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Abstract 
We describe a planner that works on the description of 
a multi-pa*th environment and generates a conditional 
plan. The resulting plan is guaranteed to fulfill its 
goal whatever path of the description the environment 
follows during the plan execution. 

Introduction 
Classical planning systems [Fikes et CL/., 197’1; Cohen 
and Feigenbaum, 1982; Wilkins, 19841 assume tl1a.t. 
the planning agent operates in a. static environment 
(world). That is, at every moment of time, the world 
is in a given state and that state remains unchanged 
until an action is performed by the agent. 

Yet most interesting environments in which an in- 
telligent agent is expected to operate are not static. 
Most realistic worlds are changing and nondeterminis- 
tic. The assumption that the world remains static be- 
tween successive actions of the agent no longer holds. 
Furthermore, the agent usually has only nondetermin- 
istic information on how the world is going to evolve. 

Recent work has considered the problem of planning 
in such environments. Allen and Koomen [Allen and 
Koomen, 19831 use an interval tempora.1 logic to model 
the past, the present, and the future knowledge of the 
agent. The changes of the environment and the non- 
determinism of its behavior a.re conveyed by formu- 
las of the logic. McDermott [McDermott, I9821 uses 
a branching structure (tree of chronsets) to represent 
a. nondeterministic future. Pednault [Pedna,ult,, 19871 
uses a. STRIP-like representation of aqctions to model 
some changing worlds, especially in motion problems 
for which one can give a prediction of the sta.te of the 
world after an action. Lansky [Lansky, 19871 uses a 
point-based logic and an event-based representation of 
states to express synchronization properties between 
a.gents in a multiagent domain. Dea.n [Dea.n, 19871 de- 
scribes a framework for scheduling tasks with imposed 
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deadline constraints. In tha.t approach, the pla.nner 
can use statistical information to predict the future. 

In this pa.per, we a.lso consider the problem of plan- 
ning in a. multi-path environment. We irltroduce a 
planning method that is inspired by recent develoy- 
merits in program synthesis from tempora.1 logic speci- 
fica.tions [Abadi et al., 1989; Pnueli and Rosner, 1989a; 
Puueli and Rosner, 1989b]. The multi-path envirou- 
nlent is viewed as a. tree of states, which we ca.11 a 
world-automaton. Each path in the tree represents a 
possible behavior of the environment,. We call e?~u~- 
ronment knowledge the knowledge represented by the 
world-automa,ton. We assume that the planner has 
no control over this tree and that he cannot predict 
which path the world is actually going to follow. ‘l’he 
operational knowledge of the plan is given by a set 
of actions. The planning problem can now be stated 
a.s follows: given an environment characterized by a 
world-autonlaton, an operational knowledge, an ini- 
tial state, a.nd a goal, find a. (conditional) p1a.n tallat 
is guaranteed to achieve the goal wha.tever path of the 
world-automaton the environment a.ctua.lly follows. 

‘10 handle this prohlelll, one first needs a forlnalislll 
for describing the enviroumeut knowledge. 011e could 
give the set, of world s~a.tes and the tr.a.nsitSioll r.elat,ioil 
bet,ween t,hese states, hut, such a description would IX 
tedious and hence prone to error iu complex euviron- 
me11ts. Instea.d, we use propositional brauclliug tillre 
temporal logic (CTL [E merson and Clarke, l&Q]). b‘or 
instance, let us assuiiw that the world-au tomato11 is 
specified by the (‘I’L formula ..ElOgua.rd A VOdark” 
stating that, it, niight be the case t,liat there is always a 
guard present, and tha.t. it, will definibely end up being 
dark. Consider the goal .*rob( $%O million) frown Ba.uk” 
and a,n init,ial sta.te where it is ilotS dark. Then the 
plan tl1a.t is genera.ted should work whether a guard 
is present or not, though it can wait for darkness to 
ap1~ea.r since this is guaranteed to happen. 

