
Practical Temporal Projection

Steve Hanks*
Department of Computer Science and Engineering, FR-35

University of Washington
hanks&s. washington.edu

Abstract
Temporal projection-predicting future states of a
changing world-has been studied mainly as a formal
problem. Researchers have been concerned with get-
ting the concepts of causality and change right, and
have ignored the practical issues surrounding projec-
tion. In planning, for example, when the effects of a
plan’s actions depend on the prevailing state of the
world and that state of the world is not known with
certainty, projecting the plan may generate an expo-
nential number of possible outcomes. This problem
has traditionally been eliminated by (1) restricting the
domain so the world state is always known, and (2) by
restricting the action representation so that either the
action’s intended eflect is realized or the action cannot
be projected at all. We argue against these restrictions
and instead present a system that (1) represents and
reasons about an uncertain world, (2) supports a rep-
resentation that allows context-sensitive action effects,
and (3) generates projections that reflect only the sig-
nificant or reEeuant outcomes of the plans, where rele-
vance is determined by the planner’s queries about the
resulting world state.

Introduction
Temporal projection consists of taking (1) a model of
some world, and (2) the description of a particular se-
ries of e’vents that happen in the world, and trying to
predict the world’s state after the events occur. In the
planning community the events generally comprise a
plan to be executed and the world model is a set of
rules describing the effects of the actions that make up
the p1an.l

*This papeE describes part of the author’s thesis work
at Yale University, advised by Drew McDermott and sup-
ported in part by DARPA grant DAAA15-87-K-0001.
Thanks to Dan Weld and Tony Barrett for comments on
this paper.

‘Projection is a central problem in the area of qualita-
tive physics as well. We will be concentrating on the area of
planning and acting, but believe the problems we raise, and
perhaps the solutions as well, are equally valid applied to
QP situations. See, for example, [Kuipers and Chiu 19871

Temporal projection has been studied extensively in
the literature on planning and acting,2 but mainly as a
formal problem: one starts with a logic that purports
to capture notions involving time, action, change and
causality, and argues that the inferences the logic li-
censes are the intuitively correct ones.

This paper takes a somewhat different view, argu-
ing that temporal projection is an interesting pructi-
cal problem. We argue that computing the possible
outcomes of a plan, even if formally well understood,
is computationally intractable, and thus one must re-
strict one’s attention to the “important” or “signifi-
cant” outcomes. This is especially true in domains for
which the agent lacks perfect knowledge, and in which
forces not under the agent’s control can change the
world-in other words, any interesting domain.3

We present an implemented framework for plan pro-
jection, which is actually part of a system that main-
tains the agent’s world model-a network of beliefs that
are both dynamic and tentative. This paper will focus
on how commitments to act (potential plans) change
the model; the planning process, conversely, is con-
cerned with how the model guides the agent’s choice
of action.

We first discuss briefly a subsystem that performs
probabilistic temporal reasoning-computing the like-
lihood that a proposition will be true at some point in
time. We next motivate and present a representation
for action and demonstrate the exact nature of the pro-
jection problem, then proceed to sketch our algorithm.
We end by discussing the system’s performance.

Probabilistic Temporal
Central to the problem of predicting a plan’s outcomes
is determining the truth of various propositions (e.g. an
action’s preconditions) at some point in time (e.g. the
time at which the action is to be executed). Since the

2There are simply too many references to cite here, given
the space limitations. An int,erested but uninformed reader
might start with the relevant papers in [Ginsberg 19871 and
work forward from there.

3See [Chapman 19871 for some discouraging results, even
for artificially restricted domains.

158 AUTOMATEDREASONING

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

agent will typically lack perfect information about the
world (past, present, or future) we need some mecha-
nism to express its uncertainty regarding the states of
these propositions. We are using probabilities to rep-
resent this uncertainty, thus are concerned with com-
puting the quantity P(‘$7 true at time V’), where cp is
some proposition and t is a time point. We will abbre-
viate this notation to P(pt).

Three sorts of evidence get used in the computation:
(1) reports from the sensors about cp’s state, (2) sym-
bolic causal rules of the form “if event E occurs while
some fact P is true, then cp will become true at the
next instant in time,” and (3) background information
(prior probabilities) about cp, E, P, and so on.

