
Admissible Criteria 

Roy Feldman and Paul Morris 
IntelliCorp 

1975 El Camino Real West 

Mountain View, CA 94040 

feldman@intellicorp.com morris@intellicorp.com 

Abstract 

We introduce methods for identifying operator 
preconditions that need not be expanded further. 
The methods are proved to be admissible , that 
is, they will not cause a solution to be missed 
when one exists. In certain cases, the methods also 
identify operator reformulations that increase the 
number of nonexpandable preconditions. This ap- 
proach provides effective loop control in common 
situations. Moreover, the computation required 
can be performed during a precompilation of the 
operators in a domain; thus, there is no significant 
additional run-time overhead during planning. 

Introduction 

A major challenge facing the builder of a generative 
planner is to prevent undesired looping behavior. This 
is most clearly seen in “vicious circle” situations. For 
example, a planner, given the problem of opening a 
car door when the keys are locked in the car, may loop 
indefinitely in trying to find a solution. A more subtle 
form of the syndrome can occur during backtracking 
search. In these situations, time is wasted in consid- 
ering partial solutions that involve unnecessary digres- 
sions For example, a planner may consider going from 
one place to another by irrelevant circuitous routes. 

Missing a solution due to infinite looping can be 
avoided by a breadth-first search, such as used by 
Tweak [Chapman 19871. However, this kind of search 
is impractical for many types of problems, and in any 
event the efficiency issue remains. 

Clearly, a planner needs some way of determining 
when a subgoal should not be expanded further. The 
danger of any pruning criterion, however, is that for 
some problems it may prevent any solution from being 
found, even when a solution exists. What is needed 
is a guarantee that the criterion allows at least one 

This research was sponsored by a joint project of the 
Defense Advanced Research Projects Agency and the Na- 
tional Aeronautics and Space Administration under con- 
tract l?30602-88-C-0045. 

solution to be found for every solvable problem. A 
pruning strategy with this property is called admissible 
by Drummond and Currie [Drummond & Currie 19891. 

Similar difficulties with looping can arise in 
backward-chaining inference systems. Smith, et 
al. [Smith, Genesereth & Ginsberg 1986] show that 
the common idea of failing a subgoal that is identi- 
cal to one of its ancestors is an admissible strategy 
for inference systems. A similar approach has been 
used for loop control in planning (e.g., [Rich 1983, p. 
2581). Unfortunately, as shown below, this strategy is 
not admissible for planning systems. Nonlinear plan- 
ning can be formulated as an inference task via Chap- 
man’s modal truth criterion [Chapman 19871. How- 
ever, failing repetitive subgoals in the inferential prob- 
lem appears to have little practical significance for the 
planning problem. 

An alternative approach to loop control in planning 
was introduced by Tate [Tate 1976; Tate 19771. In 
his NONLIN system, certain preconditions of opera- 
tors are designated as hold conditions (called usewhen 
conditions in [Tate 19771). Hold conditions are not al- 
lowed to be expanded. The difficulty here is that the 
user is required to specify these, and no guidance is 
provided for selecting them. If the user’s intuition is 
faulty, the strategy will be inadmissible. Furthermore, 
as we will see presently, for some ways of specifying the 
operators in a domain, there may not be any admissible 
hold conditions that provide adequate loop control. 

Nevertheless, the concept of a nonexpandable pre- 
condition will form the basis of our approach. We 
will present a way of determining when a precondition 
may admissibly be made nonexpandable. Moreover, 
the method automatically reformulates the operators 
in certain cases in order to increase the number of such 
determinations. 

In following sections, we first show the inadmissibil- 
ity in planning of failing subgoals that are identical to 
an ancestor. Then we present a formalization of plan 
graphs that serves as a framework for our approach. 
Next we introduce a structure called the predecessor 
graph that provides information about allowable oper- 
ator sequences of length 2. Finally, we show how to use 

FELDMAN AND MORRIS 15 1 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



this graph to identify admissibly nonexpandable pre- 
conditions. The proofs are contained in the appendix. 

