
Symbolic Probabilistic Inference in Belief Networks

Ross D. Shachter, Bruce D’ Ambrosio, and Brendan A. Del Favero

Engineering-Economic Systems Dept. Department of Computer Science Engineering-Economic Systems Dept.
Stanford University Oregon State University Stanford University

Stanford, CA 943054025 CorvalIis, OR 97331-3902 Stanford, CA 94305-4025
shachte@sumex-aim.stanford.edu dambrosic@cs.orst.edu a.apollo@macbetb.stanford.edu

Abstract
The Symbolic Probabilistic Inference (SPI)
Algorithm [D’Ambrosio, 19891 provides an efficient
framework for resolving general queries on a belief
network. It applies the concept of dependency-directed
backward search to probabilistic inference, and is
incremental with respect to both queries and
observations. Unlike most belief network
algorithms, SPI is goal directed, performing only
those calculations that are required to respond to
queries. The directed graph of the underlying belief
network is used to develop a tree structure for
recursive query processing. This allows effective
caching of intermediate results and significant
opportunities for parallel computation. A simple
preprocessing step ensures that, given the search tree,
the algorithm will include no unnecessary
distributions. The preprocessing step eliminates
dimensions from the intermediate results and prunes
the search path.

1. Introduction
Belief networks, directed graphical stmctores representing
the probabilistic dependency among a set of variables, are
an increasingly popular knowledge representation for
uncertain reasoning. Much of their success is due to a
growing body of methods for evaluating queries and
performing probabilistic inference. The most popular
methods [Jensen et al., 1990; Kim and Pearl, 1983;
Lam&en and Spiegelhalter, 1988; Pearl, 19861 gain much
of their performance by efficient precomputation of simple
queries in response to new observations.

The Symbolic Probabilistic Inference Algorithm (SPI)
[D’Ambrosio, 1989; D’Ambrosio and Shachter, 19901, on
the other hand, is a goal-driven method, which can respond
to arbitrary conditional or conjunctive queries. SPI is
incremental with respect to both queries and observations.
It uses the structural information in the belief network
graph to construct a search tree of efficiently evaluahle
factored symbolic expressions, which allows parallel
computation and caching of intermediate results. By
incorporating an efficient preprocessing step and
recognizing when we do not need a full joint distribution, it
can achieve additional savings in search and computation.

Section 2 presents an overview of SPI and the key
concepts which underlie it, while Section 3 is a formal

126 AUTOMATED R~SONING

presentation of the framework and proofs of the correcmess
of SPI. The details of the algorithm are presented in
Section 4, and conclusions and extensions are in Section 5.

2. Overview
SPI reorganizes the nodes in a belief network into a tree

structure for query processing by a procedure in which every
node is visited at most twice. Queries are directed to the
root of the tree, which in tom generates queries for its
subtrees and so forth until the response to a particular query
can be determined and returned to the next higher level.
Once a node has responses from all of its subtrees it can
compute its own response. This process continues until
the root of the tree retmns a response for the original query.
The performance of SPI depends critically on the
organization of this search !xee.

There is a condition on the cons!ruction of the search
tree: if there is an arc between two nodes in the original
belief network, then one node mast be the root of a subtree
containing the other. In other words, there can be no arcs
in the belief net behveen nodes that are in parallel subtrees.
Conversely, whenever two nodes are “separated” by higher
root nodes, they can and should be placed in different
subtrees. (Two nodes are said to be seuarated by a set if
every undirected path between the nodes contains an
element from the set.)

Figure 1. Example belief network.

