying the distributions in nodes L, where therefore have dimensions W = M u [ D( L ) \ ( L u E) ] . 
D( L ) = M u L u E and M n E = 0. This is a The node’s response is a generalized distribution Q for 
straightforward extension of Theorem 2. W nL given W\L, 

Q( XW > = P( XWnL’XwnLy XEnL’X*EnL 1 
xm=xw\L, xm=x*E\z, } . Corollarv 1. 

Given arbitrary subsets M and L of N such that D( L ) = 
M u L u E and M n E = 0, and a partition of N into 
sets A, B, and C, such that B and C are separated by A, 
then the generalized distribution 
Q(xM) 

= p( XMnL = XMnL, XEnL = X*EnL I 
xNI\L=x M\LI xE\L = x*E\L 1 is 

Q=(C,M'\M, 
( *v n&&v ( *, ( c, B n L\(E ” M), “BnL), 

(C,CnL\(Eu M3,~cnL)))), 
whereM’=(L\E)n[MuD(AnL)]. 

4. The Symbolic Probabilistic 
Inference Algorithm 

We can now present a complete description of SPI in terms 
of the framework developed in the previous section, given a 
belief network and a search tree. 

The general form of query received by SPI is of the 
formP{ XJlXK,XE= x*E ), where X*E are the recorded 

observations. This query is transformed and sent to the 
highest root node in the search tree. When that node has 
obtained a response to all of its queries from its subtrees, it 
returns a generalized distribution for J given K, which can 
then be normalized to the desired result. 

The query actually sent to the highest root node consists 
of the set of node distributions L needed to respond to the 
query and the dimensions M of the desired response. The 
sets L and M can be computed by an algorithm which runs 
in time linear in the number of nodes and arcs in the belief 
network graph [Geiger et al., 1989; Geiger et al., 1990; 
Shachter, 1988; Shachter, 19901. This algorithm operates 
on a copy of the graph: after deleting all outgoing arcs 
from K u E and deleting all nodes which are neither in nor 
ancestors of J u K u E, the set L is those nodes connected 
to J and M = ( J u K ) n D( L ) .3 These sets satisfy 
D(L)=MuLuEandMnE=0. Theformulaeare 
efficient and simple to implement. We refer the reader to 
the above-cited literature for more explanation. 

The response from the search tree will be a generalized 
distribution Q for J given K satisfying 

The heart of the SPI algorithm can now be described. 
At any node i, a request arrives for a distribution to be 

3We assume without loss of generality that E, K, and J are 
disjoint. If they are not, then the response can be computed 

using E, ICE, and JYKuE), with an additional check for 
consistency among the overlapping values. 

Of course, if such a distribution had been computed earlier 
and cached, it could be returned immediately. Usually, 
however, it will be necessary to send requests to the 
subtrees below this node in order to compute the response. 

The recursive step of the SPI request is shown in Figure 
4. The first three if statements check whether there is a 
cached result and whether the main processing block can be 
avoided by recognizing two important special cases. The 
main processing block in general has been verfied by 
Corollary 1. 

algorithm Request ( i, L, M ) 
begin 

if ( L, M ) is cached at this node 
then Qi t cached result 

else if L=Q) 
then Qit 1 

else if L= (i} 
then Qi t n;i 

else begin main processing block 
if iEL 
then M’t(L\E)n[MuD(i)] 
else M’t M; 
Qi+l; 
for r E R(i) 

Qi t ( *, Qi, Request (r, LnT(r), M’nT(r)) ) ; 
if iEL 
then Qit(C,M'\M,(*,~i,Qi)); 
i f caching of result is desired 
then cache result Qi for (L, M) ; 

end main processing block ; 
return Qi ; 

end ; 

Figure 4. The recursive request procedure 
for each node in the SPI algorithm. 

The query nature of SPI is designed to allow caching of 
responses at each node. Whenever an observation is 
received for node i, and the substitution operation performed 
on the distribution of node i and its children, all caches 
above node i and its children in the search tree become 
suspect, and should be removed from the caches. 
Alternatively, a check similar to the algorithm for 
determining the original M set could be performed to 
recognize for which cached expressions the new evidence is 
relevant, and only those expressions need be removed from 
the cache [Shachter, 19901. 