Robot Recharging Problem 
In this section, we present an example that resists ex- 
isting methods of loop control. In particular, it shows 
the inadmissibility of failing a goal that is identical to 
an ancestor. The operator representation we will give 
for the problem, although a natural one, is also not 
amenable to control with hold conditions. We will see 
later that successful loop control requires a reformula- 
tion of one of the operators. 

The example, called the “robot recharging problem,” 
was first described in [Morris 19841. A robot is capable 
of holding a unit of charge. As long as it is charged, the 
robot may move around. We assume that moving uses 
a negligible amount of energy. The robot also needs 
to fix a hole in its body. We assume this uses up all 
its energy, so that the robot becomes discharged. The 
robot is initially at location A. There is a power source 
at location B where the robot can recharge. The goals 
of the robot are to fix the hole and be charged. 

The following is the STRIPS representation of the 
domain. 

FIX 
Preconditions and delete conditions: 
CHARGED,HOLE 

Add conditions: UNCHARGED, NO-HOLE 

RECHARGE 
Preconditions: AT(B), UNCHARGED 

Delete condition: UNCHARGED 

Add condition: CHARGED 

GO 
Preconditions: CHARGED, AT(?X) 

Delete condition: AT(?X) 

Add condition: AT (?Y) 

Initial state: AT(A), CHARGED, HOLE 

Goals: CHARGED,NO-HOLE 

Obviously, the robot must first go to location B. 
Only then can it perform its task and still be able 
to recharge. However, if we examine the structure of 
this plan, we see that AT(B) is a subgoal of CHARGED. 
When AT(B) is expanded by a Go action, this intro- 
duces a further subgoal of CHARGED, which is identical 
to the ancestor goal. Note that if we fail this subgoal, 
the problem will not be solved. (It may be helpful to 
refer to figure 1 below.) 

If we use no loop control method, the problem can be 
solved. Consider, however, the closely related problem 
where the robot is uncharged in the initial state. This 
has no solution. Without some loop control criterion, 
a planner faced with this problem will loop endlessly. 
The challenge is to find some method that cuts off the 
search in the second situation, but not in the first. 

The most obvious candidates for hold conditions 
are the UNCHARGED precondition in RECHARGE, the 
AT(?X) in GO, and the HOLE in FIX. Unfortunately, 
these are not sufficient to terminate looping in the sec- 
ond situation, since there is a cycle through the AT(B) 
precondition of RECHARGE and the CHARGED precon- 
dition of GO. Intuitively, it seems as if the AT(B) in 
RECHARGE might be a hold condition. However, we 
saw above that constructing the plan in the first situ- 
ation requires AT(B) to be expanded. 

Notice that the need for the GO action indirectly re- 
sults from the presence of the NO-HOLE goal, but this 
is not reflected in the goal ancestor path. Interest- 
ingly, the methods we will consider have the effect of 
reformulating the operators in a way that diverts the 
ancestor path to this goal. 

Plan Graphs 
We use the general framework of nonlinear planning in- 
troduced by Sacerdoti [Sacerdoti 19771 and Tate [Tate 
19771. Planning proceeds in stages. At each stage, a 
goal is selected to work on. The planner satisfies the 
goal either by matching it to an already achieved fact, 
or by introducing a new action into the plan. In the 
former case, we say the goal is linked to the matching 
fact. In the latter case, we say the goal is expanded. 

The possible actions are determined by a set of 
STRIPS operators [Nilsson 19801. However, we require 
that the operators be formulated so that they are never 
applied in situations where one of their delete condi- 
tions is already false, or where one of their add condi- 
tions is already true; i.e., none of the adds or deletes 
are no-ops. This is not a severe restriction. First, op- 
erators that are constructed in practice generally have 
this property. Second, an operator that does not can 
always be replaced by several more specialized oper- 
ators that do satisfy the restriction. We also require 
that the operators be formulated to avoid the need for 
coincident solutions, that is, where two preconditions, 
or two add conditions, of the same operator become 
instantiated in such a way that they coincide. Again, 
this can be accomplished by using more specialized op- 
erators, if necessary. 

We associate each action with two sets of facts: the 
before-facts, consisting of the delete conditions and un- 
deleted preconditions; and the after-facts, comprised of 
the add conditions and undeleted preconditions. This 
division may be viewed as a relational production [Vere 
19771 representation of the action. 

