
Incremental, Approzimate Planning

Charles Elkan
Department of Computer Science

University of Toronto*

ABSTRACT: This paper shows how using a nonmono-
tonic logic to describe the effects of actions enables plau-
sible plans to be discovered quickly, and then refined
if time permits. Candidate plans are found by allow-
ing them to depend on unproved assumptions. The
nonmonotonic logic makes explicit which antecedents
of rules have the status of default conditions, and they
are the only ones that may be left unproved, so only
plausible candidate plans are produced. These are re-
fined incrementally by trying to justify the assumptions
on which they depend. The new planning strategy has
been implemented, with good experimental results.

1 Introduction

Because of uncertainty and because of the need to re-
spond rapidly to events, the traditional view of planning
(deriving from STRIPS [Fikes et al., 19721 and culminat-
ing in TWEAK [Chapman, 19871) must be revised dras-
tically. That much is conventional wisdom nowadays.
One point of view is that planning should be replaced
by some form of improvisation [Brooks, 19871. How-
ever an improvising agent is doomed to choose actions
whose optimality is only local. In many domains, goals
can only be achieved by forecasting the consequences
of actions, and choosing ones whose role in achieving
a goal is indirect. Thus traditional planners must be
improved, not discarded.

This paper addresses the issue of how to design a plan-
ner that is incremental and approximate. An approxi-
mate planner is one that can find a plausible candidate
plan quickly. An incremental planner is one that can
revise its preliminary plan if necessary, when allowed
more time.

It is not clear how existing planning strategies can be
made approximate and incremental. We therefore first
outline a strategy for finding guaranteed plans using a

*For correspondence: Department of Computer Science, Uni-
versity of Toronto, Toronto M5S lA4, Canada, (416) 978-7797,
cpe@ai. toronto . edu.

new formalism for specifying planning problems, and
then show how to extend this guaranteed strategy to
make it approximate and incremental.

Our approach draws inspiration from work on abduc-
tive reasoning. A plan is an explanation of how a goal
is achievable: a sequence of actions along with a proof
that the sequence achieves the goal. An explanation is
abductive (as opposed to purely deductive) if it depends
on assumptions that are not known to be justified. We
find approximate plans by allowing their proofs of cor-
rectness to depend on unproved assumptions. Our plan-
ner is incremental because, given more time, it refines
and if necessary changes a candidate plan by trying to
justify the assumptions on which the plan depends.

The critical issue in abductive reasoning is to find
plausible explanations. Our planning calculus uses a
nonmonotonic logic that makes explicit when an an-
tecedent of a rule has the epistemological status of a de-
fault condition. The distinguishing property of a default
condition is that it may plausibly be assumed. These
antecedents are those that are allowed to be left un-
justified in an approximate plan. Concretely, every de-
fault condition in the planning calculus expresses either
a claim that an achieved property of the world persists,
or that an unwanted property is not achieved. Thus the
approximate planning strategy only proposes reasonable
candidate plans.

Sections 2 and 3 below present the formalism for spec-
ifying planning problems and the strategy for finding
guaranteed plans. In Section 4 the strategy is extended
to become approximate and incremental. Section 5 con-
tains experimental results, and finally Section 6 dis-
cusses related and future work.

2 The planning formalism

Different formal frameworks for stating planning prob-
lems vary widely in the complexity of the problems they
can express. Using modal logics or reification, one can
reason about multiple agents, a.bout the temporal prop-

ELKAN 145

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

erties of actions, and about what agents know [Moore,
1985; Konolige, 1986; Cohen and Levesque, 19901. The
simplest planning problems can be solved by augmented
finite state machines [Brooks et al., 19881, whose be-
haviour can be specified in a propositional logic. The
planning problems considered here are intermediate in
complexity. They cannot be solved by an agent reacting
immediately to its environment, because they require
maintaining an internal theory of the world, in order
to project the indirect consequences of actions. On the
other hand, they involve a single agent, and they do not
require reasoning about knowledge or time.

Our nonmonotonic logic for specifying this type of
planning problem is called the PERFLOG calculus.’
Technically, the calculus is the language of locally strat-
ified definite clauses with the minimal model semantics
of [Przymusiriski, 19871 and certain “laws of nature”
presented below. The PERFLOG calculus is distinctive
in that it has a well-defined first-order semantics and
it is practically usable for planning. Other proposed
planning formalisms with a well-defined semantics ei-
ther do not have first-order expressiveness (for example
the TWEAK calculus [Chapman, 1987]), or else they use
logics for which simple proof procedures capable of in-
venting plans are not known (for example the circum-
scriptive calculus of [Lifschitz and Rabinov, 19891).

