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Abstract 

There are many planning applications that require an 
agent to coordinate its activities with processes that 
change continuously over time. Several proposals have 
been made for combining a temporal logic of time with 
the differential and integral calculus to provide a hybrid 
calculus suitable for planning applications. We take one 
proposal and explore some of the issues involved in im- 
plementing a practical system that derives conclusions 
consistent with such a hybrid calculus. Models for real- 
valued parameters are specified as systems of ordinary 
differential equations, and constructs are provided for 
reasoning about how these models change over time. 
For planning problems that require projecting the con- 
sequences of a set of events from a set of initial con- 
ditions and causal rules, a combination of numerical 
approximation and symbolic math routines and a sim- 
ple default reasoning strategy provide for an efficient 
inference engine. 

Introduction 
Many problems in planning, scheduling, and decision 
support require reasoning about processes that change 
continuously over time (e.g., determining how long to 
leave a valve open in order to fill a container with- 
out causing it to overflow, or when to schedule the 
delivery of parts after the start of a machining pro- 
cess so as to minimize the total time spent in fabri- 
cation). While there has been some research involv- 
ing continuous change (e.g., [Hendrix, 1973]), much 
of the work on temporal reasoning in artificial intel- 
ligence has focused on discrete change [Allen, 1984, 
McDermott 
researchers 1 

1982, Shoham, 19881. Recently, however, 
Sandewall, 1989, Rayner, 19891 have noted 

that the differential and integral calculus provide us 
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with a perfectly good means of reasoning about contin- 
uous change. Sandewall [1989] d escribes a hybrid cal- 
culus that combines an interval temporal logic with the 
differential calculus. In this paper, we discuss some of 
the issues involved in implementing a variant of Sande- 
wall’s hybrid calculus useful for applications in plan- 
ning. 

Discrete and Continuous Change 
Following [McDermott, 19821 and [Shoham, 19881, we 
treat time points as primitive and reason about inter- 
vals in terms of points. Time points are notated t or ti, 
i E 2 (e.g., tl, t2). V ariables ranging over time points 
are notated t or ti, i E 2 (e.g., tl, tz). We introduce a 
binary relation, 3, on time points indicating temporal 
precedence. If tl and t2 are time points, then (tl, t2) 
is an interval. We use the notation holds (t I, t2 ,p) to 
indicate that the proposition p is true throughout the 
interval (t 1, t2). For instance, 

holds(tl,t2,temp(room32)>72’) 

is meant to represent the fact that the temperature in 
a particular room is greater than 72’ throughout the 
interval (tl ,t2). We use the abbreviation holds(t, yl) 
for holds (t , t , y3), and q  yl to indicate that cp is always 
true. 

In order to reason about discrete change, the logic 
has to be extended to deal with the problems that arise 
due to the frame and qualification problems. As an 
expedient, we adopt Shoham’s semantics of chronologi- 
cal minimization [Shoham, 19881, noting that, while not 
appropriate for all types of temporal reasoning, chrono- 
logical minimization is entirely satisfactory for the sim- 
ple sort of projection problems that arise in many plan- 
ning applications. 

In this paper, we are primarily interested in reasoning 
about quantities that change continuously as functions 
of time. Rather than invent new machinery within our 
temporal logic, we will import into the logic as much 
of the differential calculus as is needed for our planning 
applications. Our treatment here roughly follows that 
of Sandewall [1989]. 
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First, we introduce a set, U, of real-valued parame- 
ters closed under the differential operator, d. If u E U, 
then Pu E U, where Pu is the nth partial deriva- 
tive of u with respect to time. We can trivially extend 
the syntax to represent statements about the values of 
parameters at various time points. For instance, 

holds(tl,t2,y= 3.1472) 
is meant to indicate that the parameter y has the 
value of 3.1472 throughout the interval (tl ,t2). By 
restricting y to remain constant throughout the inter- 
val (t I, t2), we also restrict dy to remain 0 throughout 
the same interval. 

