
An Approach to Reasoning About Continuous
Change for Applications in Planning

Thomas Dean* Greg Siegle
Department of Computer Science

Brown University
Box 1910, Providence, RI 02912

Abstract

There are many planning applications that require an
agent to coordinate its activities with processes that
change continuously over time. Several proposals have
been made for combining a temporal logic of time with
the differential and integral calculus to provide a hybrid
calculus suitable for planning applications. We take one
proposal and explore some of the issues involved in im-
plementing a practical system that derives conclusions
consistent with such a hybrid calculus. Models for real-
valued parameters are specified as systems of ordinary
differential equations, and constructs are provided for
reasoning about how these models change over time.
For planning problems that require projecting the con-
sequences of a set of events from a set of initial con-
ditions and causal rules, a combination of numerical
approximation and symbolic math routines and a sim-
ple default reasoning strategy provide for an efficient
inference engine.

Introduction
Many problems in planning, scheduling, and decision
support require reasoning about processes that change
continuously over time (e.g., determining how long to
leave a valve open in order to fill a container with-
out causing it to overflow, or when to schedule the
delivery of parts after the start of a machining pro-
cess so as to minimize the total time spent in fabri-
cation). While there has been some research involv-
ing continuous change (e.g., [Hendrix, 1973]), much
of the work on temporal reasoning in artificial intel-
ligence has focused on discrete change [Allen, 1984,
McDermott
researchers 1

1982, Shoham, 19881. Recently, however,
Sandewall, 1989, Rayner, 19891 have noted

that the differential and integral calculus provide us

*This work was supported in part by a National Sci-
ence Foundation Presidential Young Investigator Award
IRI-8957601 with matching funds from IBM, and by the
Advanced Resea.rch Projects Agency of the Department of
Defense and was monitored by the Air Force Office of Sci-
entific Research under Contract No. F49620-88-C-0132.

with a perfectly good means of reasoning about contin-
uous change. Sandewall [1989] d escribes a hybrid cal-
culus that combines an interval temporal logic with the
differential calculus. In this paper, we discuss some of
the issues involved in implementing a variant of Sande-
wall’s hybrid calculus useful for applications in plan-
ning.

Discrete and Continuous Change
Following [McDermott, 19821 and [Shoham, 19881, we
treat time points as primitive and reason about inter-
vals in terms of points. Time points are notated t or ti,
i E 2 (e.g., tl, t2). V ariables ranging over time points
are notated t or ti, i E 2 (e.g., tl, tz). We introduce a
binary relation, 3, on time points indicating temporal
precedence. If tl and t2 are time points, then (tl, t2)
is an interval. We use the notation holds (t I, t2 ,p) to
indicate that the proposition p is true throughout the
interval (t 1, t2). For instance,

holds(tl,t2,temp(room32)>72’)

is meant to represent the fact that the temperature in
a particular room is greater than 72’ throughout the
interval (tl ,t2). We use the abbreviation holds(t, yl)
for holds (t , t , y3), and q yl to indicate that cp is always
true.

In order to reason about discrete change, the logic
has to be extended to deal with the problems that arise
due to the frame and qualification problems. As an
expedient, we adopt Shoham’s semantics of chronologi-
cal minimization [Shoham, 19881, noting that, while not
appropriate for all types of temporal reasoning, chrono-
logical minimization is entirely satisfactory for the sim-
ple sort of projection problems that arise in many plan-
ning applications.

In this paper, we are primarily interested in reasoning
about quantities that change continuously as functions
of time. Rather than invent new machinery within our
temporal logic, we will import into the logic as much
of the differential calculus as is needed for our planning
applications. Our treatment here roughly follows that
of Sandewall [1989].

132 AUTOMATEDREASONING

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

First, we introduce a set, U, of real-valued parame-
ters closed under the differential operator, d. If u E U,
then Pu E U, where Pu is the nth partial deriva-
tive of u with respect to time. We can trivially extend
the syntax to represent statements about the values of
parameters at various time points. For instance,

holds(tl,t2,y= 3.1472)
is meant to indicate that the parameter y has the
value of 3.1472 throughout the interval (tl ,t2). By
restricting y to remain constant throughout the inter-
val (t I, t2), we also restrict dy to remain 0 throughout
the same interval.