The Yale shooting problem [Hanks and McDermott,
19861 is at the simple end of the spectrum of planning
problems for which the PERFLOG calculus is appropri-
ate. It serves here to introduce the calculus by example.
We start with the laws of nature mentioned above. In
the following rules, think of s as denoting a state of the
world, of a as denoting an action, and of do(s, a) a~ de-
noting the state resulting from performing the action a
in the initial state s. Finally, think of p as denoting a
contingent property that holds in certain states of the
world: a fluent.

‘da, s, p causes(u, s, p) - holds(p, do(s, a))

VU, s, p holds(p, s) A xuncels(u, s, p)

- hodds(p, do(s, a)).

(1)

(2)

The rules (1) and (2) are frame axioms. Rule (1) cap-
tures the commonsense notion of causation, and rule (2)
expresses the commonsense “law of inertia”: a fluent p
holds after an action a if it holds before the action, and
the action does not cancel the fluent. Note that since in
addition to a, one argument of causes and of cancels is
s, the results of an action (that is, the fluents it causes
and cancels) may depend on the state in which the ac-
tion is performed, and not just on which action it is.

1 PERFLOG is
model logic.”

an abbreviation for “performance-oriented perfect

Given rules (1) and (2)) a particular planning domain
is specified by writing axioms that mention the actions
and fluents of the domain, and say which actions cause
or cancel which fluents. In the world of the Yale shoot-
ing problem, there are three fluents, loaded, alive, and
dead, and three actions, loud, zuuit, and shoot. The re-
lationships of these fluents and actions are specified by
the following axioms:

Vs cuuses(loud, s, loaded) (3)
Vs hobds(douded, s) - cuuses(shoot, s, dead) (4)
V’s holds(douded, s) + cuncels(shoot, s, alive) (5)
Vs hodds(douded, s) - cuncels(shoot, s, loaded). (6)

The initial state of the world SO is specified by saying
which fluents are true in it:

holds(ulive, so). (7)

According to the nonmonotonic
collections of rules,

semantics of PERFLOG

holds(deud, do(do(do(s,-,, loud), wait), shoot))

is entailed by rules (l)-(7). The Yale shooting problem
is thus solved.

The advantages and disadvantages of the PERFLOG

calculus will be discussed in a forthcoming paper. It
can be extended to match the expressiveness of compet-
ing proposed nonmonotonic logics for reasoning about
action. For the purposes of this paper, what is most im-
portant is that the calculus is usable for inventing plans,
not just for specifying when a plan is correct. Given
clauses (l)-(7) and the query 3p hobds(deud,p)?, the
planning strategy of the next section quickly produces
the answer substitution p = do(do(z, loud), shoot).
(The variable d: in the generated plan indicates that it
works whatever the initial situation.)

g guaranteed plans
The previous section showed how to state the relation-
ships between the actions and fluents of a planning do-
main as a PERFLOG set of axioms. This section describes
a strategy for inventing plans using such a set of axioms;
the next section extends the strategy to be approximate
and incremental.

A PERFLOG set of axioms is general logic program,
and our planning strategy is a four-point extension of
the standard PROLOG procedure for answering queries
against a logic program.

Iterative deepening. The standard PROLOG strat-
egy can be viewed as depth-first exploration of an
and/or tree representing the spa.ce of potential proofs

146 AUTOMATEDREASONING

of the query posed by the user. Each or-node corre-
sponds to a subgoal2 that must be unified with the head
of some clause, and each and-node corresponds to the
body of a clause. The root of the tree, always an or-
node, is the user’s query. Depth-first exploration can be
implemented many times more efficiently than other ex-
ploration patterns, but it is liable to get lost on infinite
paths. These paths can be cut off by imposing a depth
bound. The idea of iterative deepening is to repeatedly
explore a search space depth-first, each time with an
increased depth bound [Stickel and Tyson, 19851.