The problem of generating the plan is rela.ted to 
that, of synthesizing a. reactive module as described 
in [Rosenschein, 1989; Pnueli and Rosner, 1989a; 
Pnueli and Rosner, 1989b]. A reactive program is one 
tl1a.t continuously interacts with its envircrnmeut, dur- 
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ing execution. The environment controls some vari- 
ables, the program others. The synthesis problem con- 
sists in building a program that satisfies a given specifi- 
cation (expressed in temporal logic) for all possible be- 
haviors of the environment (also expressed in temporal 
logic). This is done by first building a formula. express- 
ing the statement : ‘Yor any execution of the environ- 
ment, there is an execution of the program that satis- 
fies the specification”. One then uses a decision proce- 
dure to generate a model for this formula. One could 
adapt the algorithms of [Pnueli and Rosner, 1989a; 
Pnueli and Rosner, 1989131 to the synthesis of plans. 
Unfortunately these methods are of very high compu- 
tational complexity (double exponential), which makes 
them of limited use in practice. 

The approach we follow proceeds in three steps. 
First, we genera.te a description of the world- 
automaton from the CTL formula describing the en- 
vironment. This can be done with the a.lgorithms de- 
scribed in [Emerson and Clarke, 1982; Emerson and 
Halpern, 1985; Manna and Wolper, 19841 and sum- 
marized in [Wolper , 19891. Then, from this world- 
automaton, the opera$iona.l knowledge, and the goal, 
we build a graph representing a synchronization of the 
executions of the agent and of the environment. A 
node of this graph represents an action that has to be 
executed by the agent. A transition between two nodes 
is la.beled by an event of the world-automaton, that, is, 
of the environment. Finally, we estra.ct the desired 
p1a.n from this gra.ph. This approach a.llows us to es- 
ploit classica. heuristic methods (a.s in SIPE [Wilkiub, 
19841) to only explore a fra.gment of the search space 
of possible action sequences. 

In the next section, we sta.rt with a. forma.1 descrip- 
tion of world-automata. and pla.ns. NJe then discuss 
the specification language and the a.lgorithm that auto- 
matically generates the world-automa.ton from a. CTL 
specifica.tion. The following section describes the plan- 
ner. The last section is devoted to other features of the 
planner and to possible extensions. 

Describing Environment Knowledge 
and Plans 

Actions, Events, Goals, and Strategies 

Actions a.re described, as in classical systems such as 
STRIPS or SIPE [Fikes et al., 1971; Wilkins, 19841, 
essentially by their precondition and their effect. How- 
ever, we also allow an exclusive disjunction as the effect 
of an action to represent an effect that depends on the 
sta.te in which the a,ction is a.pplied. We will call ac- 
tions with disjunctive effects disjunctive actions. The 
action NULL means “do nothing”. 

Go& are also described, a.s in classical systems, I>> 
a. set, of propositions. But, in a.ddition, we allow co~dl- 
timal goals of the form y - ~1, where p is a. proposition 
and a is an action. Such a goal means “do u every time 
p is true”. 

A strategy is a set of linearly ordered goals. The or- 
der must be safe, that is, if a goal g1 precedes a goal 
g2, then all actions leading t>o yl have to be performed 
before a.ny action for gz during execution. Therefore 
a goal is a special strategy. Strategies are more or 
less similar to Chapma.n’s “cognitive cliches” [Chap- 
man and Agre, 19871. 

Environment Knowledge and Plans 
A world-automaton is a 
where 

tuple 

Q = {ql,. . .a,} is a set of states; 

E = {NOTH,el,. . . e,,,} is a set of events (the event 
NOTH is a special event indicating that nothing (in- 
teresting) ha.ppens in the environment); 

r:Q - E is a function mapping states to events; 

2& is the transition relation between next : Q -+ 
st a.tes; 

(I E Q is the initial state. 

The fact that there is only one initial state is not re- 
strictive. If an automaton has many initial sta.tes we 
can make them the successors of an initial state with 
event NOTH. An execution of a world-automaton is 
defined as in classical automata theory. We start in 
the initia.1 state (I. The first, event) to appear is ~(‘1). 
Being in state (I! mea.ns t(hat, the rven~, -r( q2) is t,hc> last 
Ollt‘ too 11aw occurrecl. 