For example, consider the belief network shown in
Figure 1, containing nodes numbered 1 through 9. Any
node can be chosen to be the root of a search tree, but node
4 seems like a promising choice, since it separates the
other nodes into four subtrees, (1,2], (31, (5). and
(6, 7, 8, 9). A possible search tree for this network is

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

shown in Figure 2a. Some other search trees for the
network are drawn in Figure 2b and 2c. There are many
different configurations for the subtree { 6,7,8,9} in a tree
rooted by node 4. Several of these are shown in Figures
2d, 2e, 2f, and 2g. Note that in the tree drawn in Figure
2e, node 7 roots one of the subtrees for node 6. There is no
requirement that a subtree root, such as node 7, have an arc
in the belef network to-one of its higher level roots. The
only requirement is that, since there is an arc (7, 9) in the
belief net, node 9 must either be higher or lower than node
7 in the tree.

a)

6

I
5

I
4

4-h

I
1

e) 6

A
I I 7 9 9) 6

f)
I

9 7

A
I

I I"
8 9

Figure 2. Possible search trees for the network in Fig. I.

In general, there are many alternate tree structures possible
for a given. belief network. We would like to choose a
structure that facilitates optimal performance for the
anticipated queries. Since the processing in parallel
subtrees is independent, it can be performed in parallel and
using independent information. This suggests that a good
heuristic might be to branch wherever possible and as high
as possible in the tree. One rule of thumb might be to
select that root node for which the largest subtree is as
small as possible. In this respect the tree drawn in Figure
2a is better than the ones in 2b and 2c.

We can illustrate the basic concepts underlying SPI
with a few simple examples. Corresponding to each node j
in the belief network is a conditional probability
distribution 7Cj for the variable Xj, conditioned on j’s

parents. The joint probability distribution for all of the
variables is obtained in factored form by multiplying their
conditional distributions,
P(Xl’X1, . . . ,Xg=xg}

= P(Xl’Xl} P(X,=x, I X1=x1}

. . . ‘(‘9=‘9 ’ ‘4,6,7=‘4,6,7)
= x1(xl > x2(x1,2 > -*- %j(x4,6,7,9) 9

where ‘4,6,7,9 is a vector whose components are

symbolically matched to the proper dimensions.

Suppose that we want to find P(Xl). Of course, this

is simply stored in xl, but we can find it by using the

more general method of summing over the joint
distribution,
P(x1=x1) =cx2 P(x1=x1, . . . , xg=xg)

, a** ,

= =x2 , a** ,
g xlt xlu, 5d x1,2 > a.- + x4,jJCJ >-

Now we can recognize that n1 does not vary in the

summation, and thus it can be brought out of the sum.
Using the property that conditional distributions sum to 1,
we can eliminate each of the distributions in turn to obtain
PI x1=x1 >

= Z1(‘1) cx2 , a-0 ,
g 7c2(‘1,2) -0. “9(‘4,6,7,9)

= ☺ q (Xl > l

In a similar way we can find P(Xl I X2) , which can

easily be computed1 from P(X 1, X2) ,

P(x1=x1, x2=x2)

= cx3
, **a ,

g P(x1=x1, . . . , xg=xg)

= x1(Xl)7c2(x1,2 1.
This approach can also be applied to more complex

problems, such as P(X5 I X2),

X5,2=x5,2)

= “1,3,4,6,7,X,9
P(x1=x1, . . . , xg=xg)

= zx1,3,4,6,7,8,9 ?(‘1) .Tc2(‘1,2) 7c9(‘4,6,7,9)

==x134 %(‘l) E2(x1,2) “3(‘3) 7c4(x1,2,3,4)
3 ,

Z5(x4,5) -
We are unable to simplify this final expression any more
by distributing terms. To compute any further, we must
use the actual numbers. Nonetheless, it does still pay to
order the terms so as to minimize the number of
calculations and the size of intermediate results
[D’Ambrosio and Shachter, 19901.

Suppose that X3 has been observed with value x*~.

The solution for P(X5, X2 I X3 = x*~) is similar to the

one above, except that the specific value for x3 can be

substituted into all of the distributions and it should not be
summed,
P(X5 2=X5 2 I X3=X*3)

= ix1 , ,
,kl(Xl) z2(xl,2) “3(x*3) z4(xl,2 47 x*3)

7c5(x4,5)-
Finally, suppose that we want to find P(X5 I X4) .