Conspiracy numbers. Iterative deepening algo-
rithms differ in how the depth of a node is defined.
The conspiracy idea underlies the best known way of
defining depth in and/or trees. A conspiracy for a par-
tially explored and/or tree is a minimal (with respect to
subsets) set of subgoal leafs such that if all the subgoals
in the conspiracy have compatible answer substitutions,
then an answer substitution exists for the root goal of
the tree. Suppose that for each member of a conspir-
acy, whether it has an answer substitution is a statis-
tically independent event. Even so, as the conspiracy
gets larger, heuristically the chance that all the mem-
bers have compatible answer substitutions decreases as
if these events were negatively correlated. Thus a good
definition of the depth of a leaf node is the size of the
smallest conspiracy to which it belongs. Conspiracy
sizes can be computed efficiently [Elkan, 19891.

Negation-as-failure. The strategy described so far
applies to positive subgoals only. Given a negated goal,
the negation-as-failure idea is to attempt to prove the
un-negated version of the goal. If this attempt suc-
ceeds, the negated goal is taken as false. If no proof
exists for the un-negated goal, then the negated goal is
taken as true. Negation-as-failure is combined with iter-
ative deepening by using the conspiracy depth measure
to limit searches for proofs of un-negated notional sub-
goals corresponding to negated actual subgoals. If the
and/or tree representing the space of possible proofs of a
notional subgoal is completely explored, without finding
a proof, then the corresponding actual negated subgoal
is taken as true. If a proof of the notional subgoal is
found, then the actual negated subgoal is taken as false.
If exploration of the possible proofs of the notional sub-
goal is cut off by the current depth bound, it remains
unknown whether or not the notional subgoal is prov-
able, so for soundness the actual negated subgoal must
be taken as false.

Freezing and constructive negation. Negation-
as-failure only works on ground negated subgoals. Sup-
pose the unit clauses p(a) and a(b) are given, and con-
sider the query 3~ lp(z) A q(x)?. This query should

2 Here and in si milar contexts, ‘goal’
an answer substitution is wanted.

refers to a literal for which

have one answer, x = b, but the strategy described so far
produces no answer: naive negation-as-failure attempts
to prove p(x), succeeds, deems -p(z) to be false, and
fails on the whole query. The solution to this problem
is to apply negation-as-failure to ground negated sub-
goals only. When a negated subgoal is encountered, it
is postponed until it becomec ground. Concretely, in
the example above l&x:) is delayed, and q(x) is solved,
obtaining the substitution x = b. Now lp(z)[x H b]
is revived, and proved. This process is called freez-
ing [Naish, 19861. If postponement is not sufficient to
ground a negated subgoal, then an auxiliary subgoal is
introduced to generate potential answers. This process
is called constructive negation [Foo et al., 19881.

The performance of the planning strategy just de-
scribed could be improved significantly, notably by
caching subgoals once they are proved or disproved
[Elkan, 19891. Nevertheless it is already quite usable.
More important as a basis for further work, it is sound
and complete.

Lemma: The guaranteed planning strategy is sound.
Proof: Negation-as-failure is sound under the comple-
tion semantics for general logic programs [Clark, 19781.
The perfect model semantics allows a subclass of the
class of models allowed by the completion semantics.
Therefore given a query of the form 3p hoZds(a,p)?, if
the strategy above returns with the answer substitution
P = X, then hoZds(a, X) is true, and 7r is a correct plan. E

Completeness is a more delicate issue. In general, per-
fect models may be non-recursively enumerable [Apt
and Blair, 19881, and all sufficiently expressive non-
monotonic logics have non-computable entailment re-
lations. However PERFLOG theories all have a similar
structure, using the same three fundamental predicates,
so their completion and perfect model semantics essen-
tially coincide, and the strategy above is complete.

4 Finding plausible plans

This section describes modifications to the strategy of
the previous section that make it approximate and in-
cremental. In the same way that the guaranteed plan-
ning strategy is in fact a general query-answering proce-
dure, the incremental planning strategy is really a gen-
eral procedure for forming and revising plausible expla-
nations using a default theory.

Any planning strategy that produces plans relying on
unproved assumptions is @so facto unsound, but by its
incremental nature the strategy below tends to sound-
ness: with more time, candidate plans are either proved
to be valid, or changed.

Approximation. The idea behind finding approx-
imate plans is simple: an explanation is approximate

ELKAN 147

if it depends on unproved assumptions. Strategies for
forming approximate explanations can be distinguished
according to the class of approximate explanations that
each may generate. One way to define a class of ap-
proximate explanations is to fix a certain class of sub-
goals as the only ones that may be taken as assump-
tions. Looking at the PERFLOG formalism, there is an
obvious choice of what subgoals to allow to be assump-
tions. Negated subgoals have the epistemological sta-
tus of default conditions: the nonmonotonic semantics
makes them true unless they are forced to be false. It
is reasonable to assume that a default condition is true
unless it it is provably false.