A plan graph is a graphical representation of a plan 
that shows how the after-facts of various actions con- 
tribute to the before-facts of other actions. Formally, 
a plan graph is a directed acyclic multigraph where 
the nodes are labeled with actions, and the edges are 
labeled with facts. The labeling on an edge connect- 
ing two actions must belong to the after-facts of the 
first action and the before-facts of the second. There 
is also a distinguished START action whose after-facts 

152 AUTOMATEDREASONING 



Figure 1: Plan Graph For Robot Problem 

supply the initial facts for the plan, and a STOP action 
whose before-facts include the atomic top-level goals. 
Figure 1 shows the plan graph for a solution t; the 
robot problem. 

For linguistic convenience, we blur the distinction 
between a node and the action it is labeled with. For 
example, we may speak of the “before-facts” of a node, 
and the “incoming edges” of an action. 

The following concepts will be useful in the subse- 
quent discussion. 

Note that every directed acyclic multigraph deter- 
mines a partial order on its nodes and edges. Given 
a plan graph, we say a node or edge precedes another 
node or edge if it precedes it in this partial order. Fur- 
t hermore, we say a node or edge is parallel 
node or edge if neither precedes the other. 

to a second 

A plan graph is complete if the before-facts of each 
action in the plan are supplied by after-facts of other 
actions, i.e., if the incoming edges to each action cover - - 
all of the before-facts. This corresponds to a situation 
where there are no remaining unsolved goals. Unless 
otherwise stated, in the remainder of this paper we will 
assume plan graphs are complete. Also, unless other- 
wise clear from the context, we restrict our attention 
to plan graphs that are conflict-free in the following 
sense: no edge is parallel to an action that deletes the 
fact that the edge is labeled with. This is closely re- 
lated to the usual concept of plan conflict (e.g., [Tate 
19761). 

It is never necessary for two incoming edges to an 
action to be labeled with the same fact, since we can 
simply drop one of the edges without affecting the com- 
pleteness of the plan. Expressed in terms of planning, 
a goal is satisfied by linking to a single matching fact. 
However, traditional approaches to planning allow a 
fact to satisfy more than one goal. Thus, it is possible 
for two outgoing edges from an action to be labeled 
with the same fact. We will call this a collision. The 
following result indicates that collisions are not essen- 
tial, and-could be excluded without seriously impairing 
a planner. 

Theorem 1 For every conflict-free plan graph, there 
is a collision-free plan graph with the same actions that 
solves the same problem. 

In light of theorem 1, we assume from now on that 
the plan graphs are collision-free. This restriction turns 
out to be very useful for proving results about plan 
graphs. 

Note that the theorem shows it is admissible to 
adopt an approach to planning where a fact that is 
linked to a goal is “used up” by the goal, i.e., becomes 
unavailable for linking by another goal. In the case 
where the consuming goal corresponds to a precondi- 
tion of an action that remains true after the action, 
the fact is “put back” as a postcondition of the action. 
This approach to planning has been studied in [Morris 
19841. 

We now introduce a notion that is related to the 
concept of primary cut introduced by Drummond and 
Currie [Drummond & Currie 19891. We will say a set 
of edges is parallel if every edge in the set is parallel 
to every other edge in the set. A cut of a plan graph 
is a maximal parallel set of edges, i.e., a parallel set of 
edges that is not a subset of any other parallel set of 
edges. 

The following theorem (actually, its corollary) is cen- 
tral to reasoning about plan graphs. 

Theorem 2 For every cut, there is a reachable state 
of the domain that contains each fact in the labeling of 
the cut. Moreover, no two edges in the cut are labeled 
with the same fact. 

Corollary 2.1 Edges that are parallel cannot have the 
same label or contradictory labels. A node cannot be 
parallel to an edge whose label coincides with or con- 
flicts with one of its before-facts or after-facts. 

To apply the corollary, we need to reason about 
inconsistencies. In principle, any domain constraints 
could be used for this purpose. However, we have 
found the most useful constraints to be exclusive-or re- 
lationships. Inconsistencies based on such constraints 
can be efficiently determined. In [Morris & Feldman 
19891, a method is presented for automatically extract- 
ing candidate exclusive-or relationships from operator 
descriptions. 