To guarantee this intended meaning, we have to aug-
ment the semantics somewhat. In addition to a set of
parameters U, we assume that each interpretation in-
cludes a function Q : (R x U) ---) R, where we employ
the set of real numbers, R, for the set of time points as
well as for the set of all parameter values.

Since we will find it convenient on occasion to model
abrupt changes in the value of parameters as they
change over time, we introduce the notion of a break-
point. We assume that a physical process is modeled
using a set of differential equations that describe con-
tinuous changes in the parameters over intervals of time,
and a set of axioms that determine what equations are
appropriate over what intervals. Breakpoints are times
at which the axioms signal a change in the differen-
tial equations used to model a given quantity or set of
quantities. Generally, at a breakpoint there is a discon-
tinuity in some time varying parameter.

We have to augment the semantics to account for
the behavior of parameters with respect to breakpoints.
Each interpretation must include a set of breakpoints
S C R, so that for all u E U, Q(t, u) is continuous over
every interval not containing an element of S, and for
all t $Z S, $ = Q(t, au). Strange things can happen
at breakpoints, but not so strange that we will allow a
parameter to take on two different values. To avoid such
anomalies, we will have to introduce some additional
machinery.

At time to, we have a set of differential equations and
a set of initial va.lues for all of the parameters; these
equations and initial values are known to hold until
some indeterminate time Cl, at which point a break-
point occurs and the axioms determine a new set of
differential equations and a new set of “initial” values.
In order to establish breakpoints and the values for pa-
rameters immediately following breakpoints, we need
to refer to the values of parameters “‘just before” and
“just after” breakpoints. To do so, we define the left
and right limits of a parameter I: at time t as:

A discontinuity occurs at t with regard to a parameter
x whenever the left and right limits are not equal:

As long as there are no discontinuities, the differential
equations tell us exactly how the parameters vary with
time. The axioms tell us when breakpoints occur and
what differential equations and initial conditions should
be used to model processes between breakpoints. Dis-
continuities play a role in reasoning about real-valued
quantities analogous to the role played by clippings in
reasoning about the persistence of propositions. Just
as the axioms do not rule out spurious models result-
ing from unexplained clippings, neither do they rule out
models resulting from unexplained discontinuities.

Suppose that we have two objects moving toward one
another along a horizontal line. Assume that the sur-
face is frictionless, the objects are represented as identi-
cal point masses, and there are no external forces acting
on the objects. Let ~1 and ~2 represent the parameters
corresponding to the position of the first and second ob-
jects, respectively, as measured from some reference on
the horizontal line. At time 0, the first object is located
at position 0, and the second object is located 10 meters
to the right. A positive velocity indicates movement to
the right. We make use of the standard conventions for
notating position (a), velocity (ax = &), and acceler-
ation (a2a: = Z). Here are the axioms indicating the
initial conditions:

holds(O,q =O> holds(0,a2 =lO)

holds(O,+I= 2) holds(0,&2 = -3)

holds(O,&=O) holds(0,g2 =O>

where velocity is in units of meters per second. The
next axiom determines the new velocities immediately
following a collision breakpoint.

q ((⌧1 = x2) A (($1~$2) > 0)) 3 ((2; = 6;) A (2; = 2;))
For the most part, the propositions corresponding to

equations involving the parameters in U are constantly
changing. In order for us to make useful predictions,
however, certain equations have to persist over intervals
of time. Suppose you are told that at time to, CC = 0,
& = 2, and % = 0. If 3: = 0 persists, then there will be
discontinuities in & and 2. If % = 0 persists, then 5 = 2
has to persist or be discontinuous in order to avoid a
discontinuity in 5, and z is completely determined by
&= 2. However, if none of 51: = 0, $ = 2, or ji: = 0
persist, there need not be a discontinuity in any one of
a, &, or Z, but neither is there any way of predicting
the changes in z over time. In this example, we force
an interpretation by stating that the accelerations for
the two objects are always 0: q ((Zl = 0) A (& = 0)).