The cache management scheme can exploit the 
generalized distributions being returned. Suppose that the 
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distribution Q,, the response to a request (L,, MC), has 

been cached. Q, can serve as the response to a subsequent 

request ( L, M ) with the same dimensions, provided that 
L c L,, since in that case Q, has “too much” information. 

On the other hand, if L r) L,, then a new response must be 

computed, and it might as well replace Q, in the cache. 

Examples 
Suppose that SPI were applied to the query P{ X5 I X2 ) 

for the belief network in Figure 1 using the search tree in 
Figure 2a. The following results would be obtained: 
Jt {5},Kt (2},Et0; 
Q + Request( 4, CL2,3,4,5), C&51 ) ; 
44 + (C, {1,3,4), (*, ~4, Request( 2, 1123, (12) 1, 

RequeW, (31, (33 h 
Request(% {5L (5) >, 
Request( 6,0,0 ) > > ; 

Q2t(C,0,<*,~2,Request(l, W, (11 >H; 

Ql t~1;Q3t~3;Q5t~~;andQ6t1. 

Now, suppose that observations were made of X6 = x*6 

and X9 = x*9. The caches for nodes 8,9, 6, and 4 would 

be invalidated and E t { 6,9) ; 
75j + ( -k 6, x*6, ‘rcfj > ; 794 + ( k 6, x*6,7$3 ) ; and 

7E9 * ( 439, x*9, x9 > - 
In response to query P( x2 1 x6 = x*6, x9 = x*9 ): 

Jt {2},K+QI; 
Q + Request( 4, I U,3,4,6,7,9), ( 11 > ; 
Q4 + ( C, { L3,41, l *, q, RequW 2, C W, { 12) 1, 

RequW 3, 131, (31 1, 
Request( 5,0,0 ), 
Request( 6, Hi’L919 0 ) > > ; 

Q2 t cached result from above ; 

Q6 + ( x:, 0, ( *, 7$j3 Rquest( 8,0, 0 >, 
Rquest( 9, (7,9L (01 > > > ; 

Q9 + ( C, (71, ( *, ng, Request( 7, (7),{7) ) > > ; 

Q3t~3;Q5tl,Q7t~7;andQstl; 

5. Conclusions and Extensions 
In this paper, we have presented the Symbolic Probabilistic 
Inference Algorithm along with a proof of its correctness. 
SPI is a goal-driven rather than data-driven algorithm, 
which performs a variation of dependency-directed backward 
search in response to arbitrary conditional queries. 

There are many ways that SPI can be refined for 
practical implementation. The most significant issue is the 
construction of the search tree. A promising approach 
appears to be recursive decomposition, in which the search 
tree is made as balanced and shallow as possible [Cooper, 
1990; Fiduccia and Mattheyses, 19821. This not only 
allows for parallel processing along the independent 
branches, but means that observations will invalidate the 
fewest possible caches. 

Given a search tree, there are still difficult (NP-hard) 
decisions to made, since there can be significant benefit to 
postponing evaluation of an expression, maintaining it in 
symbolic rather than numeric form. For example, if one 
factor in a distribution product shares none of the 
dimensions being summed over, then that factor can be 
pulled out of the sum as in Lemma 1. It might also be 
worthwhile to reorder the factors in the product before 
performing the summation [D’Ambrosio, 1989; 
D’Ambrosio and Shachter, 19903 . 

There are additional interesting tradeoffs between 
symbolic and numeric computations of intermediate results. 
By evaluating expressions completely at nodes, caches can 
be created to prevent repeated computations. Sometimes, 
however, postponing those evaluations can lead to 
improved factoring opportunities. Finally, the search tree 
can be constructed dynamically in response to queries, 
yielding the most efficient search structure, but eliminating 
caching opportunities. Much needs to be learned about the 
relative benefits of such customized query-processing versus 
maintaining the accumulated information. 
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