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ABSTRACT: This paper shows how using a nonmono- 
tonic logic to describe the effects of actions enables plau- 
sible plans to be discovered quickly, and then refined 
if time permits. Candidate plans are found by allow- 
ing them to depend on unproved assumptions. The 
nonmonotonic logic makes explicit which antecedents 
of rules have the status of default conditions, and they 
are the only ones that may be left unproved, so only 
plausible candidate plans are produced. These are re- 
fined incrementally by trying to justify the assumptions 
on which they depend. The new planning strategy has 
been implemented, with good experimental results. 

1 Introduction 

Because of uncertainty and because of the need to re- 
spond rapidly to events, the traditional view of planning 
(deriving from STRIPS [Fikes et al., 19721 and culminat- 
ing in TWEAK [Chapman, 19871) must be revised dras- 
tically. That much is conventional wisdom nowadays. 
One point of view is that planning should be replaced 
by some form of improvisation [Brooks, 19871. How- 
ever an improvising agent is doomed to choose actions 
whose optimality is only local. In many domains, goals 
can only be achieved by forecasting the consequences 
of actions, and choosing ones whose role in achieving 
a goal is indirect. Thus traditional planners must be 
improved, not discarded. 

This paper addresses the issue of how to design a plan- 
ner that is incremental and approximate. An approxi- 
mate planner is one that can find a plausible candidate 
plan quickly. An incremental planner is one that can 
revise its preliminary plan if necessary, when allowed 
more time. 

It is not clear how existing planning strategies can be 
made approximate and incremental. We therefore first 
outline a strategy for finding guaranteed plans using a 
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new formalism for specifying planning problems, and 
then show how to extend this guaranteed strategy to 
make it approximate and incremental. 

Our approach draws inspiration from work on abduc- 
tive reasoning. A plan is an explanation of how a goal 
is achievable: a sequence of actions along with a proof 
that the sequence achieves the goal. An explanation is 
abductive (as opposed to purely deductive) if it depends 
on assumptions that are not known to be justified. We 
find approximate plans by allowing their proofs of cor- 
rectness to depend on unproved assumptions. Our plan- 
ner is incremental because, given more time, it refines 
and if necessary changes a candidate plan by trying to 
justify the assumptions on which the plan depends. 

The critical issue in abductive reasoning is to find 
plausible explanations. Our planning calculus uses a 
nonmonotonic logic that makes explicit when an an- 
tecedent of a rule has the epistemological status of a de- 
fault condition. The distinguishing property of a default 
condition is that it may plausibly be assumed. These 
antecedents are those that are allowed to be left un- 
justified in an approximate plan. Concretely, every de- 
fault condition in the planning calculus expresses either 
a claim that an achieved property of the world persists, 
or that an unwanted property is not achieved. Thus the 
approximate planning strategy only proposes reasonable 
candidate plans. 

Sections 2 and 3 below present the formalism for spec- 
ifying planning problems and the strategy for finding 
guaranteed plans. In Section 4 the strategy is extended 
to become approximate and incremental. Section 5 con- 
tains experimental results, and finally Section 6 dis- 
cusses related and future work. 

2 The planning formalism 

Different formal frameworks for stating planning prob- 
lems vary widely in the complexity of the problems they 
can express. Using modal logics or reification, one can 
reason about multiple agents, a.bout the temporal prop- 
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erties of actions, and about what agents know [Moore, 
1985; Konolige, 1986; Cohen and Levesque, 19901. The 
simplest planning problems can be solved by augmented 
finite state machines [Brooks et al., 19881, whose be- 
haviour can be specified in a propositional logic. The 
planning problems considered here are intermediate in 
complexity. They cannot be solved by an agent reacting 
immediately to its environment, because they require 
maintaining an internal theory of the world, in order 
to project the indirect consequences of actions. On the 
other hand, they involve a single agent, and they do not 
require reasoning about knowledge or time. 

Our nonmonotonic logic for specifying this type of 
planning problem is called the PERFLOG calculus.’ 
Technically, the calculus is the language of locally strat- 
ified definite clauses with the minimal model semantics 
of [Przymusiriski, 19871 and certain “laws of nature” 
presented below. The PERFLOG calculus is distinctive 
in that it has a well-defined first-order semantics and 
it is practically usable for planning. Other proposed 
planning formalisms with a well-defined semantics ei- 
ther do not have first-order expressiveness (for example 
the TWEAK calculus [Chapman, 1987]), or else they use 
logics for which simple proof procedures capable of in- 
venting plans are not known (for example the circum- 
scriptive calculus of [Lifschitz and Rabinov, 19891). 