The Predecessor Graph 
Obviously, not every combination of actions is possible 
or useful. We now address the question of what actions 
can appear next to each other in a plan graph. 

Given a plan graph, we will say a node A is an im- 
mediate predecessor of a node B if A precedes B, and 
there is no other node C such that A precedes C and C 
precedes B. We are interested in necessary conditions 
for a node to be an immediate predecessor. 

It is easy to see that if A is an immediate predecessor 
of B, then some outgoing edge of A must be an incom- 
ing edge of B. (The converse is not necessarily true: 
A could be connected by an edge to B without being 
an immediate predecessor, since there may be a second 
route from A to B.) Corollary 2.1 provides additional 
requirements. Note that the after-facts of A must be 

FELDMANANDMORRIS 153 



RCHRG FIX 

c 
Figure 2: Predecessor Graph For Robot Problem 

consistent with the before-facts of B; otherwise, we 
would have parallel contradictory edges. 

This requirement allows us to completely rule out 
certain combinations of operators. For example in the 
robot recharging problem, no instance of GO can be 
an immediate predecessor of RECHARGE because the 
CHARGED precondition of the former conflicts with 
the UNCHARGED precondition of the latter. Simi- 
larly, FIX cannot immediately precede GO or itself, and 
RECHARGE cannot immediately precede itself. 

Certain other combinations, although not impossi- 
ble, can be ruled out as not being sensible. Suppose, 
for example, an action A is immediately preceded by its 
exact inverse B. Since the actions are inverses, there 
is an exact match between the after-facts of B and the 
before-facts of A. Corollary 2.1 then implies that ev- 
ery outgoing edge of A must be an incoming edge of B 
and vice versa; otherwise we would have parallel edges 
with the same label. It follows that the plan graph 
could be simplified by excising the portion from A to 
B and directly joining the resulting dangling edges. 

There are no inverses in the robot problem. How- 
ever, a further example of a non-sensible situation oc- 
curs when a two operator combination is subsumed 
by a single operator. Suppose in the robot problem 
that GO is immediately preceded by itself. The bind- 
ing of ?Y in the earlier instance of GO must match the 
binding of ?X in the other; otherwise the consistency 
requirement is violated. But then the after-facts of 
the earlier instance coincide with the before-facts of 
the other, and all the edges from the former must con- 
nect to the latter. It follows that the portion of the 
plan graph containing the two GOs can be replaced by 
a single GO. Thus, we can assume that GO does not 
immediately precede itself. 

After using the techniques above to eliminate vari- 
ous combinations, we are left with a set of combina- 
tions that have not been ruled out. We can form a 
graph of the operators that reflects these. We call this 
the predecessor graph. Figure 2 shows the predecessor 
graph for the robot problem. 

The predecessor graph can often be annotated with 
constraints on bindings that arise from the immediate 
predecessor relationship. For example, if G 0 is im- 
mediately preceded by RECHARGE, then uniqueness of 
location requires that the variable ?x in GO be bound 

to B. 
The above uses consistency analysis to rule out po- 

tential operator combinations in forming the predeces- 
sor graph. Other applications of consistency analysis in 
planning appear in the work of Irani and Chen [Irani 
& Cheng 19871, and Drummond and Currie f Drum- 
mond & Currie 19891. 

Loop Control 

We now consider how to use the predecessor graph to 
determine nonexpandable preconditions. The method 
is based on results in this section. 

We define a plan graph to be minimal if it con- 
tains no unnecessary actions, i.e., there is no other plan 
graph that solves the same problem with a proper sub- 
set of the actions. To prove admissibility of a pruning 
criterion, it is enough to show that every minimal plan 
graph can be constructed within the bounds of the cri- 
terion. 

The following concept will also be useful. We say an 
operator A is guarded by one of its preconditions G if, 
for every minimal plan graph in which A occurs, the 
before-fact of A corresponding to G is an after-fact or 
a before-fact of every immediate predecessor of A. 

Our first theorem on loop control involves a special 
case of A being guarded by G. 

Theorem 3 It is admissible not to expand a precon- 
dition G of an operator A if for every minimal plan 
graph in which A occurs, the before-fact of A corre- 
sponding to G is a before-fact of every immediate pre- 
decessor of A. 