To guarantee this intended meaning, we have to aug- 
ment the semantics somewhat. In addition to a set of 
parameters U, we assume that each interpretation in- 
cludes a function Q : (R x U) ---) R, where we employ 
the set of real numbers, R, for the set of time points as 
well as for the set of all parameter values. 

Since we will find it convenient on occasion to model 
abrupt changes in the value of parameters as they 
change over time, we introduce the notion of a break- 
point. We assume that a physical process is modeled 
using a set of differential equations that describe con- 
tinuous changes in the parameters over intervals of time, 
and a set of axioms that determine what equations are 
appropriate over what intervals. Breakpoints are times 
at which the axioms signal a change in the differen- 
tial equations used to model a given quantity or set of 
quantities. Generally, at a breakpoint there is a discon- 
tinuity in some time varying parameter. 

We have to augment the semantics to account for 
the behavior of parameters with respect to breakpoints. 
Each interpretation must include a set of breakpoints 
S C R, so that for all u E U, Q(t, u) is continuous over 
every interval not containing an element of S, and for 
all t $Z S, $ = Q(t, au). Strange things can happen 
at breakpoints, but not so strange that we will allow a 
parameter to take on two different values. To avoid such 
anomalies, we will have to introduce some additional 
machinery. 

At time to, we have a set of differential equations and 
a set of initial va.lues for all of the parameters; these 
equations and initial values are known to hold until 
some indeterminate time Cl, at which point a break- 
point occurs and the axioms determine a new set of 
differential equations and a new set of “initial” values. 
In order to establish breakpoints and the values for pa- 
rameters immediately following breakpoints, we need 
to refer to the values of parameters “‘just before” and 
“just after” breakpoints. To do so, we define the left 
and right limits of a parameter I: at time t as: 

A discontinuity occurs at t with regard to a parameter 
x whenever the left and right limits are not equal: 

As long as there are no discontinuities, the differential 
equations tell us exactly how the parameters vary with 
time. The axioms tell us when breakpoints occur and 
what differential equations and initial conditions should 
be used to model processes between breakpoints. Dis- 
continuities play a role in reasoning about real-valued 
quantities analogous to the role played by clippings in 
reasoning about the persistence of propositions. Just 
as the axioms do not rule out spurious models result- 
ing from unexplained clippings, neither do they rule out 
models resulting from unexplained discontinuities. 

Suppose that we have two objects moving toward one 
another along a horizontal line. Assume that the sur- 
face is frictionless, the objects are represented as identi- 
cal point masses, and there are no external forces acting 
on the objects. Let ~1 and ~2 represent the parameters 
corresponding to the position of the first and second ob- 
jects, respectively, as measured from some reference on 
the horizontal line. At time 0, the first object is located 
at position 0, and the second object is located 10 meters 
to the right. A positive velocity indicates movement to 
the right. We make use of the standard conventions for 
notating position (a), velocity (ax = &), and acceler- 
ation (a2a: = Z). Here are the axioms indicating the 
initial conditions: 

holds(O,q =O> holds(0,a2 =lO) 

holds(O,+I= 2) holds(0,&2 = -3) 

holds(O,&=O) holds(0,g2 =O> 

where velocity is in units of meters per second. The 
next axiom determines the new velocities immediately 
following a collision breakpoint. 

q  ((⌧1  = x2) A (($1~$2) > 0)) 3 ((2; = 6;) A (2; = 2;)) 
For the most part, the propositions corresponding to 

equations involving the parameters in U are constantly 
changing. In order for us to make useful predictions, 
however, certain equations have to persist over intervals 
of time. Suppose you are told that at time to, CC = 0, 
& = 2, and % = 0. If 3: = 0 persists, then there will be 
discontinuities in & and 2. If % = 0 persists, then 5 = 2 
has to persist or be discontinuous in order to avoid a 
discontinuity in 5, and z is completely determined by 
&= 2. However, if none of 51: = 0, $ = 2, or ji: = 0 
persist, there need not be a discontinuity in any one of 
a, &, or Z, but neither is there any way of predicting 
the changes in z over time. In this example, we force 
an interpretation by stating that the accelerations for 
the two objects are always 0: q  ((Zl = 0) A (& = 0)). 