The Yale shooting problem [Hanks and McDermott, 
19861 is at the simple end of the spectrum of planning 
problems for which the PERFLOG calculus is appropri- 
ate. It serves here to introduce the calculus by example. 
We start with the laws of nature mentioned above. In 
the following rules, think of s as denoting a state of the 
world, of a as denoting an action, and of do(s, a) a~ de- 
noting the state resulting from performing the action a 
in the initial state s. Finally, think of p as denoting a 
contingent property that holds in certain states of the 
world: a fluent. 

‘da, s, p causes(u, s, p) - holds(p, do(s, a)) 

VU, s, p holds(p, s) A xuncels(u, s, p) 

- hodds(p, do(s, a)). 

(1) 

(2) 

The rules (1) and (2) are frame axioms. Rule (1) cap- 
tures the commonsense notion of causation, and rule (2) 
expresses the commonsense “law of inertia”: a fluent p 
holds after an action a if it holds before the action, and 
the action does not cancel the fluent. Note that since in 
addition to a, one argument of causes and of cancels is 
s, the results of an action (that is, the fluents it causes 
and cancels) may depend on the state in which the ac- 
tion is performed, and not just on which action it is. 

1 PERFLOG is 
model logic.” 

an abbreviation for “performance-oriented perfect 

Given rules (1) and (2)) a particular planning domain 
is specified by writing axioms that mention the actions 
and fluents of the domain, and say which actions cause 
or cancel which fluents. In the world of the Yale shoot- 
ing problem, there are three fluents, loaded, alive, and 
dead, and three actions, loud, zuuit, and shoot. The re- 
lationships of these fluents and actions are specified by 
the following axioms: 

Vs cuuses(loud, s, loaded) (3) 
Vs hobds(douded, s) - cuuses(shoot, s, dead) (4) 
V’s holds(douded, s) + cuncels(shoot, s, alive) (5) 
Vs hodds(douded, s) - cuncels(shoot, s, loaded). (6) 

The initial state of the world SO is specified by saying 
which fluents are true in it: 

holds(ulive, so). (7) 

According to the nonmonotonic 
collections of rules, 

semantics of PERFLOG 

holds(deud, do(do(do(s,-,, loud), wait), shoot)) 

is entailed by rules (l)-(7). The Yale shooting problem 
is thus solved. 

The advantages and disadvantages of the PERFLOG 

calculus will be discussed in a forthcoming paper. It 
can be extended to match the expressiveness of compet- 
ing proposed nonmonotonic logics for reasoning about 
action. For the purposes of this paper, what is most im- 
portant is that the calculus is usable for inventing plans, 
not just for specifying when a plan is correct. Given 
clauses (l)-( 7) and the query 3p hobds(deud,p)?, the 
planning strategy of the next section quickly produces 
the answer substitution p = do(do(z, loud), shoot). 
(The variable d: in the generated plan indicates that it 
works whatever the initial situation.) 

g guaranteed plans 
The previous section showed how to state the relation- 
ships between the actions and fluents of a planning do- 
main as a PERFLOG set of axioms. This section describes 
a strategy for inventing plans using such a set of axioms; 
the next section extends the strategy to be approximate 
and incremental. 

A PERFLOG set of axioms is general logic program, 
and our planning strategy is a four-point extension of 
the standard PROLOG procedure for answering queries 
against a logic program. 

Iterative deepening. The standard PROLOG strat- 
egy can be viewed as depth-first exploration of an 
and/or tree representing the spa.ce of potential proofs 
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of the query posed by the user. Each or-node corre- 
sponds to a subgoal2 that must be unified with the head 
of some clause, and each and-node corresponds to the 
body of a clause. The root of the tree, always an or- 
node, is the user’s query. Depth-first exploration can be 
implemented many times more efficiently than other ex- 
ploration patterns, but it is liable to get lost on infinite 
paths. These paths can be cut off by imposing a depth 
bound. The idea of iterative deepening is to repeatedly 
explore a search space depth-first, each time with an 
increased depth bound [Stickel and Tyson, 19851. 