Using Sandewall’s extension of Shoham’s chronolog-
ical minimization, there is a single discontinuity in the
acceleration of the objects two seconds after time 0, af-
ter which the objects, having exchanged velocities, head
in opposite directions forever. We assume that the val-
ues of parameters are established in intervals not con-

9th x2) # 9th xr) taining breakpoints by differential equations. In the

DEAN AND SIEGLE 133

following, we distinguish propositions corresponding to
real-valued parameters taking on specific values (e.g.,
% = 2) from propositions corresponding to truth-valued
parameters (e.g., on(furnacel7)).

In the previous example, O((Zl = O)A(~, = 0))
serves as the model for ~1 and ~2. In other cases, it
may be convenient to infer a change in a model that
persists over some indeterminate interval of time, just
as we are able to infer changes in propositions that
persist over intervals of time. To handle this sort of
inference, we introduce a particular type of proposi-
tion models(a, m) where a: is a real-valued parameter
and m is a model for Z. If m is an nth-order differ-
ential equation, then it is assumed that the nth-order
equation determines all higher-order derivatives, and a.11
lower-order derivatives are known as part of the initial
conditions. By stipulating q ($ = 0), we implicitly in-
dicated holds(O,models(z,% = 0)) and that CC = 0
and & = 2 were the initial conditions at 0. Propositions
of the form models(q m) persist according to standard
chronological minimization.

Suppose that we want to reason about the tempera-
ture in a room heated by a furnace, and suppose that
the furnace is controlled by a thermostat set to 70’.
To make the example more interesting, suppose further
that the thermostat has a 4’ differential (i.e., the fur-
nace starts heating when the temperature drops to 68’
and stops when the temperature climbs to 72’). To rep-
resent parameters “dropping to” (1) or “climbing to”
(I) certain values, we define trans(J, u, V) (similarly
for 1) where u f U and ‘u E R as follows:

holds(t, trans(1, U, v)) G
Q(t, u) = ‘u A 3% t, Vt’-i t”d t, Q(t”, u) > Q(t, u)

Propositions of the form trans ([J.] I], u, V> are used to
represent point events of the sort that trigger changes.

To model changes in the room’s temperature when
the furnace is off, we use Newton’s law of cooling

dr , .
z= --CEl(T - a)

where r is the temperature of the room, a is the tem-
perature outside the room, and ~1 depends on the in-
sulation surrounding the room. To model changes in
the room’s temperature when the furnace is running,
we use

dr - = IQ(f - T) - IGl(T - a)
dt

where f is the temperature of the furnace when it is
running, and ~2 depends on the heat flow characteris-
tics of the furnace. The following axioms describe the
temperature in the room over time.
q (trans(f,T,72’) ~on(furnacel7)) >

models(r,drr = -nr(r - a))

O(trans(J, T, 68”) A on(furnacel7)) >
models(r , arr = IGZ(f - T) - Kl(T - up

Suppose that we are interested in the temperature in
the room over the interval from time 0 to time 10. We
are told that the temperature outside is 32’ throughout
this interval, and that at time 0 the room is 75’ with
the furnace on but currently not heating. We represent
these facts as follows:

holds(O,r = 75’) holds(O,& = -K~(T - u))

holds(O,lO,u = 32’) holds(O,on(furnacel7))

With a little extra work (e.g., in order to eliminate
certain unintended models, we have to take steps to
avoid simultaneous cause and effect), we can obtain
the following inferences. The temperature drops off
exponentially’ from 75’ to 68’ at which point the fur-
nace starts heating and continues until the temperature
reaches 72’, after which the furnace toggles on and off
forever with the temperature always between 68’ and
72’.

Note that we can always substitute a set of models
that persist over different intervals of time for a single
model that is true for all time but with additional pa-
rameters that make the model behave differently over
different intervals of time. In the furnace example, we
might state that q (& = IG~(f - a) - ~1 (T - a)) and
then have rules that govern the value of f over different
intervals of time. The choice of whether to vary the
model or employ a single model and vary the parame-
ters of the model is a matter of preference. The system
described in the next section supports either approach.