There is a second, procedural, reason to allow negated
subgoals to be assumed, but not positive subgoals.
Without constructive negation, negated subgoals can
only be answered true or false. Negation-as-failure never
provides an answer substitution for a negated subgoal.
Therefore unproved negated subgoals in an explanation
never leave “holes” in the answer substitution induced
by the explanation. Concretely, a plan whose correct-
ness proof depends on unproved default conditions will
never change because those defaults are proved to hold.

In more detail, the guaranteed planning strategy is
modified as follows. When a negated subgoal becomes
ground, the proof of its notional positive counterpart is
attempted. If this attempt succeeds or fails within the
current depth bound, the negated subgoal is taken as
false or true, respectively, as before. However, if the
depth bound is reached during the attempted proof,
then the negated subgoal is given the status of an as-
sumption.

Incrementality. An approximate explanation can
be refined by trying to prove the assumptions it depends
on. If an assumption is proved, the explanation thereby
becomes “less approximate”. As just mentioned, prov-
ing an assumption never causes a plan to change. On
the other hand, if an assumption is disproved, the ap-
proximate plan is thereby revealed to be invalid, and it
is necessary to search for a different plan.

Precisely, any negated subgoal is allowed to be as-
sumed initially. Each iteration of iterative deepening
takes place with an increased depth bound. For each
particular (solvable) planning problem, there is a cer-
tain minimum depth bound at which one or more ap-
proximate plans can first be found. Each of these first
approximate plans depends on a certain set of assump-
tions. In later iterations, only subsets of these sets are
allowed to be assumed. This restriction has the effect
of concentrating attention on either refining the already
discovered approximate plans, or finding new approxi-
mate plans that depend on fewer assumptions.

148 AUTOMATEDREASONING

% rules for how the world evolves

holds(P,do(S,A)) :-
causes(A,S,P).

holds(P,do(S,A)) :-
holds(P,S), not(cancelsU,S,P)).

3! the effects of actions

causes(pounce(lion,X) ,S,eats(lion,X)) :-
can(pounce(lion,X) ,S).

can(pounce(X,Y) ,S) :-
holds(in(X,L) ,S) , holds(in(Y ,L) ,S) ,
not(call(X = Y)),
not(Z,holds(eats(X,Z) ,S)).

causes(jump(X) ,S,in(X,arena>) :-
can(jump(X) ,S), holds(in(X,cage) ,S>.

cau(jump(lion),S) :-
holds(eats(lion,centurion),S).

cancels(drop(X,Y),S,eats(X,Y)I :-
cauUrop(X,Y),S).

can(drop(X,Y),S) :-
holds(eats(X,Y),S).

holds(in(X,H),S) :-
holds(eats(lion,X) ,S),

holds(in(lion,H),S).

% the initial state of the world

holds(in(christiau,aena),sO).
holds(in(lion,cage) ,sO) .
holds(in(centurion,cage),sO).

Figure 1: The theory of a lion and a Christian.

5 Experimental results

Implementing the planning strategies described above is
straightforward, because the PERFLOG calculus is based
on directed clauses. In general, it is insufficiently real-
ized how efficiently logics with this basis, both mono-
tonic and nonmonotonic, can be automated. The state
of the art in PROLOG implementation is about nine RISC
cycles per logical inference [Mills, 19891. Any PERFLOG

theory could be compiled into a specialized incremental
planner running at a comparable speed.

The experiment reported here uses a classical plan-
ning domain: a lion and a Christian in a stadium. The
goal is for the lion to eat the Christian. Initially the
lion is in its cage with a centurion, and the Christian
is in the arena. The lion can jump from the cage into
the arena only if it has eaten the centurion. The lion

eats a person by pouncing, but it cannot pounce while
it is already eating. The PERFLOG theory in Figure 1
describes this domain formally.

Using the guaranteed planning strategy of Sec-
tion 3, the query holds(eats(lion,christian),P)? is
first solved with conspiracy depth bound 19, in 4.75
seconds.3 The plan found is

P = do(do(do(do(sO,pounce(lion,centurion)),
jump(lion)),
drop(lion,centu.rion)),
pounce(lion,cbristian)).