Uncertainty can come from a number of sources: (1)
one can doubt whether the sensor reported correctly
on ‘p’s state, (2) one can be unsure as to whether a rel-
evant event E actually occurred at some point in time,
and (3) one can lack confidence in the causal rules:
perhaps the rules mentioning cp aren’t really necessary
and sufficient predictors of cp’s state changes. Our rep-
resentation for propositions, rules, and the like takes
into account all of these factors.

Important computational problems arise in imple-
menting this approach: a tremendous amount of evi-
dence must be brought to bear in computing the prob-
ability. Sensory observations of cp might extend arbi-
trarily far back into the past, as do the relevant causal
rules (since they are implicitly quantified over all time
points). Most of this evidence, however, will not affect
‘p’s probability significantly.

Although computing ‘p’s exact probability requires
considering a potentially infinite amount of infor-
mation, we might expect that under the right
circumstances-sensors that are reasonably reliable
and changes that occur reasonably infrequently-we
can compute a good approximation of the probability
using only a few pieces of evidence. The question is
how good need a “good” approximation be?

The application program (planner) provides this in-
formation in the form of a probu bility threshodd r, indi-
cating that it doesn’t care what cp’s probability is, but
only to what side of r the probability falls. A “good”
approximation is therefore one that reports correctly
with respect to the threshold. [Hanks 19881 presents
a heuristic algorithm for limiting the search for evi-
dence, the limit depending on how close the current es-
timate is to the threshold. The program also computes
probabilities for joint events (logical conjunction), and
monitors the database for new information that might
invalidate the current approximation. Details of this
subsystem appear in [Hanks 19881 and [Hanks 19901.
The projector invokes the probability-calculation sub-
system by posing a probubil’istic query-a question of
the form “P(vt) > T?” The answer is returned in a
data structure, called a beliei which is an assertion
about which side of the threshold the probability lies
(given current evidence).

Action representation
The typical action representation in the literature on
action and planning (e.g. [Fikes and Nilsson 19711, [Lif-
schitz 19871, [Ginsberg and Smith 1988]) describes an
action as a mapping from preconditions into eflects. A
good example is the “start the car” scenario, usually
used to motivate the qualification problem: if there is
fuel in the tank, the starter is working, . . . , and there
is no potato obstructing the tailpipe, then turning the
key causes the engine to start.4 A planner or projector
faced with the hypothetical execution of such an ac-
tion would first try to infer the action’s preconditions;
if they turn out to be true the effects would be noted in
the resulting world state; if false, the action is said to
be infeasible, and the planner could not reason about
subsequent execution of the plan.

What’s troublesome here is the planner’s inability to
reason about the action in cases where the precondition
is false: in no sense is the action of turning the key
of a car with, say, an obstructed tailpipe impossible
or meaningless, yet that is what is implied by these
systems’ failure to project further.

In fact the action will have predictable effects even
if the tailpipe is obstructed: it will take some time,
wear down the battery, make some noise, perhaps gen-
erate a spark. It turns out that one particular effect,
the engine running, will not be realized, and it may
be the case that in some situations that’s the only ef-
fect the planner is interested in, but it does not mean
that executing the action is meaningless. What these
systems have done is confused the notion of an action
being meuningfil or conceivable with the notion of an
action’s achieving its intended effect.5 The former is
rightfully a property of the action’s definition, but the
latter depends on the situation at hand. Actions will
typically have a variety of effects depending on the cir-
cumstances, and it may be impossible to predict ahead
of time which of those effects will turn out to be im-
portant.

If our representation for actions and plans is to sup-
port clever detection of planning bugs (e.g. trying to
start the engine too many times thus running down the
battery, or generating a spark in a gas-filled room) or
innovative planning or plan recognition (running the
car to warm the garage or to light the headlights with-
out taxing the battery) we must associate intention or
relevance with the situation rather than with the ac-
tion’s definition.

Consider as an alternative the code in Figure 1.6
It is intended to represent the action “drive the truck

*The point is that there are myriad preconditions to any
action-too many to verify explicitly.