Using Sandewall’s extension of Shoham’s chronolog- 
ical minimization, there is a single discontinuity in the 
acceleration of the objects two seconds after time 0, af- 
ter which the objects, having exchanged velocities, head 
in opposite directions forever. We assume that the val- 
ues of parameters are established in intervals not con- 

9th x2) # 9th xr) taining breakpoints by differential equations. In the 
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following, we distinguish propositions corresponding to 
real-valued parameters taking on specific values (e.g., 
% = 2) from propositions corresponding to truth-valued 
parameters (e.g., on(furnacel7)). 

In the previous example, O((Zl = O)A(~, = 0)) 
serves as the model for ~1 and ~2. In other cases, it 
may be convenient to infer a change in a model that 
persists over some indeterminate interval of time, just 
as we are able to infer changes in propositions that 
persist over intervals of time. To handle this sort of 
inference, we introduce a particular type of proposi- 
tion models(a, m) where a: is a real-valued parameter 
and m is a model for Z. If m is an nth-order differ- 
ential equation, then it is assumed that the nth-order 
equation determines all higher-order derivatives, and a.11 
lower-order derivatives are known as part of the initial 
conditions. By stipulating q  ($ = 0), we implicitly in- 
dicated holds(O,models(z,% = 0)) and that CC = 0 
and & = 2 were the initial conditions at 0. Propositions 
of the form models(q m) persist according to standard 
chronological minimization. 

Suppose that we want to reason about the tempera- 
ture in a room heated by a furnace, and suppose that 
the furnace is controlled by a thermostat set to 70’. 
To make the example more interesting, suppose further 
that the thermostat has a 4’ differential (i.e., the fur- 
nace starts heating when the temperature drops to 68’ 
and stops when the temperature climbs to 72’). To rep- 
resent parameters “dropping to” (1) or “climbing to” 
(I) certain values, we define trans(J, u, V) (similarly 
for 1) where u f U and ‘u E R as follows: 

holds(t, trans( 1, U, v)) G 
Q(t, u) = ‘u A 3% t, Vt’-i t”d t, Q(t”, u) > Q(t, u) 

Propositions of the form trans ([J. ] I], u, V> are used to 
represent point events of the sort that trigger changes. 

To model changes in the room’s temperature when 
the furnace is off, we use Newton’s law of cooling 

dr , . 
z= --CEl(T - a) 

where r is the temperature of the room, a is the tem- 
perature outside the room, and ~1 depends on the in- 
sulation surrounding the room. To model changes in 
the room’s temperature when the furnace is running, 
we use 

dr - = IQ(f - T) - IGl(T - a) 
dt 

where f is the temperature of the furnace when it is 
running, and ~2 depends on the heat flow characteris- 
tics of the furnace. The following axioms describe the 
temperature in the room over time. 
q  (trans(f,T,72’) ~on(furnacel7)) > 

models(r,drr = -nr(r - a)) 

O(trans(J, T, 68”) A on(furnacel7)) > 
models(r , arr = IGZ(f - T) - Kl(T - up 

Suppose that we are interested in the temperature in 
the room over the interval from time 0 to time 10. We 
are told that the temperature outside is 32’ throughout 
this interval, and that at time 0 the room is 75’ with 
the furnace on but currently not heating. We represent 
these facts as follows: 

holds(O,r = 75’) holds(O,& = -K~(T - u)) 

holds(O,lO,u = 32’) holds(O,on(furnacel7)) 

With a little extra work (e.g., in order to eliminate 
certain unintended models, we have to take steps to 
avoid simultaneous cause and effect), we can obtain 
the following inferences. The temperature drops off 
exponentially’ from 75’ to 68’ at which point the fur- 
nace starts heating and continues until the temperature 
reaches 72’, after which the furnace toggles on and off 
forever with the temperature always between 68’ and 
72’. 