Intuitively, theorem 3 is used to make a operator 
precondition nonexpandable by way of deferral. If a 
precondition G meets the conditions of the theorem, it 
means that the expansion of any of the sibling precon- 
ditions of G are guaranteed to introduce a precondition 
identical to G. Thus, G can be expanded later. Our 
next result presents an alternative means of determin- 
ing nonexpandability. 

Theorem 4 It is admissible not to expand a deleted 
precondition G of an operator A if A is guarded by G 
and, for every minimal plan graph in which A appears, 
the facts added by A are contained in the before-facts 
of every immediate predecessor of A. 

Moreover, this criterion and that of theorem 3 are 
simultaneously admissible. 

The proof of theorem 4 is based on showing the ex- 
pansion of the precondition is unnecessary because ei- 
ther some other goal can be expanded to introduce the 
same action, or any possible expansion will produce a 
non-minimal plan graph. 

The following examples show how these theorems 
may be used. Our first example is a formalization of 
the car keys problem. We have the following operator 
descriptions. 

154 AUTOMATEDREASONING 



OPEN-CAR-DOOR 

Preconditions: DOOR-CLOSED, HAVE-KEYS 

Delete condition: DOOR-CLOSED 

Add condition: DOOR-OPEN 

GET-KEYS-FROM-CAR 

Preconditions: KEYS-IN-CAR, DOOR-OPEN 

Delete condition: KEYS-IN-CAR 

Add condition: HAVE-KEYS 

In this example, consistency analysis shows that nei- 
ther operator can have any immediate predecessor, 
i.e., all operator sequences of length 2 are impossible. 
Thus, every precondition can admissibly be made non- 
expandable. This gives us the loop control we need. 

Our next example is the robot problem. Consider 
the AT(?X) precondition of GO. The only immediate 
predecessor of GO is RECHARGE, which has AT(B) as 
a precondition. We noted earlier that when GO is im- 
mediately preceded by RECHARGE the ?X in GO must 
be bound to B. Thus, the precondition is also a pre- 
condition of every possible immediate predecessor. We 
conclude by theorem 3 that AT(?X) is admissibly non- 
expandable for this domain. 

Also, consider the UNCHARGED precondition of 
RECHARGE. The only immediate predecessor is FIX. 
Thus, UNCHARGED guards RECHARGED. Note that 
the only fact added by RECHARGE is CHARGED. This 
is among the preconditions of FIX. Moreover, UN- 
CHARGED is deleted by RECHARGE. Thus, by theorem 
4, it is a nonexpandable precondition. 

We would like to make the AT(B) precondition of 
RECHARGE nonexpandable. However, as things stand 
the method does not apply, since the immediate pre- 
decessor, FIX, does not have AT(?X) as a precondition. 
Indeed, we noted earlier that with this operator rep- 
resentation, AT(B) needs to be expanded to solve the 
robot problem. 

Observe, however, that if we include AT(?X) as an 
additional precondition in the FIX operator, then the 
criterion of the theorem is satisfied, and AT(B) can 
be made a nonexpandable precondition of RECHARGE. 
Moreover, it is admissible to augment the FIX operator 
in this way, since every state must satisfy some instance 
of AT(?x). The reason why the robot problem is now 
solvable is that the AT(?X) precondition of FIX can be 
expanded instead. Note that we have shifted the goal 
ancestor path for the expansion of AT(?X) so that it 
now leads to the NO-HOLE top-level goal. Intuitively, 

Figure 3: Reformulated Plan Graph 

available, the fact and its negation can be used.) Note 
that consistency requirements ensure that of the re- 
placement operators, only the one corresponding to the 
precondition is an immediate predecessor. 

It is easy to see that the modification procedure can 
be applied to make any precondition nonexpandable 
provided that no immediate predecessor has the pre- 
condition as an add condition. 

Observe that all the preconditions of RECHARGE are 
now nonexpandable. It can be verified that every po- 
tential loop in the robot problem passes through the 
RECHARGE operator. Thus, no loops remain. 