Projection Involving Continuous Change
In this section, we discuss the issues involved in building
a temporal inference engine for reasoning about contin-
uously changing quantities. We consider only a limited
form of temporal reasoning called projection that can
be performed by making a single sweep forward in time
inferring at each point what things change and what
things remain the same. Following [Dean and McDer-
mott, 19871, we distinguish between a general type of
event or proposition (e.g., “the furnace came on”) and
a. specific instance of a general type (e.g., “the furnace
came on at noon”). The latter are referred to as time
tokens or simply tokens. A token associates a general
type of event or proposition with a specific interval of
time over which the event is said to occur or the propo-
sition hold. Tokens are notated token(t, ;> where t is a
type and i is an interval; begin(;) and end(i) indicate
the begin and end points respectively of the interval i.
Projection uses a set of initial tokens and causal rules

‘The behavior of the system can be described in terms
of a piecewise continuous function in which the specific
solutions for each piece are given, alternately, by r(t) =
32’ + (~0 - 32’)ewKt and r(t) = C + (TO - C)IT-(~~+“‘)~
where C = K~b00°+K1320

Kli-%
, TO is the initial temperature of the

room for that particular piece and t is the time elapsed from
the beginning of that piece.

134 AUTOMATEDREASONING

corresponding to events and propositions to generate
additional tokens corresponding to the consequences of
the events. Metric constraints are handled as in [Dean
and McDermott, 19871

We require that the interval corresponding to a to-
ken persist no further than the first subsequent interval
corresponding to a token of a contradictory type. For
any proposition type cp, cp and l(o are said to be con-
tradictory. Additional contradictory types have to be
explicitly asserted. For instance, the assertion
contradicts(location(X,Y),location(X,Z)) t Y#Z.

indicates that any two tokens of type location(arg1,
arg2) are contradictory if their first arguments are the
same, and their second arguments are different. The
process of modifying the bounds on token intervals cor-
responding to propositions to ensure that tokens of con-

, tradictory types do not overlap is referred to as persis-
tence clipping.

Causal rules for reasoning about discrete change
are of the form project (antecedent-conditions, trig-
ger-event, delay, consequent-effects) to indicate that,
if an event of type trigger event occurs, and the
antecedent conditions hold at the outset of the in-
terval associated with trigger event, then the conse-
quent effects are true after an interval of time de-
termined by delay. The trigger event is specified as
a type, the antecedent conditions and consequent ef-
fects are specified as types or conjunctions of types,
and the delay is optional defaulting to c, a positive in-
finitesimal. As an exampleproject(lon(furnacel’l),
toggle(switch42), on(furnacei7)) indicates that,
if the switch on the furnace is toggled at a time when
the furnace is not on, then, after a delay of E, it will
come on. The basic algorithm for persistence clipping
and projecting the consequences of events is described
in [Dean and McDermott, 19871; in the following, we
extend that algorithm to handle continuous change.

Let U be a set of real-valued parameters, and P be
a set of boolean-valued propositional variables.2 In ad-
dition, we introduce two mappings Q : R x U ---) ZR
and V : R x P + 2(truepfafse). The task of projection
is to determine Q and V for some closed interval of
R. We begin by considering the completely determined
case in which both Q and IT map to singleton sets (i.e.,
Q : R x U -+ R and V : R x P --+ (true, fdse}).

At the initial time point, we assume that the values of
a.11 parameters and propositional variables are known.
In addition, we are given a set of events specified to oc-
cur at various times over the time interval of interest.
We assume a set of projection rules as before. In addi-
tion, we assume a set of modeling rules for parameters
in U. A modeling rule is just a special sort of projec-
tion rule; the basic form is the same as that introduced

‘It should be n oted that, despite the presence of vari-
ables and complex terms in our rules, the underlying logic
is purely propositional.

earlier in this section, the only difference being that the
delay is always assumed to be E, and the consequent ef-
fects consist of parameter assignments in the form of or-
dinary differential equations with constant coefficients
(e.g., &A = 2, or a2u = 3au + 5u+ 4).

The projection rule from the last section for reasoning
about the temperature of the room in the case that the
furnace is on but not running is encoded as follows,
project(on(furnacel7),trans(T,r,72’),

models(r, dr’ = -~l(r - a))).