Note that we can always substitute a set of models 
that persist over different intervals of time for a single 
model that is true for all time but with additional pa- 
rameters that make the model behave differently over 
different intervals of time. In the furnace example, we 
might state that q  (& = IG~( f - a) - ~1 (T - a)) and 
then have rules that govern the value of f over different 
intervals of time. The choice of whether to vary the 
model or employ a single model and vary the parame- 
ters of the model is a matter of preference. The system 
described in the next section supports either approach. 

Projection Involving Continuous Change 
In this section, we discuss the issues involved in building 
a temporal inference engine for reasoning about contin- 
uously changing quantities. We consider only a limited 
form of temporal reasoning called projection that can 
be performed by making a single sweep forward in time 
inferring at each point what things change and what 
things remain the same. Following [Dean and McDer- 
mott, 19871, we distinguish between a general type of 
event or proposition (e.g., “the furnace came on”) and 
a. specific instance of a general type (e.g., “the furnace 
came on at noon”). The latter are referred to as time 
tokens or simply tokens. A token associates a general 
type of event or proposition with a specific interval of 
time over which the event is said to occur or the propo- 
sition hold. Tokens are notated token(t, ;> where t is a 
type and i is an interval; begin(;) and end(i) indicate 
the begin and end points respectively of the interval i. 
Projection uses a set of initial tokens and causal rules 

‘The behavior of the system can be described in terms 
of a piecewise continuous function in which the specific 
solutions for each piece are given, alternately, by r(t) = 
32’ + (~0 - 32’)ewKt and r(t) = C + (TO - C)IT-(~~+“‘)~ 
where C = K~b00°+K1320 

Kli-% 
, TO is the initial temperature of the 

room for that particular piece and t is the time elapsed from 
the beginning of that piece. 
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corresponding to events and propositions to generate 
additional tokens corresponding to the consequences of 
the events. Metric constraints are handled as in [Dean 
and McDermott, 19871 

We require that the interval corresponding to a to- 
ken persist no further than the first subsequent interval 
corresponding to a token of a contradictory type. For 
any proposition type cp, cp and l(o are said to be con- 
tradictory. Additional contradictory types have to be 
explicitly asserted. For instance, the assertion 
contradicts(location(X,Y),location(X,Z)) t Y#Z. 

indicates that any two tokens of type location( arg1, 
arg2) are contradictory if their first arguments are the 
same, and their second arguments are different. The 
process of modifying the bounds on token intervals cor- 
responding to propositions to ensure that tokens of con- 

, tradictory types do not overlap is referred to as persis- 
tence clipping. 

Causal rules for reasoning about discrete change 
are of the form project ( antecedent-conditions, trig- 
ger-event, delay, consequent-effects) to indicate that, 
if an event of type trigger event occurs, and the 
antecedent conditions hold at the outset of the in- 
terval associated with trigger event, then the conse- 
quent effects are true after an interval of time de- 
termined by delay. The trigger event is specified as 
a type, the antecedent conditions and consequent ef- 
fects are specified as types or conjunctions of types, 
and the delay is optional defaulting to c, a positive in- 
finitesimal. As an exampleproject(lon(furnacel’l), 
toggle(switch42), on(furnacei7)) indicates that, 
if the switch on the furnace is toggled at a time when 
the furnace is not on, then, after a delay of E, it will 
come on. The basic algorithm for persistence clipping 
and projecting the consequences of events is described 
in [Dean and McDermott, 19871; in the following, we 
extend that algorithm to handle continuous change. 

Let U be a set of real-valued parameters, and P be 
a set of boolean-valued propositional variables.2 In ad- 
dition, we introduce two mappings Q : R x U ---) ZR 
and V : R x P + 2( truepfafse). The task of projection 
is to determine Q and V for some closed interval of 
R. We begin by considering the completely determined 
case in which both Q and IT map to singleton sets (i.e., 
Q : R x U -+ R and V : R x P --+ (true, fdse}). 