‘Pednault’s ADL [1988a] is an exception, since it ex-
plicitly allows for context-dependent effects. In [Pednault
1988101 he notes various computational problems associated
with using the representation for planning or projection.

‘This is a simplified version of an action based on the
robot-truck world of [Firby and Hanks 19871.

HANKS 159

(action (travel R Ll L2)
(if (not (lot TRUCK Ll))

(A) (outcomes INFEASIBLE)
(if (< FUEL-LEVEL IO)

(B) (outcomes (1 oc TRUCK ON-ROAD)
(status TRUCK OUT-OF-GAS)
(consume FUEL 10)
(duration 0 60))

cc>

CD)

(El

(if (not (muddy R) >
(outcomes (lot TRUCK L2)

(consume JYUEL 10 15)
(duration 45 60))

(if (chance 0.25)
(outcomes (lot TRUCK ON-ROAD)

(status TRUCK STUCK)
(muddy TRUCK)
(consume FUEL 0 30)
(duration 0 75))

(outcomes (lot TRUCK L2)
(muddy TRUCK)
(consume FUEL 25 30)
(duration 50 751

Figure 1: Traveling on a dirt road

down road R from location Ll to location L2. The code
describes a mapping from state descriptions to sets of
outcomes.7 Note that actions can still be infeasible,
as outcome set (A) indicates, but the idea is that it
is truly meaningless to contemplate a trip starting at
location Li if you are not at location Ll. Running out
of gas or getting stuck in the mud may be inconve-
nient, may even be impossible (probability 0) under
some circumstances, but it is not inconceivable.

The feasible outcome set (D) indicates that as a re-
sult of executing the travel action the truck is some-
where on the road, stuck in the mud, has used up some
quantity of fuel less than 30 gallons, and somewhat less
than 70 time units will have passed.

An outcome set’s label, the conjunction of all the if
propositions leading to it, describes states of the world
in which the outcome set will be realized. Set (D),
for example, will be realized if the action is executed
when the world satisfies the the following condition:

(lot TRUCK Ll)A (not (< FUEL-LEVEL 10))A
(muddy R)A (chance 0.25)

The action’s if-then-else form ensures that the
labels for different outcome sets will be mutually ex-
clusive and that the labels for all an action’s outcome
sets will be exhaustive. Therefore exactly one set’s
label will be true at any point in time, so no matter
when the action is executed exactly one set of outcomes
will be realized. Of course we may not know what that
state of the world is, even after the action is executed.8

70utcomes are essentially the same as the “effects”
above, but extended to allow reasoning about sets, con-
tinuous quantities, passing time, and so on.

8 We account for an action’s having indeterminate effects
by introducing the chance predicate, e.g. Figure 1 outcome
set (D), whose real truth value is never known, Flit whose

Figure 2: Projecting a single action

An outcome set’s label is a formula that can be posed
as a probabilistic query (given a time point represent-
ing the proposed time of execution). We can therefore
compute a probability distribution over the outcome
sets relative to a time point, asking, for each outcome
set 00, “what is the probability that (X>‘s label will
be true?”

We can then view the process of projecting a sin-
gle action as building a tree as pictured in Figure 2.
Nodes are states of the worlds, and each arc represents
the possibility that a particular outcome set will be re-
alized, given that the world is in a state like that of its
parent node. The probability associated with an arc,
e.g. P(label(A) IW) is the probability that outcome set
A’s label will be true, and thus its outcomes will be
realized, given that the world is in state W at execution
time. W-+A is then the state of the world resulting from
the action’s outcome set A being realized in world W.’

Scenarios and Projection
To project a sequence of actions Al, Aa, . . . , we just it-
erate the process of single-action projection: we project
action Ai+r, in each of the world states resulting from
the execution of Ai. Projecting a plan therefore re-
sults in a directed tree which branches forward in time.
We call this tree a scenario structure, and each path
through the tree a chronicle. Each chronicle has an as-
sociated probability, and the probabilities of all chron-
icles in a scenario must sum to 1.