Using the approximate planning strategy of Section 4,
the same query is solvable in 0.17 seconds, with conspir-
acy depth bound 17. The candidate plan found is

P = do(do(do(sO,pounce(lion,centurion)),
jump(lion)),
pounce(lion,christian)).

This plan depends on the assumption that no Z exists
such that

holds(eats(lion,Z),do(do(sO,pounce(lion,cent~ion)),
jump(lion))).

Although the assumption is false and the plan is not cor-
rect, it is plausible. Note also that the first two actions
it prescribes are the same as those of the correct plan:
the approximate plan is an excellent guide to immediate
action.

6 Discussion

The strategy for incremental, approximate planning
uses simplifying assumptions in a principled way: first
the planner searches for a plan assuming that default
conditions hold, then it attempts to prove that they do
hold. The idea of relying on assumptions that are left
unproven appears in [Feldman and Rich, 19861 and else-
where. This paper shows how a formal nonmonotonic
logic determines reasonable potential assumptions, and
how iterative deepening can be used to modulate the ef-
fort expended on checking these assumptions. The point
that default theories suggest how to focus inference is
made independently in [Ginsberg, 19901. To accommo-
date arbitrary sources of knowledge about plausible as-
sumptions, our implementation allows the user to say
explicitly what must always be proved, and what may
sometimes be left unproved, as in [Chien, 19891.

From a knowledge-level point of view, approximate
planning is a type of hierarchical planning. Each max-
imum conspiracy size defines a different abstraction
space in which to search for plans. In each space the

3All times are for an implementation in CProlog,
a Silicon Graphics machine rated at 20 MIPS.

running on

available actions and their effects are the same. Bow-
ever, the lower the maximum conspiracy size, the more
each action is stripped of its difficult-to-check precondi-
tions. Abstraction spaces defined in this way have the
advantage that the execution of any plan invented using
them can be initiated immediately if it is necessary to
act instantly. Other hierarchical planners typically con-
struct plans using abstract actions that must be elabo-
rated before they can be executed [Knoblock, 19891.

Selecting good simplifying assumptions is a type of
abductive inference. Abduction mechanisms have been
investigated a great deal for the task of plan recognition,
not so much for the task of inventing plans, and not
at all for the task of inventing plausible plans. These
three different tasks lead to different choices of what
facts may be assumed. In the work of [Shanahan, 19891
for example, properties of the initial state of the world
may be assumed. In our work, the facts that may be
assumed say either that an established property of the
world persists, or that an unestablished property does
not hold.

An incremental approximate planner is an “anytime
algorithm” for planning in the sense of [Dean and
Boddy, 19881. Anytime planning algorithms have been
proposed before, but not for problems of the tradi-
tional type treated in this paper. For example, the real-
time route planner of [Korf, I.9871 is a heuristic graph
search algorithm, and the route improvement algorithm
of [Boddy and Dean, 19891 relies on an initial plan that
is guaranteed to be correct.

For future work, one important direction is to quan-
tify how an approximate plan is improved by allowing
more time for its refinement. Another problem is to find
a planning strategy that is focused as well as approxi-
mate and incremental. A focused strategy would be one
that concentrated preferentially on finding the first step
in a plan-what to do next.

References

[Apt and Blair, 19881 Krzysztof R. Apt and Howard A.
Blair. Arithmetic classification of perfect models of strat-
ified programs. In Kenneth Bowen and Robert Kowalski,
editors, Fifth International Conference and Symposium
on Logic Programming, volume 2, pages 765-779, Seat-
tle, Washington, August 1988. MIT Press.

[Boddy and Dean, 19891 Mark Boddy and Thomas Dean.
Solving time-dependent planning problems. In Proceed-
ings of the Eleventh International Joint Conference on
Artificial Intelligence, pages 979-984, August 1989.

[Brooks et aZ., 19881 Rodney A. Brooks, Jonathan H. Con-
nell, and Peter Ning. Herbert: A second generation mobile
robot. MIT AI Memo 1016, January 1988.

ELKAN 149

[Brooks, 19871 Rodney A. Brooks. Planning is just a way of
avoiding figuring out what to do next. Technical Report
303, Artificial Intelligence Laboratory, MIT, September
1987.

[Chapman, 19871 David Chapman. Planning for conjunctive
gods. Artijicial Intelligence, 32:333-377, 1987.