It is important to note that the methods provide only 
sufficient conditions for admissible nonexpandability, 
and it is not true in general that they will prevent all 
loops. We can think of theorem 3 as eliminating goal 
repetitions where a goal is an immediate subgoal of it- 
self. Theorem 4 applies to goals that repeat after two 
steps. Slightly larger repetition intervals can be han- 
died by combining operators as necessary to reduce 
the repetition distance. However, in the blocks world, 
for example, there can be repetitions with an indefi- 
nite number of intervening goals, and neither theorem 
applies in this case. Nevertheless, the results here ap- 
pear to cover many of the intuitive examples of hold 
conditions. 

Closing Remarks 
One of the features which distinguishes modern work 
in AI from that of earlier periods is an increasing con- 
tern for rigorous analysis and deeper understanding of 
the techniques studied. Previous loop control methods 
in planning may be classified as engineering art. In- 
deed, loop control is an important, but neglected issue 
in generative planning. We have presented provably 
correct methods that are effective in common situa- 

the problem with the original representation was that 
the expansions were not correctly motivated. Figure 3 

tions. An important observation that follows from the 

shows the reformulated plan graph for this problem. 
results in this paper is that operator descriptions may 
need to be reformulated in order to facilitate control. 

This technique of modifying the operators can be The methods of the paper can be used to identify useful 
made systematic. In general, we may need to replace reformulations. 
the immediate predecessor operator with several oper- A system that identifies nonexpandable precondi- 
ators that are augmented with the different members tions based on the theorems in the paper has been 
of some exclusive-or set that includes the precondition successfully implemented. Our present implementa- 
under consideration. (If no better exclusive-or set is tion uses a full theorem prover (the Boyer-Moore the- 

FELDMANANDMORRIS 155 



orem prover [Boyer & Moore 19791) to reason about 
inconsistency, which limits its applicability. However, 
in practice, less costly reasoning about exclusive-or re- 
lationships should be sufficient. Note also that the rea- 
soning is performed during a precompilation of the op- 
erators in a domain, so the cost is amortized over all 
problem-solving in that domain. 

Nonexpandability is only part of the content of the 
hold condition idea of Tate; the other part is a deter- 
mination that linking need not be delayed until side 
effects of other operators are available. This property 
is called eflective isolation in [Morris 19841. The prede- 
cessor graph may also be useful for determinations of 
effective isolation, and current work is exploring this. 

Acknowledgment We thank Bob 
gestions to improve the presentation. 

Filman for sug- 

Appendix: Proofs 

Theorem 1: For every conflict-free plan graph, there 
is a collision-free plan graph with the same actions that 
solves the same problem. 

Proof: Suppose an action has two outgoing edges 
labeled with the same fact F. If the two edges are re- 
ceived by a single action, then one edge is redundant 
and can be removed. Otherwise, the edges must be 
received by different actions. At least one of these, 
say A, is not preceded by the other, B. If the plan is 
conflict-free, then the receiving action A cannot delete 
the fact F, since it is parallel to the edge that goes 
to B. Thus, F must also occur as an after-fact of A. 
Now the original F-labeled edge to B can be replaced 
by an edge from A to B. If there is already an outgo- 
ing edge from A labeled with F, then the above process 
can be repeated. Note that each repetition moves the 
collision closer to the STOP node. Ultimately, either it 
disappears, or a redundancy occurs among the incom- 
ing edges to the STOP node and can be removed. 

Theorem 2: For every cut, there is a reachable 
state of the domain that contains each fact in the la- 
beling of the cut. Moreover, no two edges in the cut 
are labeled with the same fact. 

Proof: We say a node precedes a cut if it precedes 
some edge in the cut. The theorem will be proved by 
induction on the number of nodes that precede a cut. 

Note that the outgoing edges from the START node 
constitute a cut that is preceded only by the START 
node itself. We call this the initial cut. Clearly, the 
result holds for the initial cut. 

Now consider some other cut. Let A be a node pre- 
ceding the cut that is maximally close to the cut, i.e., 
A does not precede any other node that precedes the 
cut. Let e be any outgoing edge of A. We show e must 
belong to the cut. Suppose otherwise. Then e cannot 
precede any edge in the cut; otherwise there would be 
another node between A and the cut. Also, e cannot 
be preceded by any edge in the cut. If it did, then A 
could not precede the cut. Thus, e is parallel to every 

edge in the cut. But this contradicts the definition of 
a cut, which requires it to be a maximal parallel set of 
edges. 