Conspiracy numbers. Iterative deepening algo- 
rithms differ in how the depth of a node is defined. 
The conspiracy idea underlies the best known way of 
defining depth in and/or trees. A conspiracy for a par- 
tially explored and/or tree is a minimal (with respect to 
subsets) set of subgoal leafs such that if all the subgoals 
in the conspiracy have compatible answer substitutions, 
then an answer substitution exists for the root goal of 
the tree. Suppose that for each member of a conspir- 
acy, whether it has an answer substitution is a statis- 
tically independent event. Even so, as the conspiracy 
gets larger, heuristically the chance that all the mem- 
bers have compatible answer substitutions decreases as 
if these events were negatively correlated. Thus a good 
definition of the depth of a leaf node is the size of the 
smallest conspiracy to which it belongs. Conspiracy 
sizes can be computed efficiently [Elkan, 19891. 

Negation-as-failure. The strategy described so far 
applies to positive subgoals only. Given a negated goal, 
the negation-as-failure idea is to attempt to prove the 
un-negated version of the goal. If this attempt suc- 
ceeds, the negated goal is taken as false. If no proof 
exists for the un-negated goal, then the negated goal is 
taken as true. Negation-as-failure is combined with iter- 
ative deepening by using the conspiracy depth measure 
to limit searches for proofs of un-negated notional sub- 
goals corresponding to negated actual subgoals. If the 
and/or tree representing the space of possible proofs of a 
notional subgoal is completely explored, without finding 
a proof, then the corresponding actual negated subgoal 
is taken as true. If a proof of the notional subgoal is 
found, then the actual negated subgoal is taken as false. 
If exploration of the possible proofs of the notional sub- 
goal is cut off by the current depth bound, it remains 
unknown whether or not the notional subgoal is prov- 
able, so for soundness the actual negated subgoal must 
be taken as false. 

Freezing and constructive negation. Negation- 
as-failure only works on ground negated subgoals. Sup- 
pose the unit clauses p(a) and a(b) are given, and con- 
sider the query 3~ lp(z) A q(x)?. This query should 

2 Here and in si milar contexts, ‘goal’ 
an answer substitution is wanted. 

refers to a literal for which 

have one answer, x = b, but the strategy described so far 
produces no answer: naive negation-as-failure attempts 
to prove p(x), succeeds, deems -p(z) to be false, and 
fails on the whole query. The solution to this problem 
is to apply negation-as-failure to ground negated sub- 
goals only. When a negated subgoal is encountered, it 
is postponed until it becomec ground. Concretely, in 
the example above l&x:) is delayed, and q(x) is solved, 
obtaining the substitution x = b. Now lp(z)[x H b] 
is revived, and proved. This process is called freez- 
ing [Naish, 19861. If postponement is not sufficient to 
ground a negated subgoal, then an auxiliary subgoal is 
introduced to generate potential answers. This process 
is called constructive negation [Foo et al., 19881. 

The performance of the planning strategy just de- 
scribed could be improved significantly, notably by 
caching subgoals once they are proved or disproved 
[Elkan, 19891. Nevertheless it is already quite usable. 
More important as a basis for further work, it is sound 
and complete. 

Lemma: The guaranteed planning strategy is sound. 
Proof: Negation-as-failure is sound under the comple- 
tion semantics for general logic programs [Clark, 19781. 
The perfect model semantics allows a subclass of the 
class of models allowed by the completion semantics. 
Therefore given a query of the form 3p hoZds(a,p)?, if 
the strategy above returns with the answer substitution 
P = X, then hoZds(a, X) is true, and 7r is a correct plan. E 

Completeness is a more delicate issue. In general, per- 
fect models may be non-recursively enumerable [Apt 
and Blair, 19881, and all sufficiently expressive non- 
monotonic logics have non-computable entailment re- 
lations. However PERFLOG theories all have a similar 
structure, using the same three fundamental predicates, 
so their completion and perfect model semantics essen- 
tially coincide, and the strategy above is complete. 

4 Finding plausible plans 

This section describes modifications to the strategy of 
the previous section that make it approximate and in- 
cremental. In the same way that the guaranteed plan- 
ning strategy is in fact a general query-answering proce- 
dure, the incremental planning strategy is really a gen- 
eral procedure for forming and revising plausible expla- 
nations using a default theory. 