‘I’he 611 u~w1~7~1~7t 1 ho toledgc is descrilxxl by a world- 
a.u tSonlatou. ‘IYlic possiblt~ esecutious of his a.u t,olila t.oll 
constitute an infinite t,ree. Each path of this Lrw cl+ 

scribes a. possible behavior of’ the environment. He~lce- 
forth, we will use the t*erius “esecut#ion”, %eliavior”. 
and “pa.th” of the environment, interchangeably. 

The pla~ls we generate a.re also represented by world- 
automata.. An aut,omatou representing a p1a.n contains 
both the actions (events) of the environment a.nd those 
of the planning a.geiit,. To execute a. plan, ail agelit 
performs the actions in the plan that are his own and 
wa.its for the environment t#o perform all other actions. 

Events can be generic, that is, lia.ve many possible 
insta.nces. But, at any molnent, only one insta.nce of 
an event n1a.y ha.ppen. For example, the event o?z(a, X) 
has o?z(a, table) and o?z(a, 6) among its insta.llces. In 
the world-automaton, a transition happens when an?. 
instance of the corresponding event ha,ppeus. 

Example 1 Suppose we ha.ve to build a reactive plan 
for robot Agent.2 stacking on table T2 parts produced 
on a separate ta.ble Tl by another robot Agentl. 
Agent11 produces parts by groups of four: blocks u, 
6. c and cl. It stacks ea.41 block on a sepaxate rack 
a.ppropriat,c-> for ih tylw. Wiic~u a rack is occupit>d, tilt> 
ageut wait,s until it t)oc*ollles clear. ?‘lle i)locl; 6 is al- 
ways produced just aI’t.c>r t.lic I,locl; cl, alid d is al\1,;l~‘3 
produced just. aft,er c. 111 figures a11d ill forlilulas, \VC~ 
abbrevia.te *‘rack i” by I’, . 
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The environment knowledge for Agent2 is thus the 
production activity of Agentl. It is described by the 
world-automaton of Figure 1. A part of the plan that 
our method generates for Agent2 is given in Figure 2. 
In this figure, all actions that have to be performed by 
Agent2 are prefixed by ad. 

Figure 1: Enviromnent for Agent2 

Specifying the World-Automaton 
We use propositional branching time temporal logic 
(CTL) to describe the environment. This logic is for- 
mally defined in [Emerson and Clarke, 1982; Wolper, 
19891. We only introduce it informally here. 

CTL formulas are built from atomic propositions, 
boolean connectives, and eight temporal operators. A 
temporal operator is a path quantifier directly fol- 
lowed by a modality operator. The path quantifiers 
are V meaning “for all execution paths”, and 3 meaning 
“there is an execution path”. The modality operators 
are 0 (“eventually”), •I ( “always”), 0 (“next”) and I! 
“until”. They are all unary, except U which is binary. 
Proposional formulas (i.e. without temporal operator) 
are the basic CTL formulas. Any formula built by 
prefixing a CTL formula. with a temporal operator is 
also a CTL formula. Exa.mples of CTL formulas are : 
30accep ted A V( lpresen ted U accep ted). 

Formulas are interpreted over infinite trees of propo- 
sitions. They can be naturally interpreted over world- 
automata. 

A formula is satisfied by an interpretation if it is 
satisfied by the initial state of the interpretation. 
A proposition is satisfied by a. state if it is true (iii 
the classical sense) of the event of that state. 
3 0 f means “possibly nest f”. Its dual V 0 f I~W~JIS; 
“surely next f” . 
3Of means “possibly f rvill hal>yelJ” . 1~s dual VOf 
means “surely eventually f” . 
30f means “possibly it is the case that. alrvaJ7.s f”, 
w1ierea.s Vof means “surely alwa-vs f” . 

0 3(fUy) means b‘possibly it is the case that f !rolds 
until y” , a.nd V( f[‘y) ineans “surely f holds UIJ til y” 

For instance, the world-automaton of Figure 2 satisfies 
the formula 3Opul;o?s( d, 7ad). 