[Chien, 19891 Steve A. Chien. Using and refining simplifica-
tions: Explanation-based learning of plans in intractable
domains. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, pages 590-595,
1989.

[Clark, 19781 K enneth. L. Clark. Negation as failure. In
Herve Gallaire and Jack Minker, editors, Logic and
Databases, pages 293-322. Plenum Press, New York, 1978.

[Cohen and Levesque, 19901 Philip R. Cohen and Hector J.
Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(2-3):213-261, 1990.

[Dean and Boddy, 19881 Thomas Dean and Mark Boddy.
An analysis of time-dependent planning. In Proceedings of
the National Conference on Artificial Intelligence, pages
49-54, August 1988.

[Elkan, 19891 Charles Elkan. Conspiracy numbers and
caching for searching and/or trees and theorem-proving.
In Proceedings of the Eleventh International Joint Con-
ference on Artificial Intelligence, pages 341-346, August
1989.

[Feldman and Rich, 19861 Yishai A. Feldman and Charles
Rich. Reasoning with simplifying assumptions: A
methodology and example. In Proceedings of the National
Conference on Artificial Intelligence, pages 2-7, August
1986.

[Fikes et al., 19721 Richard E. Fikes, Peter E. Hart, and
Nils J. Nilsson. Learning and executing generalized robot
plans. Artificial Intelligence, 3:251-288, 1972.

[Foo et al., 19881 N orman Y. Foo, Anand S. Rao, Andrew
Taylor, and Adrian Walker. Deduced relevant types and
constructive negation. In Kenneth Bowen and Robert
Kowalski, editors, Fifth International Conference and
Symposiztm on Logic Programming, volume 1, pages 126-
139, Seattle, Washington, August 1988. MIT Press.

[Ginsberg, 19901 Matthew L. Ginsberg. Defaults and hier-
archical problem solving. In Preprints of the Third In-
ternational Workshop on Nonmonotonic Reasoning, Lake
Tahoe, May/ June 1990.

[Hanks and McDermott, 19861 Steve Hanks and Drew Mc-
Dermott. Default reasoning, nonmonotonic logics, and the
frame problem. In Proceedings of the National Confemnce
on Artificial Intelligence, pages 328-333, August 1986.

[Knoblock, 19891 Craig A. Knoblock. Learning hierarchies
of abstraction spaces. In Proceedings of the Sixth Inter-
national Workshop on Machine Learning, pages 241-245.
Morgan Kaufmann Publishers, Inc., 1989.

[Konolige, 1986] Kurt Konolige. A Deduction Model of Be-
lief. Pitman, 1986.

[Korf, 19871 Richard E. Korf. Real-time path planning. In
Proceedings of the DARPA Knowledge-Based Planning
Workshop, 1987.

[Lifschitz and Rabinov, 19891 Vladimir Lifschitz and
Arkady Rabinov. Things that change by themselves. In
Proceedings of the Eleventh International Joint Confer-
ence on Artificial Intelligence, pages 864-867, 1989.

[Mills, 19891 J onathan W. Mills. A pipelined architecture
for logic programming with a complex but single-cycle
instruction set. In Proceedings of the IEEE First Interna-
tional Tools for AI Workshop, September 1989.

[Moore, 19851 Robert C. Moore. A formal theory of knowl-
edge and action. In Formal Theories of the Commonsense
World. Ablex, 1985.

[Naish, 19861 Lee Naish. Negation and Control in PRO-
LOG. Number 238 in Lecture Notes in Computer Science.
Springer Verlag, 1986.

[Przymusifiski, 19871 Teodor C. Przymusiuski. On the
declarative semantics of stratified deductive databases
and logic programs. In Jack Minker, editor, Foundations
of Deductive Databases and Logic Programming, pages
193-216, Los Altos, California, 1987. Morgan Kaufmann
Publishers, Inc.

[Shanahan, 19891 Murray Shanahan. Prediction is deduc-
tion but explanation is abduction. In Proceedings of the
Eleventh International Joint Conference on Artificial In-
telligence, pages 1055-1060, 1989.

[Stickel and Tyson, 19851 Mark E. Stickel and W. M.
Tyson. An analysis of consecutively bounded depth-first
search with applications in automated deduction. In Pro-
ceedings of the Ninth International Joint Confemnce on
Artificial Intelligence, pages 1073-1075, August 1985.

150 AUTOMATEDREASONING