Any planning strategy that produces plans relying on 
unproved assumptions is @so facto unsound, but by its 
incremental nature the strategy below tends to sound- 
ness: with more time, candidate plans are either proved 
to be valid, or changed. 

Approximation. The idea behind finding approx- 
imate plans is simple: an explanation is approximate 
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if it depends on unproved assumptions. Strategies for 
forming approximate explanations can be distinguished 
according to the class of approximate explanations that 
each may generate. One way to define a class of ap- 
proximate explanations is to fix a certain class of sub- 
goals as the only ones that may be taken as assump- 
tions. Looking at the PERFLOG formalism, there is an 
obvious choice of what subgoals to allow to be assump- 
tions. Negated subgoals have the epistemological sta- 
tus of default conditions: the nonmonotonic semantics 
makes them true unless they are forced to be false. It 
is reasonable to assume that a default condition is true 
unless it it is provably false. 

There is a second, procedural, reason to allow negated 
subgoals to be assumed, but not positive subgoals. 
Without constructive negation, negated subgoals can 
only be answered true or false. Negation-as-failure never 
provides an answer substitution for a negated subgoal. 
Therefore unproved negated subgoals in an explanation 
never leave “holes” in the answer substitution induced 
by the explanation. Concretely, a plan whose correct- 
ness proof depends on unproved default conditions will 
never change because those defaults are proved to hold. 

In more detail, the guaranteed planning strategy is 
modified as follows. When a negated subgoal becomes 
ground, the proof of its notional positive counterpart is 
attempted. If this attempt succeeds or fails within the 
current depth bound, the negated subgoal is taken as 
false or true, respectively, as before. However, if the 
depth bound is reached during the attempted proof, 
then the negated subgoal is given the status of an as- 
sumption. 

Incrementality. An approximate explanation can 
be refined by trying to prove the assumptions it depends 
on. If an assumption is proved, the explanation thereby 
becomes “less approximate”. As just mentioned, prov- 
ing an assumption never causes a plan to change. On 
the other hand, if an assumption is disproved, the ap- 
proximate plan is thereby revealed to be invalid, and it 
is necessary to search for a different plan. 

Precisely, any negated subgoal is allowed to be as- 
sumed initially. Each iteration of iterative deepening 
takes place with an increased depth bound. For each 
particular (solvable) planning problem, there is a cer- 
tain minimum depth bound at which one or more ap- 
proximate plans can first be found. Each of these first 
approximate plans depends on a certain set of assump- 
tions. In later iterations, only subsets of these sets are 
allowed to be assumed. This restriction has the effect 
of concentrating attention on either refining the already 
discovered approximate plans, or finding new approxi- 
mate plans that depend on fewer assumptions. 
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% rules for how the world evolves 

holds(P,do(S,A)) :- 
causes(A,S,P). 

holds(P,do(S,A)) :- 
holds(P,S), not(cancelsU,S,P)). 

3! the effects of actions 

causes(pounce(lion,X) ,S,eats(lion,X)) :- 
can(pounce(lion,X) ,S). 

can(pounce(X,Y) ,S) :- 
holds(in(X,L) ,S) , holds(in(Y ,L) ,S) , 
not(call(X = Y)), 
not(Z,holds(eats(X,Z) ,S)). 

causes(jump(X) ,S,in(X,arena>) :- 
can(jump(X) ,S), holds(in(X,cage) ,S>. 

cau(jump(lion),S) :- 
holds(eats(lion,centurion),S). 

cancels(drop(X,Y),S,eats(X,Y)I :- 
cauUrop(X,Y),S). 

can(drop(X,Y),S) :- 
holds(eats(X,Y),S). 

holds(in(X,H),S) :- 
holds(eats(lion,X) ,S), 

holds(in(lion,H),S). 

% the initial state of the world 

holds(in(christiau,aena),sO). 
holds(in(lion,cage) ,sO) . 
holds(in(centurion,cage),sO). 

Figure 1: The theory of a lion and a Christian. 

5 Experimental results 

Implementing the planning strategies described above is 
straightforward, because the PERFLOG calculus is based 
on directed clauses. In general, it is insufficiently real- 
ized how efficiently logics with this basis, both mono- 
tonic and nonmonotonic, can be automated. The state 
of the art in PROLOG implementation is about nine RISC 
cycles per logical inference [Mills, 19891. Any PERFLOG 

theory could be compiled into a specialized incremental 
planner running at a comparable speed. 