Generating the World-Automaton 

We use the algorithm of [Emerson and Cla.rke, 19821 
to generate the world-automaton from a CTL specifi- 
cation. The worst case complexity of the algorithm is 
exponential in the size of the formula. However, with 
an implementation that uses all possible optimiza.tions, 
it often gives good results. 

Example 2 The following formulas are the bulk of 
the specification from which the world-au toma.ton foi 
Agent2 (Figure 1) has been generated. 

1. 

2 

3 

4 

I 

A block is produced if its rack is empty 
VJCl(puton(a, ra) 3 clear(r,)) 
(Similar axioms for b, c and cl.) 
Every time I*, is empty, u will eventually be pro- 
duced 
Wl( cleur(r,) 3 VOyuton( u, r, )) 
(A similar asiom is given for I*,.) 
The order of block production: wheu CL is producecl, 
tht~ following block rl~ust, be b 
vq/mtoll(u, I’,,) 3 

v(~(put0n( (1. rtL) v puton (c, I’, ) v p’Llor/(cl. /-(1)) 
1 ‘puton( G. rl,))) 

(Simila.rly for c aud cl. ) 
At each cycle we do not know the first block to be 
produced 
301mton(a, ?a,,) A 3O]mton( c, 7’J 

adtalk 
1 

Figure 2: Plau for Ageut;! 
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The Planner goals, ii0 generic events, and the operational knowl- 

The General Idea 
We stast with the following data: a. world-a.utomaton, 
an operational knowledge, and a. strategy (set of goals). 
From this, we first build an intermediate structure. 
This structure is a directed graph whose nodes are la.- 
beled with actions of the operational knowledge and 
whose transitions are labeled with events of the world- 
automaton. This graph represents a synchronization 
of the agent trying to complete the goals with the en- 
vironment: at a node of the graph, the agent executes 
the associated action; it then waits for an event la- 
beling a transition from that node. When the event 
happens, the agent goes to the node indicated by the 
transition labeled by the event, executes the action cor- 
responding to that node, and waits again. Actions of 
the graph are chosen by the planner so that they 1ea.d 
to the goals. 

It then remains to extract a plan from the con- 
strutted graph. As mentioned in the knowledge de- 
scription section, the p1a.n has the form of a. world- 
automaton. Hence, it ca.n be used as input for another 
planning a.gent. 

Building the gra.ph is thus the core of the a.lgo- 
rithm. MJe associa.te the following additional informa- 
tion to each node of the graph: a state of the world- 
automatou, a. goa. to be completed within the uode. 
aad a. sta.ck of stra.tegies t,o be performed by desceu- 
da.uts of the node (the pa.rt of the initial strategy that 
still has to be completed). Recall that the strategy is 
the goa.1 of the a.gent. 

We build the graph sta.rting from a state in which the 
associated node of the world-a.utomaton is the initial 
sta.te of that automa.ton, the strategy is the overa. 
goa.l, and the action is NULL. The graph is then built 
incrementa.lly as follows. 

e A graph node with no successor a.nd with a 
nonempty strategy is chosen. 

e An action whose precondition is satisfied and tl1a.t 
reduces the distance from the goal is chosen (nonde- 
terministically ). 

e Successor nodes are constructed for each possible a.c- 
tion: the action chosen for the agent and a.11 possible 
environment actions. 

Of course, backtracking is used to implement the non- 
deterministic choices. Also, goal-reduction is used: 
when the precondition of the chosen action cannot be 
sa.tisfied, we attempt to apply goal reduction to the ac- 
tion. If this is impossible, we look ahead in the world- 
automa.ton to see if more promising states are coining 
up and we wait for them; if this is not. t,lie case. ~‘e 
backtrack. 

The Algorithm 
In this pa.per, we sketch the pla.nning a.lgorithul with 
the following restrictions: there are no conditional 

- 
edge does not contain disjunctive actions. 