To make sure that persistence clipping is handled cor-
rectly, we state that a given parameter can have only
one model at a time.
contradicts(models(X,F¶l)9models(X,M2)) t MlfM2.

Now we can state the basic algorithm for perform-
ing projection given some set of initial conditions and a
projection interval (t8, tf). To simplify the description
of the algorithm, we assume that all events are point
events (i.e., if e is a type corresponding to the occur-
rence of an event, token(e, k) > (begin(k) = end(h))),
and all events described in the initial conditions begin
after t,. Let A be the set of all currently active process
models (i.e., all m such that holds(t,, models(z, m))
for some a). Let & be the set of pending events (i.e.,
the set of all events, token(e, Ic), generated so far such
that t, 4 begin(k)). Let C be the set of current con-
ditions (i.e., all u* = v such that there exists m E A
such that holds(t,,models(z,m)), u = dnx for some
n, and holds (t,, U” = v) .

In the cases that we are interested in, we can recast
a set of ordinary differential equations and their initial
conditions as a system of first-order differential equa-
tions. We can then solve these equations using numer-
ical methods based on the Taylor expansion (e.g., the
Runge-Kutta methods [Ralston and Rabinowitz, 19781)
and various forms of linear and nonlinear extrapolation
(e.g. the Adams-Bashforth and Adams-Moulton meth-
ods t Shampine and Gordon, 19751). In the following,
we assume the ability to generate solutions to ordinary
differential equations efficiently, and refer to the proce-
dure for generating such solutions as the extrapolation
procedure. Given a set of initial conditions and a pro-
jection interval (tJ, tf) projection is carried out by the
following algorithm.

1.

2.

3.

Set t, to be t,.

Set & to be the set of events specified in the initial
conditions.
Using A, C, and the extrapolation procedure, find
t, corresponding to the earliest point in time follow-
ing t, such that the trigger for some projection rule
is satisfied or tf whichever comes first. If t, # tf,
then tn could be the time of occurrence of the earli-
est event in I, or it could be earlier, corresponding to
the solution of a set of simultaneous equations (e.g.,
((XI = 352)A((& - k2) > 0))).

DEANAND~IEGLE 135

4.

5.

6.

7.

8.

9.

10.

11.

If t, = tf , then quit, else set t, to be t,.

Find all of the projection rules with the trigger found
in Step 3.
For each rule found in Step 5 whose antecedent con-
ditions are satisfied, create tokens corresponding to
the types of the consequent effects, except in the case
of consequent effects corresponding to parameter as-
signments (e.g., zi = 2:). Constrain the new tokens
according to the delay specified in the corresponding
rule, and add them to the database.
For each token added in Step 6 whose type corre-
sponds to an event, add it to E.
For each token added in Step 6 whose type does not
correspond to an event, find all tokens of a contra-
dictory type that begin before the newly added token
and constrain them to end before the beginning of the
new token.
If the trigger found in Step 3 corresponds to the type
of an event token’in I whose time of occurrence is t,,
remove it from E.

Use the consequent effects corresponding to param-
eter assignments found in Step 6 and the results of
extrapolation to determine c’. The parameter assign-
ments corresponding to the consequent effects of pro-
jection rules take precedence over the extrapolation
results. A is also updated at this time.

Go to Step 3.

The above algorithm has been implemented in Prolog
and C. We use C-Prolog as a front end and database
for storing projection rules. The extrapolation proce-
dure employs Runge-Kutta methods and is written in
C. Differential equations are specified using the nota-
tional conventions of Maple.3 Prolog routines are used
to preprocess the differential equations converting each
one into a system of first-order equations. We assume
that all equations are 5th order or less, and that they
can be rewritten so that the highest-order term is al-
gebraically isolated on the left-hand side of the equa-
tion. The system can make use of analytic solutions
when available, but, for the planning problems we are
concerned with, the extrapolation routine is more than
accurate enough. It is also generally faster to use the
extrapolation routine written in C than the analytic
solver written in Prolog.

To get a better idea of how the program works, con-
sider the following simple benchmark problem. Figure 1
depicts a pipe leading into a holding tank used to fill
portable tanks that are positioned beneath a second
pipe leading out of the holding tank. There are rotary
valves mounted on the pipes that restrict the flow of

3Maple is a widely distributed symbolic math package
developed by the Symbolic Computation Group in the De-
partment of Computer Science at the University of Water-
loo, Waterloo, Ontario.