We have shown that every outgoing edge of A be- 
longs to the cut. Let us call this cut C. Now consider 
the set of edges obtained from C by replacing the out- 
going edges of A with its incoming edges. It is not hard 
to verify that this is also a cut, which we will call C’. 
By the inductive hypothesis, the labels of edges in C’ 
are free of duplicates, and are contained in some reach- 
able state. The preconditions of A are satisfied in that 
state. Thus, the state resulting from applying A is also 
reachable. This state contains the facts corresponding 
to edges in C. This proves the first part of the result. 

Note that the only way that applying A could pro- 
duce a duplicate edge (we are assuming no collisions 
among the outgoing edges of A) would be if one of its 
outgoing edges had the same label as an edge common 
to the two cuts. But then A would be applicable in 
a situation where one of its add conditions is already 
true, contrary to our restriction on operators. This 
shows the second part of the result. 

Corollary 2.1: Edges that are parallel cannot have 
the same label or contradictory labels. A node cannot 
be parallel to an edge whose label coincides with or 
conflicts with one of its before-facts or after-facts. 

ProofiIf two edges are parallel, then there is some 
cut that contains them both. By the theorem, the cut 
has no duplicate labels. Furthermore, the labels are 
contained in some reachable state, so they cannot be 
contradictory. 

Now suppose a node A is parallel to an edge e. It is 
easy to see that the incoming and outgoing edges of A 
must also be parallel to e. Thus, the only case we need 
to consider is that of an unused after-fact. Note that 
the plan graph can be modified to include the after- 
fact as a top level goal without changing any of the 
labels. Then, the previous reasoning can be applied to 
the after-fact. The result follows. 

Lemma 1 Suppose A is guarded by a precondition G. 
Consider some minimal plan graph in which A occurs. 
Let e be the incoming edge to A that corresponds to G, 
and let B be the node of which e is an outgoing edge. 
Then B is an immediate predecessor of A, and is the 
only immediate predecessor of A in the plan graph. 

Proof: Clearly, B is a predecessor of A. Suppose 
there is some other node C that is an immediate prede- 
cessor of A. Then C has either an afler-fact or a before- 
fact that matches the label of e. Clearly, e is parallel to 
C, leading to a violation of corollary 2.1. Thus, there 
cannot be any other immediate predecessor. It follows 
that B must be the immediate predecessor of A. 

Theorem 3: It is admissible not to expand a pre- 
condition G of an operator A if, for every minimal 
plan graph in which A occurs, the before-fact of A cor- 
responding to G is a before-fact of every immediate 
predecessor of A. 

156 AUTOMATEDREASONING 



Proof: Consider a minimal plan graph in which A 
occurs. There must be some incoming edge e of A 
that corresponds to G. Suppose the edge e comes from 
another node B. By the statement of the theorem, A 
is guarded by G. Hence, by lemma 1, B must be an 
immediate predecessor of A. 

By hypothesis, B has a before-fact that coincides 
with the label of e, and so e does not correspond to an 
add condition of B. It follows that during planning, 
B could not have been introduced into the plan as an 
expansion of G, i.e., it must have resulted from the 
expansion of some other goal (or be the START node). 
Thus, it is safe to make G nonexpandable. 

Theorem 4: It is admissible not to expand a deleted 
precondition G of an operator A if A is guarded by G 
and, for every minimal plan graph in which A appears, 
the facts added by A are contained in the before-facts 
of every immediate predecessor of A. 

Moreover, this criterion and that of theorem 3 are 
simultaneously admissible. 

Proof: In the following, We use the term add-fact 
to describe an after-fact that corresponds to an add 
condition. Similarly, delete-fact is a before-fact that 
corresponds to a delete condition. 

Consider any minimal plan graph in which a node B 
occurs. Let I be the set of outgoing edges of B that 
correspond to add-facts of B, and let A be the set of 
nodes that receive the edges in 1. 

Each edge e in C corresponds to a precondition G 
of some node A in A. We claim that at least one 
such G is not made nonexpandable by the criterion of 
the theorem. Assume otherwise. We will show that 
this leads to a contradiction. We note here that the 
assumption implies that every edge from an add-fact 
of B leads to a delete-fact of the connected node. 