At the initial time point, we assume that the values of 
a.11 parameters and propositional variables are known. 
In addition, we are given a set of events specified to oc- 
cur at various times over the time interval of interest. 
We assume a set of projection rules as before. In addi- 
tion, we assume a set of modeling rules for parameters 
in U. A modeling rule is just a special sort of projec- 
tion rule; the basic form is the same as that introduced 

‘It should be n oted that, despite the presence of vari- 
ables and complex terms in our rules, the underlying logic 
is purely propositional. 

earlier in this section, the only difference being that the 
delay is always assumed to be E, and the consequent ef- 
fects consist of parameter assignments in the form of or- 
dinary differential equations with constant coefficients 
(e.g., &A = 2, or a2u = 3au + 5u+ 4). 

The projection rule from the last section for reasoning 
about the temperature of the room in the case that the 
furnace is on but not running is encoded as follows, 
project(on(furnacel7),trans(T,r,72’), 

models(r, dr’ = -~l(r - a))). 

To make sure that persistence clipping is handled cor- 
rectly, we state that a given parameter can have only 
one model at a time. 
contradicts(models(X,F¶l)9models(X,M2)) t MlfM2. 

Now we can state the basic algorithm for perform- 
ing projection given some set of initial conditions and a 
projection interval (t8, tf). To simplify the description 
of the algorithm, we assume that all events are point 
events (i.e., if e is a type corresponding to the occur- 
rence of an event, token(e, k) > (begin(k) = end(h))), 
and all events described in the initial conditions begin 
after t,. Let A be the set of all currently active process 
models (i.e., all m such that holds(t,, models(z, m)) 
for some a). Let & be the set of pending events (i.e., 
the set of all events, token(e, Ic), generated so far such 
that t, 4 begin(k)). Let C be the set of current con- 
ditions (i.e., all u* = v such that there exists m E A 
such that holds(t,,models(z,m)), u = dnx for some 
n, and holds (t,, U” = v) . 

In the cases that we are interested in, we can recast 
a set of ordinary differential equations and their initial 
conditions as a system of first-order differential equa- 
tions. We can then solve these equations using numer- 
ical methods based on the Taylor expansion (e.g., the 
Runge-Kutta methods [Ralston and Rabinowitz, 19781) 
and various forms of linear and nonlinear extrapolation 
(e.g. the Adams-Bashforth and Adams-Moulton meth- 
ods t Shampine and Gordon, 19751). In the following, 
we assume the ability to generate solutions to ordinary 
differential equations efficiently, and refer to the proce- 
dure for generating such solutions as the extrapolation 
procedure. Given a set of initial conditions and a pro- 
jection interval (tJ, tf) projection is carried out by the 
following algorithm. 

1. 

2. 

3. 

Set t, to be t,. 

Set & to be the set of events specified in the initial 
conditions. 
Using A, C, and the extrapolation procedure, find 
t, corresponding to the earliest point in time follow- 
ing t, such that the trigger for some projection rule 
is satisfied or tf whichever comes first. If t, # tf, 
then tn could be the time of occurrence of the earli- 
est event in I, or it could be earlier, corresponding to 
the solution of a set of simultaneous equations (e.g., 
((XI = 352)A((& - k2) > 0))). 
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4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

If t, = tf , then quit, else set t, to be t,. 

Find all of the projection rules with the trigger found 
in Step 3. 
For each rule found in Step 5 whose antecedent con- 
ditions are satisfied, create tokens corresponding to 
the types of the consequent effects, except in the case 
of consequent effects corresponding to parameter as- 
signments (e.g., zi = 2:). Constrain the new tokens 
according to the delay specified in the corresponding 
rule, and add them to the database. 
For each token added in Step 6 whose type corre- 
sponds to an event, add it to E. 
For each token added in Step 6 whose type does not 
correspond to an event, find all tokens of a contra- 
dictory type that begin before the newly added token 
and constrain them to end before the beginning of the 
new token. 
If the trigger found in Step 3 corresponds to the type 
of an event token’in I whose time of occurrence is t,, 
remove it from E. 