K
in

0

Figure 1: Reasoning about fluid flow

% Constants: % Initial conditions: % Discrete events:
constsnt(srea,b). holds(O,u=O). occurs(l,turn(B;,,lS)).
constant(height,3). holds(O,v=O). occure(2,turn(Q,ut,QO)).
constant(volume,2). holda(O,h=O).
conatant(kin,6). holds(O,bi,=O).

occurs(b,turn(Bin,4S)).
occura(lO,turn(ej,,-60)).

constsnt(koUt,3). holds(O,g,,t =O). occurs(ll,turn(gout,-90)).

% Static models:
holds(T,models(r,r(t)=ki,*8i,(t)/(k4ut*e~~t(t)))).
holda(T,models(u,diff(u(t),t) = kin*8in(t))).
holds(T,models(v,diff(v(t),t) = k,,t*8,,t(t)*h(t))).
holds(T,modele(sp,sp(t)=spl(t)+ep2(t))).
holds(T,models(fI;,,diff(8i,(t),t)=O)).
holds(T,models(e,,t,diff(e,,t(t),t)=o)).
holds(T,modsls(P, -=C)) :- constsnt(P,C).

% Dynamic models:
holds(T,models(h,diff(h(t),t)=(k;,*8i,(t)-k,,t*B,,t(t)*h(t))/srea)) :-

holds(T,h < height).
project(always,trans(up,h,height),models(h,diff(h(t),t)=O)).
project(always,trans(down,r,height),

modals(h,diff(h(t),t)=(k;,*8;n(t)-kout*8,~t(t)*h(t))/area)).
holds(T,models(spl,spl(t)=O)) :- holds(T,h <height).
project(alwaya,trans(up,h,height),models(spl,spl(t)=u(t))).
projcct(always,trans(down,r,hcight),models(spl,spl(t)=O)).
holds(T,models(sp2,sp2(t)=O)) :- holds(T,v < volume).
project(always,trana(up,v,volume),models(sp2,sp2(t)=v(t))).

Figure 2: Prolog clauses for the fluid-flow problem

fluid; the valves vary from 0’ to 90’. We are interested
in the consequences of a plan involving a sequence of
adjustments to the two valves. In particular, we are in-
terested in the volume of the fluid in the portable tank
after the output valve is finally closed, and the total
amount of fluid spilled from either the holding tank or
the portable tank during the filling process.

Let Kin be the flow rate of the input valve in cu-
bic meters per degree minute, Kout be the flow rate of
the output valve in square meters per degree minute,
H be the height of the holding tank in meters, A be
the surface area of the portable tank, and V be its to-
tal volume. In addition to these constants, we have the
following state variables (functions of time): h is the
height of the fluid in the holding tank, 0i, is the angle
of the input valve, eout is the angle of the output valve,
u is the total volume of fluid to have entered the holding

136 AUTOMATED REASONING

tank, and v is the total volume of fluid to have left the
holding tank. Initially, we have h(0) = u(0) = v(0) = 0,
du = Kindin, and &J = KoUteouth, where 0in and dOZLt
are determined by the plan being evaluated. As long
as h < H, we have ah = (KinOin - K,,te,,th)/A.
If trans(1, h, H), then we have ah = 0, and, if
trans(l, r, H) where T = Kin8in/KoUt8,,t, we are back
to ah = (Ki,&, - Kouteout h)/A. To determine the total
amount of fluid spilled, we have to set up rules to han-
dle the various possibilities for h < H and v < 17. The
complete Prolog representation is shown in Figure 2.
During projection, every time that h rises to height, r
falls to height, or v rises to volume, the conditions for
certain projection rules shown in Figure 2 are met, and
these rules are used to generate tokens specifying new
models for various parameters.