We proceed by showing all the outgoing edges of the 
nodes in the set A U {B} (other than internal edges) 
can be replaced by equivalent incoming edges. This 
will allow all the nodes in the set to be excised, con- 
tradicting the minimality of the plan graph. 

By lemma 1, B is an immediate predecessor of each 
node in d. It follows that the edges being considered 
for replacement are all parallel to each other. By corol- 
lary 2.1, their labels are all different. Thus, there is no 
danger of two outgoing edges competing for a replace- 
ment among the incoming edges, so it is sufficient to 
show that the edges can be replaced individually. 

There are three cases to be considered: outgoing 
edges of (nodes in) A that correspond to add-facts; 
other outgoing edges of d; and outgoing edges of B 
that do not go to d. 

If e corresponds to an add-fact of some A in A, then 
by the condition of the theorem, it can be replaced by 
an equivalent incoming edge e’ to B. 

If e is an outgoing edge of some A, but does not 
correspond to an add-fact, then there must be an in- 
coming edge e’ of A that has the same label. If e’ is 
not an internal edge, then e can simply be replaced by 

e’. Otherwise, e’ is an outgoing edge of B. Since its 
label is not a delete-fact of A, it is not an add-fact of 
B (by the assumption; see above). Thus, there must 
be an incoming edge e” of B with the same label as e’. 
In this case e can be replaced by e”. 

If e is an outgoing edge of B that does not go to 
some A, then it is not in E. It follows that it is not an 
add-fact of B. Thus, there is some incoming edge e’ of 
B with the same label, and we can replace e with e’. 

This proves our claim. Thus, at least one edge in 
& must correspond to a precondition G that does not 
satisfy the criterion of the theorem. When the plan 
has been constructed up to the after-facts of B, this G 
can be expanded to introduce B into the plan. 

Note that the G exhibited here corresponds to an 
add-fact of B; thus, B does not have an equivalent 
before-fact. It follows that G is not made nonexpand- 
able by the criterion of theorem 3. 

References 
Boyer, R. S., and Moore, J.S. A Computational Logic. 
Academic Press, 1979. 

Chapman, D. Planning for conjunctive goals. Artifi- 
cial Intelligence, 321333-378, July 1987. 

Drummond, D., and Currie, K. Goal ordering in par- 
tially ordered plans. In Proc. IJCAI-89, pages 960- 
965, Detroit, Michigan, 1989. 

Irani, Keki B., and Cheng J. Subgoal ordering and 
goal augmentation for heuristic problem solving. In 
Proc. IJCAI-87, pages 1018-1024, Milan, Italy, 1987. 

Morris P., and Feldman, R. Automatically derived 
heuristics for planning search. In Second Irish Con- 
ference on Artificial Intelligence and Cognitive Sci- 
ence, Dublin, Ireland, 1989. Proceedings to appear in 
Springer-Verlag Brit. Comp. Sot. Workshop Series. 

Morris, P. H. A Resource Oriented Formalism for 
Plan Generation. PhD thesis, University of Califor- 
nia, Irvine, 1984. 

Nilsson, N. J. Principles of Artificial Intelligence. 
Tioga Publishing Company, Palo Alto, Ca., 1980. 

Rich, E. Artificial Intelligence McGraw-Hill, 1983. 

Sacerdoti, E. D. A Structure for Plans and Behavior. 
Elsevier North-Holland, 1977. 

Smith, D. E.; Genesereth, M. R.; and Ginsberg, M.L. 
Controlling recursive inference. Artifkial Intelligence, 
30(3):343-389, 1986. 

Tate, A. Project Planning Using A Hierarchic Non- 
Linear Planner. Research Report 25, Dept. of Artifi- 
cial Intelligence, Univ. of Edinburgh, Aug. 1976. 

Tate, A. Generating project networks. In Proc. 
IJCAI-77, pages 888-893, Cambridge, Ma., 1977. 

Vere S.A. Relational production systems. ArtificiaE 
Intelligence, 8~47-68, 1977. 

FELDMAN AND MORRIS 157 