We could easily obtain this from P(X5, X4), but we can

save work if we recognize the difference between the two

‘A conditional probability is defined as
P(x~=x~lx2=x2} = P{X~‘X~,X2’X2} / cy]

PW1=y1X2=x2).

SHACHTERETAL. 127

queries. The former is simply the distribution,
P{ X5=x5 I X4=x4) = ~s(x4,5), while the latter requires

multiplication and summation. In general, we can
recognize cases in which we can obtain the conditional
more easily that the joint distribution.

The operations shown in these examples correspond
exactly to those in SPI. There are three basic operators:
product of distributions, summation of a distribution over a
set of variables, and substitution of an observed value into
a distribution. We can apply these operators both
symbolically and numerically. Symbolic operations help
us recognize when we can apply the distributive law to pull
a factor out of a summation. On the other hand, we must
sooner or later evaluate to numbers. If we maintain a cache
of numerical results, we can avoid repeating their
calculation.

3. Framework and Notation
In this section, we provide a formal description of the
framework for the algorithm, and prove the fundamental
results underlying it.

We assume that we are given a fully specified belief
network, which contains a directed acyclic graph on a set of
nodes N. Each node j corresponds to a random variable X-,

J
which can take on a finite number of possible values
X.E ~j with conditional nrobabilitv distribution n:

J
jw Asa

convention, a lower case letter represents a single node
while an upper case letter represents a set of nodes, so that
XJ denotes the vector of variables indexed by the set J.

Therefore, the conditional distribution xj for node j can be

expressed in terms of its parents or conditional nredecessors
C(i),

7cj (Xj"C(i)) = P{ Xj = Xj I XCci) = XC(i) }.

If the node j has no parents, C(i) = 0 and “j is an

unconditional probability distribution. Distribution ni has

dimensions D(i),
W)=juC(i),

J

and we can think of the distribution as a nonnegative
function, 7cj: aD(j) + R . We can extend the definition

of node conditional distributions and their dimensions to
apply to sets so that

ZJ (‘D(J)) = =j, J 7cj(‘D(j))-
We say that there is an-undirected path or chain between

nodes i and j if we can get from node i to node j in the
network along arcs ignoring their direction. When there is
a chain between two nodes, they are said to be connected;
otherwise they are disconnected. Clearly, if node i is
connected to node j, then node i will be connected to node k
if and only if j is connected to k. We can therefore identify
the maximal connected sets of nodes, called components. If
there is some set S such that every chain between nodes i
and j contains a node from S , S is said to separate i and j.
Any set of nodes disjoint from S can be partitioned into
maximal sets which are the components separated by S.

A structure on a set of nodes is said to be a tree if
exactly one of the nodes is identified as its root and the
others are partitioned into subtrees, which are themselves
trees. In SPI, all of the nodes are organized into a search
tree. For each node i, let T(i) be the nodes in the subtree
rooted at node i and let S(i) be the roots of all subtrees
containing i. The components of T(i) \ (i} 2 separated
by S(i) form the subtrees of T(i), and the roots of those
subtrees are given by R(i). For example, in the tree drawn
in Figure 2a, T(6) = (6, 8, 9, 7 } , S(6) = (4, 6) , and
R(6) = (8,9) . If there are separate components in the
original belief network, one can create a “fictitious node” 0
with no arcs, so D(0) = 0 and no = 1. Each of the

components is then a subtree in T(0).
As stated earlier, the search tree has one restriction on

its organization. If there is an arc between nodes i and j in
the belief network then either i E S(j) or j E S(i). This is
enforced automatically by including all (conditionally)
connected nodes in the same subtree. There is still
tremendous flexibility in the construction of the search tree,
since the choice of root node for any tree is arbitrary.