For many planning problems, it is convenient to de-
fine a special function of time for evaluating alternative
plans. In our simple example, this evaluation function
is sp(t) which is the sum of the fluid spilled from ei-
ther tank during the evaluation interval. If the plan
consists of the five discrete events shown in Figure 2
and the evaluation interval is (0,12), then we can eval-
uate the plan using the query holds(12, sp=S) which
returns with S bound to 1.37. The response time is neg-
ligible for this query. The algorithm is guaranteed to
terminate if the projection interval is finite. The com-
plexity of projection is largely determined by the set
of causal rules. For the sorts of rules we have encoun-
tered in our planning problems, projection is at worst
a small polynomial in the size of the set of rules and
initial conditions.

Conclusion
The current implementation of our hybrid calculus is
convenient to use and remarkably fast for a prototype
system. It still lacks much of functionality of our pre-
vious temporal database systems [Dean, 19891. The
current system has only limited ability to reason about
uncertainty in either the time of occurrence of events
or the initial values of parameters. However, uncer-
tainty is difficult to handle even with discretely chang-
ing parameters and boolean variables [Dean and Boddy,
19881, and it appears that many of the techniques we
have developed for handling uncertainty involving dis-
crete change also apply in the continuous case.

The primary advantage of the hybrid system de-
scribed in this paper over most temporal reasoning sys-
tems is its increased expressiveness and precision. It
is clearly possible to model continuous processes using
discrete approximations, but such approximations are
often clumsy to formulate and sacrifice precision in or-
der to achieve a reasonable level of performance. In our
hybrid system, physical phenomena that are naturally
modeled as continuous processes can be done so in a
mathematical language designed for that purpose, and
discrete processes can be modeled using first-order tem-

poral logic which is well suited for that purpose. The
use of numerical methods for solving systems of ordi-
nary differential equations gives the modeler a great
deal of flexibility, and provides more than ample pre-
cision for the modeling tasks we have encountered so
far. In addition, for projection problems of the sort en-
countered in many planning applications, our system
subscribes to Sandewall’s semantics up to the precision
of the underlying numerical methods. Finally, and per-
haps most importantly, we are now able to easily rea-
son about planning problems that were impossible or
at least prohibitively complicated to do so previously.

References
[Allen, 19841 J ames Allen. Towards a general theory of

action and time. Artifkial Intelligence, 23: 123-154,
1984.

[Brachman et al., 19891 Ronald J. Brachman, Hec-
tor J. Levesque, and Raymond Reiter, editors. Pro-
ceedings of the First International Conference on
Principles of Knowledge Representation and Reason-
ing. Morgan-Kaufman, Los Altos, California, 1989.

[Dean and Boddy, 19881 Thomas Dean and Mark
Boddy. Reasoning about partially ordered events.
Artificial Intelligence, 36(3):375-399, 1988.

[Dean and McDermott, 19871 Thomas Dean and
Drew V. McDermott. Temporal database manage-
ment. Artificial Intelligence, 32(l):l-55, 1987.

[Dean, 19891 Thomas Dean. Using temporal hierar-
chies to efficiently maintain large temporal databases.
Journal of the ACM, 36(4):687-718, 1989.

[Hendrix, 19731 Gary Hendrix. Modeling simultaneous
actions and continuous processes. Artificial Intebbi-
gence, 4:145-180, 1973.

[McDermott, 19821 Drew V. McDermott. A temporal
logic for reasoning about processes and plans. Cog-
nitive Science, 6:101-155, 1982.

[Ralston and Rabinowitz, 19781 A. Ralston and P. Ra-
binowitz. A First Course in Numerical Analysis.
McGraw-Hill, New York, 1978.

[Rayner, 19891 Manny Rayner. Did newton solve the
“extended prediction problem?“. In Brachman et al.
[1989], pages 381-385.

[Sandewall, 19891 Erik Sandewall. Combining logic and
differential equations for describing real-world sys-
tems. In Brachman et al. [1989], pages 412-420.

[Shampine and Gordon, 19751 L. F. Shampine and
M. K. Gordon. Computer Solution of Ordinary Dif-
ferential Equations. W. H. Freeman and Company,
1975.

[Shoham, 19881 Yoav Shoham. Rea.soning About
Change: Time and Causation from the Standpoint of
Artificial Intelligence. MIT Press, Cambridge, Mas-
sachusetts, 1988.

DEAN AND SIEGLE 137