Use the consequent effects corresponding to param- 
eter assignments found in Step 6 and the results of 
extrapolation to determine c’. The parameter assign- 
ments corresponding to the consequent effects of pro- 
jection rules take precedence over the extrapolation 
results. A is also updated at this time. 

Go to Step 3. 

The above algorithm has been implemented in Prolog 
and C. We use C-Prolog as a front end and database 
for storing projection rules. The extrapolation proce- 
dure employs Runge-Kutta methods and is written in 
C. Differential equations are specified using the nota- 
tional conventions of Maple.3 Prolog routines are used 
to preprocess the differential equations converting each 
one into a system of first-order equations. We assume 
that all equations are 5th order or less, and that they 
can be rewritten so that the highest-order term is al- 
gebraically isolated on the left-hand side of the equa- 
tion. The system can make use of analytic solutions 
when available, but, for the planning problems we are 
concerned with, the extrapolation routine is more than 
accurate enough. It is also generally faster to use the 
extrapolation routine written in C than the analytic 
solver written in Prolog. 

To get a better idea of how the program works, con- 
sider the following simple benchmark problem. Figure 1 
depicts a pipe leading into a holding tank used to fill 
portable tanks that are positioned beneath a second 
pipe leading out of the holding tank. There are rotary 
valves mounted on the pipes that restrict the flow of 

3Maple is a widely distributed symbolic math package 
developed by the Symbolic Computation Group in the De- 
partment of Computer Science at the University of Water- 
loo, Waterloo, Ontario. 

K 
in 

0 

Figure 1: Reasoning about fluid flow 

% Constants: % Initial conditions: % Discrete events: 
constsnt(srea,b). holds(O,u=O). occurs( l,turn( B;,,lS)). 
constant(height,3). holds(O,v=O). occure(2,turn(Q,ut,QO)). 
constant(volume,2). holda( O,h=O). 
conatant(kin,6). holds(O,bi,=O). 

occurs(b,turn( Bin,4S)). 
occura(lO,turn( ej,,-60)). 

constsnt(koUt,3). holds( O,g,,t =O). occurs( ll,turn( gout,-90)). 

% Static models: 
holds(T,models(r,r(t)=ki,*8i,(t)/(k4ut*e~~t(t)))). 
holda( T,models( u,diff( u( t),t) = kin*8in( t ))). 
holds(T,models(v,diff(v(t),t) = k,,t*8,,t(t)*h(t))). 
holds(T,modele(sp,sp(t)=spl(t)+ep2(t))). 
holds(T,models(fI;,,diff(8i,(t),t)=O)). 
holds(T,models(e,,t,diff(e,,t(t),t)=o)). 
holds(T,modsls(P, -=C)) :- constsnt(P,C). 

% Dynamic models: 
holds(T,models(h,diff(h(t),t)=(k;,*8i,(t)-k,,t*B,,t(t)*h(t))/srea)) :- 

holds( T,h < height). 
project(always,trans(up,h,height),models(h,diff(h(t),t)=O)). 
project(always,trans(down,r,height), 

modals(h,diff(h(t),t)=(k;,*8;n(t)-kout*8,~t(t)*h(t))/area)). 
holds(T,models(spl,spl(t)=O)) :- holds(T,h <height). 
project(alwaya,trans(up,h,height),models(spl,spl(t)=u(t))). 
projcct(always,trans(down,r,hcight),models(spl,spl(t)=O)). 
holds(T,models( sp2,sp2( t)=O)) :- holds( T,v < volume). 
project(always,trana(up,v,volume),models(sp2,sp2(t)=v(t))). 