Generalized Distributions
A nonnegative function Q: QJuK -+ R will be called a

(generalized) distribution for J given K if it can be
normalized to compute P(XJ 1 xK) , nmdy,

P(XJ=XJIXK=XK)

Although the generalized distribution contains sufficient
information to compute the conditional distribution, it
might not have enough to compute the joint distribution
p(XJ”K 1 * We define three operators on these

distributions: product, summation, and substitution. l

Given distributions Q I and Q2 on sets Jl and J2, the

conformal product of the distributions is given by

where Q(XJ~“J~) = Ql(xJI) Q2(xJ21 -

The summation over dimensions K is Q = (c, K, Q1 >

Lastly, the substitution of observation x*i in dimension i

is Q = (k, i, x*i, QI)

whereQ(xJI\(i})=Ql(Xi=x*i,XJl\{i} =xJI\(i} 1.

Note that the product increases the dimension of the
resulting distribution, while the summation and
substitution decrease it. Processing time is proportional to
the size of the distributions, which are exponential in the
number of dimensions, so it is advantageous to postpone
performing the product operation as long as possible, and
instead to perform summation and substitution as soon as
possible.
We can represent a distribution either by the actual

*The symbol ‘T’ is set subtraction, A \ B = (j E A : j E B }.

128 AUTOMATED REASONING

function, or by a symbolic expression of operators applied
to distributions. Symbolic manipulation to the expression
allows us to reorder terms to reduce computation time. Of
course, at any time, the expression can be evaluated to
obtain the numerical distribution. The key to reordering
operations is given by the following lemma, which just
states the distributive law for addition and multiplication of
real numbers in terms of the notation for SPI.

Lemma 1. Distributive Law for Distributions
Given distributions Ql and 42 on sets JI and J2

(C, K (*, Q1, Q2 > >

The lemma states that instead of summing after
multiplying two distributions, we can sum one dis&bution
over dimensions for which the other distribution does not
vary before multiplying the distributions. Since this
reduces the number of dimensions processed in the outer
sum, it can lead to substantial savings. We will try to
exploit this property whenever possible in evaluating a
query. Consider the search tree shown in Figure 3, in
which A, B, and C are now sets of nodes. This represents
the general case in SPI, in which B is a subtree, C is the
union of B’s sibling subtrees, if any, and A is the remainder
of the nodes N in the network. If we want to find P(XM }

for some subset M of N, then the distributive law can be
applied to this search tree, by the following theorem.

Figure 3. General Network for the Proof of SPI.

Theorem 1.
Given an arbitrary subset M of N, and a partition of N
into sets A, B, and C, such that B and C are separated
by A, then the generalized distribution
Q(xM) = P(XM =xM] is

Q=(C,M'\M,(*, ~A,(*~(C,B\M’J$),

(ZC\M’,“c)HL
where M’ = M u D(A) .

Proof:
Q can be obtained by summing all variables except M
from the joint distribution, which is just the product of
the node distributions,
Q=(C,N\MP(XN 1)

=(C,N\M,(*,~A,(*,~~B,~C))).
Since dimensions D(A) appear in distributions XA we

cannot pull ‘rcA out of the sum for D(A). Nonetheless,

the construction of the search tree ensures that

D(B) A D(C) c D(A), so three applications of Lemma
1 yield
Q=(C,M'\MA*, ZA, (c, 0, (*, (c, B \M’, Kg),

cLC\M’JcH)H.

In general, the response to a query is a generalized
distribution and not necessarily a full joint distribution.
Suppose that the desired distribution has dimensions M and
is obtained by multiplying the distributions in nodes L,
where D(L) = MuL. The resulting distribution,
p(XMnL I xm 1, is then obtained by summing over

L/M. For example, Theorem 1 is the special case for
which L = N. The search tree in Figure 3 can now be
applied to the conditional case.