Figure 4(a) shows the structure generated by
projecting the sequence (load 01); (load 02);
(travel BR L3 L4) whose action descriptions appear
in Figure 3. The load actions-load an object into
the cargo bay-have a 0.1 chance of failing, but take
1 time unit in either case; BR is a bridge that will col-
lapse if the truck is carrying two or more items when
it crosses.

The projection problem manifests itself in the pro-
liferation of chronicles: a plan with n actions each
containing an average of m outcome sets will gener-

probability can easily be computed.
‘The projector can also account for the possibility that

other relevant events occur while the action is executing,
but that process is beyond the scope of this paper.

160 AUTOMATEDREASONJNG

(action (load ?x>
(if (not (reachable ?x))

(F) (outcomes INFEASIBLE)
(if (chance 0.9)

(G) (outcomes (holding ?x)
(duration 1))

(H) (outcomes (duration 1)))))

(action (travel BR L3 L4)
(if (not (lot TRUCK L3)

(I) (outcomes INFEASIBLE)
(if (>= (card CARGO) 2)

(J) (outcomes (lot TRUCK RAVINE)
(status TRUCK MANGLED)
(duration 0 7))

00 (outcomes (lot TRUCK L4)
(duration 3 7))))

Figure 3: More action code

ate roughly mn chronicles. Although we can obvi-
ously do some pruning of the tree, by eliminating zero-
probability and infeasible chronicles for example, an
impractical number of feasible and possible chronicles
remain.l’

Figure 4(a) shows an exhaustive projection of the
plan above. Every arc in the tree has a single outcome
set associated with it, so the tree branches with every
possible outcome for every possible action. We can
reduce proliferation of the tree by instead associating
a set of outcome sets with each arc. The intuition
is that the distinctions noted by outcome sets within
each set are irrelevant, while the distinctions between
outcomes in di$erent sets are significant.

Referring back to the travel action in Figure 1, sup-
pose that we care only about whether the truck reaches
its destination L2. In that case we don’t care about the
distinctions implied by outcomes sets (A) (I31 and (D) ,
nor about the distinctions between (C) and (E). So we
form two sets and produce two branches in the tree in-
stead of five. We call each of these groupings a bundle.
Each arc in the scenario tree has an associated bundle,
which contains one or more outcome sets.

Bundling outcome sets speeds the process of com-
puting label probabilities as well, in that the label as-
sociated with a bundle (the disjunction of its member’s
labels) may be much simpler than the individual labels.
As an extreme case suppose we are only interested in
whether Figure l’s action is feasible or not. In that
case we put (A) in one bundle and the rest of the out-
come sets in another. Computing the probability of
the second bundle (which has four members) is simply
a matter of evaluating (lot TRUCK Ll). Note that
as long as we assign each outcome set to exactly one

--El
(a) Fully aniculatdl

(c)Paniallyunbundlcd

Figure 4: Bundled and unbundled scenario trees

“We have been testing the program with examples in
which n = 10 and m = 6, which gives rise to some 6 x
lo7 chronicles in the worst case. Pruning infeasible and
impossible chronicles gets rid of some $ of them, but that
still leaves more than ten million.

HANKS 161

bundle, the bundles still partition the set of possible
execution-time situations, and thus their probabilities
sum to 1.

The problem with bundling outcome sets is that we
can make less precise predictions. When we project
an action across a bundle of outcome sets we can infer
only the weakest conclusion allowed by all members
of that bundle. If we construct the bundle {(C) , (El}
from Figure 1, for example, we can conclude that the
truck will be at ~2, but we can only make vague pre-
dictions about the fuel consumption (between 10 and
30 gallons), and the action’s duration, and we cannot
predict whether or not the truck will be muddy. But
then again we may not care.

Practical projection, then, is a process of balancing
the need for parsimony in the scenario tree and speed
in computing chronicle probabilities against the need
to make precise predictions about what the world will
be like after the plan is executed. The former argues
for keeping much of the tree’s structure implicit by
forming a few large bundles; the latter argues for repre-
senting the tree explicitly. Obviously we want to make
explicit the “important” or “significant” or “relevant”
distinctions in the tree and leave the rest implicit. But
how do we determine which distinctions these are?