Figure 2: Prolog clauses for the fluid-flow problem 

fluid; the valves vary from 0’ to 90’. We are interested 
in the consequences of a plan involving a sequence of 
adjustments to the two valves. In particular, we are in- 
terested in the volume of the fluid in the portable tank 
after the output valve is finally closed, and the total 
amount of fluid spilled from either the holding tank or 
the portable tank during the filling process. 

Let Kin be the flow rate of the input valve in cu- 
bic meters per degree minute, Kout be the flow rate of 
the output valve in square meters per degree minute, 
H be the height of the holding tank in meters, A be 
the surface area of the portable tank, and V be its to- 
tal volume. In addition to these constants, we have the 
following state variables (functions of time): h is the 
height of the fluid in the holding tank, 0i, is the angle 
of the input valve, eout is the angle of the output valve, 
u is the total volume of fluid to have entered the holding 
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tank, and v is the total volume of fluid to have left the 
holding tank. Initially, we have h(0) = u(0) = v(0) = 0, 
du = Kindin, and &J = KoUteouth, where 0in and dOZLt 
are determined by the plan being evaluated. As long 
as h < H, we have ah = ( KinOin - K,,te,,th)/A. 
If trans( 1, h, H), then we have ah = 0, and, if 
trans(l, r, H) where T = Kin8in/KoUt8,,t, we are back 
to ah = ( Ki,&, - Kouteout h)/A. To determine the total 
amount of fluid spilled, we have to set up rules to han- 
dle the various possibilities for h < H and v < 17. The 
complete Prolog representation is shown in Figure 2. 
During projection, every time that h rises to height, r 
falls to height, or v rises to volume, the conditions for 
certain projection rules shown in Figure 2 are met, and 
these rules are used to generate tokens specifying new 
models for various parameters. 

For many planning problems, it is convenient to de- 
fine a special function of time for evaluating alternative 
plans. In our simple example, this evaluation function 
is sp( t ) which is the sum of the fluid spilled from ei- 
ther tank during the evaluation interval. If the plan 
consists of the five discrete events shown in Figure 2 
and the evaluation interval is (0,12), then we can eval- 
uate the plan using the query holds( 12, sp=S) which 
returns with S bound to 1.37. The response time is neg- 
ligible for this query. The algorithm is guaranteed to 
terminate if the projection interval is finite. The com- 
plexity of projection is largely determined by the set 
of causal rules. For the sorts of rules we have encoun- 
tered in our planning problems, projection is at worst 
a small polynomial in the size of the set of rules and 
initial conditions. 

Conclusion 
The current implementation of our hybrid calculus is 
convenient to use and remarkably fast for a prototype 
system. It still lacks much of functionality of our pre- 
vious temporal database systems [Dean, 19891. The 
current system has only limited ability to reason about 
uncertainty in either the time of occurrence of events 
or the initial values of parameters. However, uncer- 
tainty is difficult to handle even with discretely chang- 
ing parameters and boolean variables [Dean and Boddy, 
19881, and it appears that many of the techniques we 
have developed for handling uncertainty involving dis- 
crete change also apply in the continuous case. 

The primary advantage of the hybrid system de- 
scribed in this paper over most temporal reasoning sys- 
tems is its increased expressiveness and precision. It 
is clearly possible to model continuous processes using 
discrete approximations, but such approximations are 
often clumsy to formulate and sacrifice precision in or- 
der to achieve a reasonable level of performance. In our 
hybrid system, physical phenomena that are naturally 
modeled as continuous processes can be done so in a 
mathematical language designed for that purpose, and 
discrete processes can be modeled using first-order tem- 

poral logic which is well suited for that purpose. The 
use of numerical methods for solving systems of ordi- 
nary differential equations gives the modeler a great 
deal of flexibility, and provides more than ample pre- 
cision for the modeling tasks we have encountered so 
far. In addition, for projection problems of the sort en- 
countered in many planning applications, our system 
subscribes to Sandewall’s semantics up to the precision 
of the underlying numerical methods. Finally, and per- 
haps most importantly, we are now able to easily rea- 
son about planning problems that were impossible or 
at least prohibitively complicated to do so previously. 
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