Theorem 2,
Given arbitrary subsets M and L of N such that D(L) =
M u L, and a partition of N into sets A, B, and C, such
that B and C are separated by A, then the generalized
distribution
Q(xM) = p(XMnL=XMnL I Xm=xm) is

Q=(C,M’\M,
(*? ~EA~L,(*,(C,B~L\M’,~~~,L),

(C,CnL\M,xc,L)))),
where M’ = L n [M u D(AnL)] .

proof:
Because D(L) = M u L, summation and product yield
Q=(~,L\M,(*,KAnL,(*,“BnL,~CnL)))

=(C,M’\M,(*,“A,--,L,

C,ar,(*,(C,BnL\M’,xg,L),

(C,CnL\M,~cnL)))),
by the same logic as Theorem 1.

Incorporating Evidence
Evidence is entered in the system in the form of exact
observations of the values of variables. The set of
variables which have been observed is denoted by E.
Suppose that Xi has been observed with the value x*i. The

substitution operator (k, i, X*i, Q) can now be applied to

any distribution Q to incorporate that evidence into the
distribution. There is no longer any need to sum out
dimension i and, in fact, it would be an error to do so.
Because dimension i can no longer be summed over and the
substitution operator eliminates all instances of it, it can be
freely distributed within all products, down to the node
distributions themselves. This substitution at each node
distribution can be performed at every computation, but it
is much simpler to substitute for dimension i in every
distribution in which it appears whenever its observation is
reported. Those distributions in which dimension i appears
belong to node i and its children. Therefore, the node
distributions Zj for those nodes should be modified by

“j(‘D(j)w) t “j(xD(j)/E, X*i) = (&, i, X*i, ~j > .

Once the evidence has been incorporated into the node
distributions, all of our earlier results can be applied, using

SHACHTERETAL. 129

the new dimensions of the distributions. For example, obtained by multiplying the distributions in nodes L and
suppose that a desired distribution has dimensions M and is summing over dimensions L \ (E u M), which must
obtained by multiplying the distributions in nodes L, where therefore have dimensions W = M u [D(L) \ (L u E)] .
D(L) = M u L u E and M n E = 0. This is a The node’s response is a generalized distribution Q for
straightforward extension of Theorem 2. W nL given W\L,

Q(XW > = P(XWnL’XwnLy XEnL’X*EnL 1
xm=xw\L, xm=x*E\z, } . Corollarv 1.

Given arbitrary subsets M and L of N such that D(L) =
M u L u E and M n E = 0, and a partition of N into
sets A, B, and C, such that B and C are separated by A,
then the generalized distribution
Q(xM)

= p(XMnL = XMnL, XEnL = X*EnL I
xNI\L=x M\LI xE\L = x*E\L 1 is

Q=(C,M'\M,
(*v n&&v (*, (c, B n L\(E ” M), “BnL),

(C,CnL\(Eu M3,~cnL)))),
whereM’=(L\E)n[MuD(AnL)].

4. The Symbolic Probabilistic
Inference Algorithm

We can now present a complete description of SPI in terms
of the framework developed in the previous section, given a
belief network and a search tree.

The general form of query received by SPI is of the
formP{ XJlXK,XE= x*E), where X*E are the recorded

observations. This query is transformed and sent to the
highest root node in the search tree. When that node has
obtained a response to all of its queries from its subtrees, it
returns a generalized distribution for J given K, which can
then be normalized to the desired result.

The query actually sent to the highest root node consists
of the set of node distributions L needed to respond to the
query and the dimensions M of the desired response. The
sets L and M can be computed by an algorithm which runs
in time linear in the number of nodes and arcs in the belief
network graph [Geiger et al., 1989; Geiger et al., 1990;
Shachter, 1988; Shachter, 19901. This algorithm operates
on a copy of the graph: after deleting all outgoing arcs
from K u E and deleting all nodes which are neither in nor
ancestors of J u K u E, the set L is those nodes connected
to J and M = (J u K) n D(L) .3 These sets satisfy
D(L)=MuLuEandMnE=0. Theformulaeare
efficient and simple to implement. We refer the reader to
the above-cited literature for more explanation.