The experiment reported here uses a classical plan- 
ning domain: a lion and a Christian in a stadium. The 
goal is for the lion to eat the Christian. Initially the 
lion is in its cage with a centurion, and the Christian 
is in the arena. The lion can jump from the cage into 
the arena only if it has eaten the centurion. The lion 



eats a person by pouncing, but it cannot pounce while 
it is already eating. The PERFLOG theory in Figure 1 
describes this domain formally. 

Using the guaranteed planning strategy of Sec- 
tion 3, the query holds(eats(lion,christian),P)? is 
first solved with conspiracy depth bound 19, in 4.75 
seconds.3 The plan found is 

P = do(do(do(do(sO,pounce(lion,centurion)), 
jump(lion)), 
drop(lion,centu.rion)), 
pounce(lion,cbristian)). 

Using the approximate planning strategy of Section 4, 
the same query is solvable in 0.17 seconds, with conspir- 
acy depth bound 17. The candidate plan found is 

P = do(do(do(sO,pounce(lion,centurion)), 
jump(lion)), 
pounce(lion,christian)). 

This plan depends on the assumption that no Z exists 
such that 

holds(eats(lion,Z),do(do(sO,pounce(lion,cent~ion)), 
jump(lion))). 

Although the assumption is false and the plan is not cor- 
rect, it is plausible. Note also that the first two actions 
it prescribes are the same as those of the correct plan: 
the approximate plan is an excellent guide to immediate 
action. 

6 Discussion 

The strategy for incremental, approximate planning 
uses simplifying assumptions in a principled way: first 
the planner searches for a plan assuming that default 
conditions hold, then it attempts to prove that they do 
hold. The idea of relying on assumptions that are left 
unproven appears in [Feldman and Rich, 19861 and else- 
where. This paper shows how a formal nonmonotonic 
logic determines reasonable potential assumptions, and 
how iterative deepening can be used to modulate the ef- 
fort expended on checking these assumptions. The point 
that default theories suggest how to focus inference is 
made independently in [Ginsberg, 19901. To accommo- 
date arbitrary sources of knowledge about plausible as- 
sumptions, our implementation allows the user to say 
explicitly what must always be proved, and what may 
sometimes be left unproved, as in [Chien, 19891. 

From a knowledge-level point of view, approximate 
planning is a type of hierarchical planning. Each max- 
imum conspiracy size defines a different abstraction 
space in which to search for plans. In each space the 

3All times are for an implementation in CProlog, 
a Silicon Graphics machine rated at 20 MIPS. 

running on 

available actions and their effects are the same. Bow- 
ever, the lower the maximum conspiracy size, the more 
each action is stripped of its difficult-to-check precondi- 
tions. Abstraction spaces defined in this way have the 
advantage that the execution of any plan invented using 
them can be initiated immediately if it is necessary to 
act instantly. Other hierarchical planners typically con- 
struct plans using abstract actions that must be elabo- 
rated before they can be executed [Knoblock, 19891. 

Selecting good simplifying assumptions is a type of 
abductive inference. Abduction mechanisms have been 
investigated a great deal for the task of plan recognition, 
not so much for the task of inventing plans, and not 
at all for the task of inventing plausible plans. These 
three different tasks lead to different choices of what 
facts may be assumed. In the work of [Shanahan, 19891 
for example, properties of the initial state of the world 
may be assumed. In our work, the facts that may be 
assumed say either that an established property of the 
world persists, or that an unestablished property does 
not hold. 

An incremental approximate planner is an “anytime 
algorithm” for planning in the sense of [Dean and 
Boddy, 19881. Anytime planning algorithms have been 
proposed before, but not for problems of the tradi- 
tional type treated in this paper. For example, the real- 
time route planner of [Korf, I.9871 is a heuristic graph 
search algorithm, and the route improvement algorithm 
of [Boddy and Dean, 19891 relies on an initial plan that 
is guaranteed to be correct. 

For future work, one important direction is to quan- 
tify how an approximate plan is improved by allowing 
more time for its refinement. Another problem is to find 
a planning strategy that is focused as well as approxi- 
mate and incremental. A focused strategy would be one 
that concentrated preferentially on finding the first step 
in a plan-what to do next. 
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