The answer is that we can use the probabilistic tem-
poral queries, which may be posed by the planner
or generated as the projector computes a chronicle’s
probabilities: the projector wants to articulate exactly
enough of the tree to give the best possible answers to
the queries it receives. Of course the nature of these
queries will not be known in advance, so the projec-
tor must be able to articulate the tree more fully-to
“unbundle” outcome sets-on demand.

To see how the process works, consider again
the sequence (load 01); (load 02); (travel BR
L3 L4). The planner additionally supplies the projec-
tor with a time point at which to begin, initial assump-
tions (the truck is at L3, objects 01 and 02 are reach-
able, the cargo bay is empty, and the fuel tank is full),
and a probability threshold. Chronicles whose proba-
bilities fall below this threshold will be abandoned, at
least initially.

The projector proceeds to project each action in se-
quence, assuming that the only distinction the planner
is interested in is between feasible and infeasible out-
comes. The initial projection appears in Figure 4(b).”
The projector returns the (single) chronicle represent-
ing a feasible plan completion: the chronicle ending in
node 4. At this point we can say little about where the
truck is or what it is carrying.

Now suppose the planner poses the query “is the

l1 We have pruned away O-probability outcomes, like one
in which 01 instantaneously becomes unreachable, or the
truck inexplicably gets moved away from LX Node 2 rep-
resents a situation in which somebody removes object 02
during the time that 01 was being loaded, but it has a small
enough probability that it is not projected further.

truck at LR?” The projector notes that the current
tree yields an ambiguous answer to this question, but
that splitting the bundle {(J) ,(K)} would result in a
more precise answer. In the process of splitting that
bundle it needs to compute label probabilities for (J)
and (K), leading it to ask “(>= (card CARGO) 2)?”
So the projector poses that query with respect to node
3. Once again the answer is ambiguous: currently we
can predict only that the cargo bay will contain be-
tween 0 and 2 items, but two bundles, {(G), (H)} and
{CC’), (H’)) contribute to the ambiguity, so the pro-
jector considers the possibility of splitting them. De-
tails of when and how the projector splits a bundle of
outcome sets appear in [Hanks 1990, Chapter 41.

When all the splitting completes, queries get an-
swered, and projection finishes, the tree appears as in
Figure 4(c). Now there are three feasible chronicles,
each of which answers unambiguously the question “is
the truck at ~3. 3”12 The probability for a query Q is the
sum c, f’(Q 1 c)p(c w > h ere c varies over all chronicles.
The probability for “is the truck at ~3” is therefore
roughly 0.19. The probability of “is the truck at ~3
and carrying both 01 and 02" would be 0, and could
be computed without further splitting.

Maintaining the world model
Our system performs three main functions: answering
probabilistic queries, projecting plans, and monitoring
the database for information that would change exist-
ing beliefs.. It is interesting to note how closely inter-
related the three processes are: adding plans causes
label probabilities to be computed, which gives rise to
queries. A query may demand that the scenario tree
be split, thus causing more projection, and so on. A
query may also cause previously abandoned chronicles,
like the ones ending in Nodes 3 and 6, Figure 4(c), to
be projected further. New information, like relevant
sensor reports, may cause beliefs to change, plan com-
mitments to be rethought, new queries to be posed,
and new plans to be projected.

The system can thus be regarded as maintaining the
planner’s world model, one in which evidence takes
the form of plan commitments and sensor reports, and
aspects of the model are revealed through the belief
data structures.

Performance
It is hard to make precise general statements about the
projector’s performance. The worst case, involving a
complete articulation of the tree, is exponential both
in the number of actions and in the average number
of outcome sets per action. In general the tree prolif-
erates to the extent the planner asks questions about
plan outcomes that depend on propositions whose state
the projector cannot predict definitively (with proba-
bilities near 0 or 1). So performance depends on the

12Node 8, Figure 4(c) says “no,” 9 and 10 say “yes.”

162 AUTOMATEDREASONING

queries, both their types and their thresholds, and on
the underlying probabilistic model.