The response from the search tree will be a generalized
distribution Q for J given K satisfying

The heart of the SPI algorithm can now be described.
At any node i, a request arrives for a distribution to be

3We assume without loss of generality that E, K, and J are
disjoint. If they are not, then the response can be computed

using E, ICE, and JYKuE), with an additional check for
consistency among the overlapping values.

Of course, if such a distribution had been computed earlier
and cached, it could be returned immediately. Usually,
however, it will be necessary to send requests to the
subtrees below this node in order to compute the response.

The recursive step of the SPI request is shown in Figure
4. The first three if statements check whether there is a
cached result and whether the main processing block can be
avoided by recognizing two important special cases. The
main processing block in general has been verfied by
Corollary 1.

algorithm Request (i, L, M)
begin

if (L, M) is cached at this node
then Qi t cached result

else if L=Q)
then Qit 1

else if L= (i}
then Qi t n;i

else begin main processing block
if iEL
then M’t(L\E)n[MuD(i)]
else M’t M;
Qi+l;
for r E R(i)

Qi t (*, Qi, Request (r, LnT(r), M’nT(r))) ;
if iEL
then Qit(C,M'\M,(*,~i,Qi));
i f caching of result is desired
then cache result Qi for (L, M) ;

end main processing block ;
return Qi ;

end ;

Figure 4. The recursive request procedure
for each node in the SPI algorithm.

The query nature of SPI is designed to allow caching of
responses at each node. Whenever an observation is
received for node i, and the substitution operation performed
on the distribution of node i and its children, all caches
above node i and its children in the search tree become
suspect, and should be removed from the caches.
Alternatively, a check similar to the algorithm for
determining the original M set could be performed to
recognize for which cached expressions the new evidence is
relevant, and only those expressions need be removed from
the cache [Shachter, 19901.

The cache management scheme can exploit the
generalized distributions being returned. Suppose that the

130 AUTOMATEDREASONING

distribution Q,, the response to a request (L,, MC), has

been cached. Q, can serve as the response to a subsequent

request (L, M) with the same dimensions, provided that
L c L,, since in that case Q, has “too much” information.

On the other hand, if L r) L,, then a new response must be

computed, and it might as well replace Q, in the cache.

Examples
Suppose that SPI were applied to the query P{ X5 I X2)

for the belief network in Figure 1 using the search tree in
Figure 2a. The following results would be obtained:
Jt {5},Kt (2},Et0;
Q + Request(4, CL2,3,4,5), C&51) ;
44 + (C, {1,3,4), (*, ~4, Request(2, 1123, (12) 1,

RequeW, (31, (33 h
Request(% {5L (5) >,
Request(6,0,0) > > ;

Q2t(C,0,<*,~2,Request(l, W, (11 >H;

Ql t~1;Q3t~3;Q5t~~;andQ6t1.

Now, suppose that observations were made of X6 = x*6

and X9 = x*9. The caches for nodes 8,9, 6, and 4 would

be invalidated and E t { 6,9) ;
75j + (-k 6, x*6, ‘rcfj > ; 794 + (k 6, x*6,7$3) ; and

7E9 * (439, x*9, x9 > -
In response to query P(x2 1 x6 = x*6, x9 = x*9):

Jt {2},K+QI;
Q + Request(4, I U,3,4,6,7,9), (11 > ;
Q4 + (C, { L3,41, l *, q, RequW 2, C W, { 12) 1,

RequW 3, 131, (31 1,
Request(5,0,0),
Request(6, Hi’L919 0) > > ;

Q2 t cached result from above ;

Q6 + (x:, 0, (*, 7$j3 Rquest(8,0, 0 >,
Rquest(9, (7,9L (01 > > > ;

Q9 + (C, (71, (*, ng, Request(7, (7),{7)) > > ;

Q3t~3;Q5tl,Q7t~7;andQstl;

5. Conclusions and Extensions
In this paper, we have presented the Symbolic Probabilistic
Inference Algorithm along with a proof of its correctness.
SPI is a goal-driven rather than data-driven algorithm,
which performs a variation of dependency-directed backward
search in response to arbitrary conditional queries.