The planning algorithm operates in oue of two 
modes: wait. and reduw. 111 the wait mode, it is search- 
ing the world-automaton for an event to happeu. In the 
reduce mode, it is trying to find an a.ction tl1a.t fulfills 
a goal. We use the following convention for varia.bles: 
s and s’ for nodes of the graph, e for events of the 
world-automaton. S is the set of nodes of the graph 
and E is the set of events of the environment. The 
data-structures used by the planning algorithm are: 
e The world-automaton (Q, E, y, next, ~0); 

e The intermediate structure (graph) in which: 
S is a set of nodes of the graph, 
succ : (S x E) -, S is the graph transition function. 
The information associated with each node s COII- 

sists of: an action actiol2(s), a world-automaton 
state was(s), a goal G(s), and a strategy stuck(s); 

e The va.riable J1ode that takes values l/1/ (wait) and 
R (reduce) ; 

o The event waited up011 when in mode I/T/ is wuhted- 
event. 

A sketch of construction of t,he intermediate graph 
is given iu Figure 3. 

The goal-reduction is ally of the heuristics available 
iu Al [Wilk ins, 1%4], used to deconlpow a goal into 
priuiiLivc> subgoalh. Aiij of’ Lh~sr heuristics ~‘a.11 be ap- 
plivcl siuccb we have Liir salilt~ l)roblt’lil: fiucl a srqueuce 
of act,ious I.0 coliipl(~L(~ a goal c-;(s) fro111 ali iuitial staCc> 
q0, giveu a set. of actioiis (t,h(> operatioiial kuowledg~). 

Nodes cali be fused wheu t#hep are tlefiued 1’3. t,llc> 
saine elements (action, stack,. ). Hence 1001)s Inight. 
be introduced. The planning algorithm has to check 
that the loops that are introduced are safe. This is 
done with techniques similar to those used to check 
that even tuulity for?,aulus are satisfied when build- 
ing models of temporal logic formu1a.s [Emerson aud 
Cla.rke, 1982; Manna and Wolper, 19841. 

Tl1.e plu7~. is extracted from the iutermediate struc- 
t,ure as follows. First. build a II~\V structure frolu t,he 
int,ermediate structure. by introducing between two 
successive nodes a new uode la.beled ivith the trau- 
sition label between those nodes. The plan is induced 

from tl1a.t la.st struct#ure by skipping MULL actions a11d 
NOTH events. 

Example 3 Consider the clnvironment. knowledgr of 
Example 1. Suppose we are given the following opera- 
tional knowledge: 

Actions 
lake( de) prec011d : OII (d’, 2 ) A clt n/j -1.) 

add-list.: hu rlf( .L’) A cltul( .t ) 
]I(1 t 0 11( .C ) JJ ) pr”‘“lld : hu L’I’( x) A ( If?0 r( y) 

add-lisl. OII(.I*. y). 

‘l’he goal of Ageut2 is t,o arrange blocks 011 a diffxellt 
table 7’2, as follo\Vs: 

Oll(W, 1’2) A Oll(d, a) A o/1(6, d) A O/l.(C, 6). 
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Construct-Intermed-Struct (strategy) 
Create an initial node s with G(s) = NULL, stack(s)= 
strategy, and was(s) = ~0. 
Set Mode to R. 
Repeat 
Select a node s with stack(s) not empty and with no 
successors. If there is no such node, break from the 
loop. 
If Mode=W then: 

Check if was(s) =waited-event. If so, set Mode to 
R. If not, set action(s) to NULL; for each event 
e successor of was(s), create the node succ(s,e), 
set G(succ(s,e)) to G(s), and stuc~(succ(s,e)) to 
stuck(s). 

Else: 

-If G(s) is not an atomic action reduce it to 
a sequence of atomic actions by applying goal- 
reduction. If such a sequence can be found then 
update G(s) and stuck(s) and continue. 
-From now, we can assume G(s) is atomic. If the 
precondition of G(s) is not satisfied use the veri- 
fication algorithm of [Clarke et al., 19861 to see if 
the precondition of G( s) can be satisfied by further 
states of the world-automaton; if it, can, set Mod6 
to I/T/, and set waited-event to the precondition of 
G(s); else backtrack. 
-If the precondition of G(s) is satisfied, set 
action(s) to G(s); then determine the strategy 
and the stack for successors nodes : for each event 
successor of was(s), create a, new node s’ of the 
graph and a transition, labeled by the event, from 
the current node to the new node s’; set G(s’) to 
the first element of &clc(s) and stack(s’) to the 
rest of stacl(s). 