A more interesting question is whether the projector
always produces the splits necessary, and on/y the splits
necessary, to answer a particular query. If it fails to
make a necessary split it will report an overly vague
answer to a query; if it makes unnecessary splits it will
report the correct answer but do so inefficiently. We
address this question in [Hanks 19901, but the short
answer is that the projector will never fail to make
a relevant split in the tree, but will sometimes make
unnecessary splits. The decision whether to split an
arc is made locally at that arc, but we cannot always
determine locally whether a split is really necessary
given other splits that might be made. Superfluous
splitting does not seem to be a problem in practice,
however.

We have implemented the projector and tested it
on fairly complex examples, involving 15 or so plan
steps including conditionals, loops, and information-
gathering actions. Each projection took about 4 min-
utes on average, but we have reason to believe that
more powerful computing equipment and superficial
code optimizations would cut this figure in half. We
were surprised to learn that most of the time was spent
in the temporal database manager module (which
maintains the network of time points and constraints),
so improving its efficiency will significantly improve
performance as well.

Conclusion
Systems for action and planning have made stringent
assumptions about the domains in which they operate
and the nature of the actions they manipulate. They
typically assume that no events occur apart from those
the planner intends, and that an action either achieves
its intended effect or cannot be meaningfully executed.

These assumptions together mask an important
practical problem: when the effects of one’s actions
depend on the state of the world at execution time,
and when one is uncertain about that world state, one
faces an explosion of possible plan outcomes. The hope
is that most of these outcomes can be dismissed as un-
interesting, improbable, or both.

We have presented a system to manage the process of
hypothetical reasoning about actions and plans. The
system builds a “scenario tree,” tracing the possible
outcomes of a plan, but tries to keep as much of the
tree’s structure implicit as possible, thus avoiding the
explosion of possible plan outcomes. It uses the plan-
ner’s queries as a guide to what aspects of the world,
thus what outcomes of the plans, are important and
deserve explicit consideration.

[Fikes and Nilsson 19711 Richard Fikes and Nils J.
Nilsson. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial In-
telligence, 2(3):189-208, 1971.

[Firby and Hanks 19871 R. James Firby and Steven
Hanks. The simulator manual. Technical Report
563, Yale University, Department of Computer Sci-
ence, November 1987.

[Ginsberg and Smith 19881 Matthew L. Ginsberg and
David E. Smith. Reasoning about action I: A
possible worlds approach. Artificial Intelligence,
35(2):165-196, 1988.

[Ginsberg 19871 Matthew L. Ginsberg, editor. Read-
ings in Nonmonotonic Reasoning. Morgan-
Kaufmann, 1987.

[Hanks 19881 Steven Hanks. Representing and com-
puting temporally scoped beliefs. In Proceedings
AAAI, pages 501-505, 1988.

[Hanks 19901 St even Hanks. Projecting plans for un-
certain worlds. Technical Report 756, Yale Uni-
versity, Department of Computer Science, January
1990.

[Kuipers and Chiu 19871 Benjamin Kuipers
and Charles Chiu. Taming intractible branching in
qualitative simulation. In Proceedings IJCAI, pages
1079-1085,1987. Also appears in [Weld and de Kleer
19891.

[Lifschitz 19871 Vl a d imir Lifschitz. Formal theories of
action. In Frank Brown, editor, The Frame Problem
in Artificial Intelligence: Proceedings of the 1987
Workshop. Morgan-Kaufmann, 1987.

[Pednault 1988a] Edwin P.D. Pednault. Extending
conventional planning techniques to handle actions
with context-dependent effects. In Proceedings
AAAI, pages 55-59, 1988.

[Pednault 1988131 Ed win P.D. Pednault. Synthesizing
plans that contain actions with context-dependent
effects. Computational Intelligence, 4(4):356-372,
1988.

[Weld and de Kleer 19891 Daniel S. Weld and Johan
de Kleer, editors. Readings in Qualitative Reasoning
about Physical Systems. Morgan-Kaufmann, 1989.

References
[Chapman 19871 David Chapman. Planning for con-

junctive goals. Artificial Intelligence, 32(3):333-378,
1987.

HANKS 163