There are many ways that SPI can be refined for
practical implementation. The most significant issue is the
construction of the search tree. A promising approach
appears to be recursive decomposition, in which the search
tree is made as balanced and shallow as possible [Cooper,
1990; Fiduccia and Mattheyses, 19821. This not only
allows for parallel processing along the independent
branches, but means that observations will invalidate the
fewest possible caches.

Given a search tree, there are still difficult (NP-hard)
decisions to made, since there can be significant benefit to
postponing evaluation of an expression, maintaining it in
symbolic rather than numeric form. For example, if one
factor in a distribution product shares none of the
dimensions being summed over, then that factor can be
pulled out of the sum as in Lemma 1. It might also be
worthwhile to reorder the factors in the product before
performing the summation [D’Ambrosio, 1989;
D’Ambrosio and Shachter, 19903 .

There are additional interesting tradeoffs between
symbolic and numeric computations of intermediate results.
By evaluating expressions completely at nodes, caches can
be created to prevent repeated computations. Sometimes,
however, postponing those evaluations can lead to
improved factoring opportunities. Finally, the search tree
can be constructed dynamically in response to queries,
yielding the most efficient search structure, but eliminating
caching opportunities. Much needs to be learned about the
relative benefits of such customized query-processing versus
maintaining the accumulated information.

6. Acknowledgements
We benefited greatly from the comments of Greg Cooper,
Mike Fehling, Eric Horvitz, Perry McCarty, Ramesh Patil,
and Mike Wellman.

7. References
Cooper, G. G. (1990). Bayesian belief-network inference using
recursive decomposition (KSL 90-05). Knowledge Systems
Laboratory, Stanford University.
D’Ambrosio, B. (1989). Symbolic probabilistic inference in
belief nets . Department of Computer Science, Oregon State
University.
D’Ambrosio, B. and Shachter, R. D. (1990). Factoring
Heuristics for Generalized SPI. Conference on Uncertainty in
Artificial Intelligence, Boston, submitted.
Fiduccia, C. M. and Mattheyses, R. M. (1982). A linear-time
heuristic for improving network reliability. Nineteenth
Design Automation Conference, Las Vegas.
Geiger, D., Verma, T., and Pearl, J. (1989). d-separation: from
theorems to algorithms. Fifth Workshop on Uncertainty in
Artificial Intelligence, University of Windsor, Ontario, 118-
125.
Geiger, D., Verma, T., and Pearl., J. (1990). Identifying
independence in Bayesian networks. Networks, to appear.
Jensen, F. V., Olesen, K. G., and Andersen, S. K. (1990). An
algebra of Bayesian belief universes for knowledge based
systems. Networks, to appear.
Kim, J. H. and Pearl, J. (1983). A computational model for
causal and diagnostic reasoning in inference engines. 8th
International Joint Conference on Artificial Intelligence,
Karlsruhe, West Germany.
Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local
computations with probabilities on graphical structures and
their application to expert systems. J. Royal Statist. Sot. B,
50(2), 157-224.
Pearl, J. (1986). Fusion, propagation and structuring in belief
networks. Artificial Intelligence, 29(3), 241-288.
Shachter, R. D. (1988). Probabilistic Inference and Influence
Diagrams. Operations Research, 36(July-August), 589-605.
Shachter, R. D. (1990). An Ordered Examination of Influence
Diagrams. Networks, to appear.

SHACHTERETAL. 131