End of Repeat 
End of Construct-Intermed-Struct 

Figure 3: Constructing the intermediate structure 

It is reduced to the strategy: 
take(a.) - pzlton(a,T2) - take(d) - yuton(d, u) - 
take(b) - pton(b, d) -- t&e(c) - puton(c, b). 

The initial part of the plan generated is show~l in 
Figure 2. I 

Additional Features and Possible 
Extensions 

The following features ha.ve also been developed: the 
use of past temporal formulas to express conditions of 
conditional goals. We keep a 1inea.r structure recording 
the past activity. We can then use a polynomial algo- 
rithm to verify if past preconditions of actions are sat- 
isfied on that structure. The verification algorithm is 
similar to that of [Clarke et ud., 19861. We can also use 
temporal formulas to describe the effects of an action. 

This is a partial response to the commitment problem 
[Cohen and Levesque 1 19871. When an action with a 
temporal effect is selected at a state in the intermedi- 
ate structure, we replace the sub-automaton rooted at 
the correspondin, T state in the world-automaton by a 
cross-poduct of the sub-automaton with an automaton 
representing the effects formula. 

If there are paths of the world-automaton on which 
it is impossible for the agent to achieve its goal, there is 
no solution to the planning problem. However, it seems 
reasonable for the agent to move ahead anyway mak- 
ing the assumption that the path for which he cannot 
plan is unlikely. This implies that it would be useful 
to have probabilistic information for each pa.th of the 
world automaton. The planner would then use that 
information to estimate the proba.bility that the plan 
will work. Another interesting approach is for the plan- 
ner to procrastinate when, for some goals, the future 
is very uncertain. He would delay planning for those 
goals until informa.tion about the future becomes more 
precise. 

Automatic genera.tion of environment, specifications 
is a problem we intend to investiga.te, possibly using 
t,ecliniques similar to those in [liautz and Allen, 1986; 
Kautz, 19873 to construct, a prediction module. 

Pla.nning is also expected to be interleaved with 
the execution. During execution some information 
could confirm or disconfirm the current, structure of 
the world-automaton. The planner can then deter- 
mine whether or not the plan could go awry and, if 
necessary, replan with respect to the new environment 
structure. 

Conclusions 
We have show11 how temporal logic can be fruitfully 
used for generating reactive pla.ns. The probleill we 
considered is that of planning for agents evolving in a 
changing and nondeterministic world. The generation 
algorithm is in fact. a blend of goal-reduction and envi- 
ronment enabling, and it ca.n be viewed in the tread of 
recent, work done by [Bresina a.nd Drunnnoiid, 19!)0]. 

The performa.nce of this planner depends on t,he 
availa.ble stra.tegies. ‘I‘he lower level the strategies are. 
the faster the plan generation is going to be. We he- 
lieve the method viable if refined strategies are avail- 
able. Such refined strategies are analogous to those 
used in human behavior. If you are told to go from 
Liege to Brussels, you immediately decide t,o t.ake a 
bus to the sta.tion, where you hope to catch a train. If 
you know there might, not be a bus, you iiiunediately 
plan to ta.ke a cab. ‘1’ha.t is, you act as if you had 
strategies triggered by goals you ha.ve to commit to. 
You don’t think “to be in Brussels I must. have been 
in a train; to be in a. train I must have been to the 
station, and so on.” Such reasoning only appears in 
rather unusual situations (lost in a. town, ). 

Clearly the method, as it stands now, has some limi- 
tations. The world-automaton has to be correct for the 
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plan to be correct too. Thus there is need for some way 
of dealing with unpredictable events. Another limita- 
tion is the seemingly great complexity of the algorithm. 
With all that in mind, we espect this work will serve 
as a. good guideline for future investigations towards a. 
tractable planner. 
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