
Synthesis of eactive Plans for Multi-Path Environments*

F. Kabanza
Universitk de Likge

Institut Mont&ore B28

4000 Likge Sart-Tilman; Belgium

U519026QBLIULG 11 .bitnet

Abstract
We describe a planner that works on the description of
a multi-pa*th environment and generates a conditional
plan. The resulting plan is guaranteed to fulfill its
goal whatever path of the description the environment
follows during the plan execution.

Introduction
Classical planning systems [Fikes et CL/., 197’1; Cohen
and Feigenbaum, 1982; Wilkins, 19841 assume tl1a.t.
the planning agent operates in a. static environment
(world). That is, at every moment of time, the world
is in a given state and that state remains unchanged
until an action is performed by the agent.

Yet most interesting environments in which an in-
telligent agent is expected to operate are not static.
Most realistic worlds are changing and nondeterminis-
tic. The assumption that the world remains static be-
tween successive actions of the agent no longer holds.
Furthermore, the agent usually has only nondetermin-
istic information on how the world is going to evolve.

Recent work has considered the problem of planning
in such environments. Allen and Koomen [Allen and
Koomen, 19831 use an interval tempora.1 logic to model
the past, the present, and the future knowledge of the
agent. The changes of the environment and the non-
determinism of its behavior a.re conveyed by formu-
las of the logic. McDermott [McDermott, I9821 uses
a branching structure (tree of chronsets) to represent
a. nondeterministic future. Pednault [Pedna,ult,, 19871
uses a. STRIP-like representation of aqctions to model
some changing worlds, especially in motion problems
for which one can give a prediction of the sta.te of the
world after an action. Lansky [Lansky, 19871 uses a
point-based logic and an event-based representation of
states to express synchronization properties between
a.gents in a multiagent domain. Dea.n [Dea.n, 19871 de-
scribes a framework for scheduling tasks with imposed

*The following text presents research results of the Bel-
gian National incentive-program for fundamental research
in artificial intelligence initiated by the Belgian State -
Prime Minister’s Office - Science Policy Programming. The
scientific responsibility is supported by its author.

164 AUTOMATED REASONING

deadline constraints. In tha.t approach, the pla.nner
can use statistical information to predict the future.

In this pa.per, we a.lso consider the problem of plan-
ning in a. multi-path environment. We irltroduce a
planning method that is inspired by recent develoy-
merits in program synthesis from tempora.1 logic speci-
fica.tions [Abadi et al., 1989; Pnueli and Rosner, 1989a;
Puueli and Rosner, 1989b]. The multi-path envirou-
nlent is viewed as a. tree of states, which we ca.11 a
world-automaton. Each path in the tree represents a
possible behavior of the environment,. We call e?~u~-
ronment knowledge the knowledge represented by the
world-automa,ton. We assume that the planner has
no control over this tree and that he cannot predict
which path the world is actually going to follow. ‘l’he
operational knowledge of the plan is given by a set
of actions. The planning problem can now be stated
a.s follows: given an environment characterized by a
world-autonlaton, an operational knowledge, an ini-
tial state, a.nd a goal, find a. (conditional) p1a.n tallat
is guaranteed to achieve the goal wha.tever path of the
world-automaton the environment a.ctua.lly follows.

‘10 handle this prohlelll, one first needs a forlnalislll
for describing the enviroumeut knowledge. 011e could
give the set, of world s~a.tes and the tr.a.nsitSioll r.elat,ioil
bet,ween t,hese states, hut, such a description would IX
tedious and hence prone to error iu complex euviron-
me11ts. Instea.d, we use propositional brauclliug tillre
temporal logic (CTL [E merson and Clarke, l&Q]). b‘or
instance, let us assuiiw that the world-au tomato11 is
specified by the (‘I’L formula ..ElOgua.rd A VOdark”
stating that, it, niight be the case t,liat there is always a
guard present, and tha.t. it, will definibely end up being
dark. Consider the goal .*rob($%O million) frown Ba.uk”
and a,n init,ial sta.te where it is ilotS dark. Then the
plan tl1a.t is genera.ted should work whether a guard
is present or not, though it can wait for darkness to
ap1~ea.r since this is guaranteed to happen.

The problem of generating the plan is rela.ted to
that, of synthesizing a. reactive module as described
in [Rosenschein, 1989; Pnueli and Rosner, 1989a;
Pnueli and Rosner, 1989b]. A reactive program is one
tl1a.t continuously interacts with its envircrnmeut, dur-

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

ing execution. The environment controls some vari-
ables, the program others. The synthesis problem con-
sists in building a program that satisfies a given specifi-
cation (expressed in temporal logic) for all possible be-
haviors of the environment (also expressed in temporal
logic). This is done by first building a formula. express-
ing the statement : ‘Yor any execution of the environ-
ment, there is an execution of the program that satis-
fies the specification”. One then uses a decision proce-
dure to generate a model for this formula. One could
adapt the algorithms of [Pnueli and Rosner, 1989a;
Pnueli and Rosner, 1989131 to the synthesis of plans.
Unfortunately these methods are of very high compu-
tational complexity (double exponential), which makes
them of limited use in practice.

The approach we follow proceeds in three steps.
First, we genera.te a description of the world-
automaton from the CTL formula describing the en-
vironment. This can be done with the a.lgorithms de-
scribed in [Emerson and Clarke, 1982; Emerson and
Halpern, 1985; Manna and Wolper, 19841 and sum-
marized in [Wolper , 19891. Then, from this world-
automaton, the opera$iona.l knowledge, and the goal,
we build a graph representing a synchronization of the
executions of the agent and of the environment. A
node of this graph represents an action that has to be
executed by the agent. A transition between two nodes
is la.beled by an event of the world-automaton, that, is,
of the environment. Finally, we estra.ct the desired
p1a.n from this gra.ph. This approach a.llows us to es-
ploit classica. heuristic methods (a.s in SIPE [Wilkiub,
19841) to only explore a fra.gment of the search space
of possible action sequences.

In the next section, we sta.rt with a. forma.1 descrip-
tion of world-automata. and pla.ns. NJe then discuss
the specification language and the a.lgorithm that auto-
matically generates the world-automa.ton from a. CTL
specifica.tion. The following section describes the plan-
ner. The last section is devoted to other features of the
planner and to possible extensions.

Describing Environment Knowledge
and Plans

Actions, Events, Goals, and Strategies

Actions a.re described, as in classical systems such as
STRIPS or SIPE [Fikes et al., 1971; Wilkins, 19841,
essentially by their precondition and their effect. How-
ever, we also allow an exclusive disjunction as the effect
of an action to represent an effect that depends on the
sta.te in which the a,ction is a.pplied. We will call ac-
tions with disjunctive effects disjunctive actions. The
action NULL means “do nothing”.

Go& are also described, a.s in classical systems, I>>
a. set, of propositions. But, in a.ddition, we allow co~dl-
timal goals of the form y - ~1, where p is a. proposition
and a is an action. Such a goal means “do u every time
p is true”.

A strategy is a set of linearly ordered goals. The or-
der must be safe, that is, if a goal g1 precedes a goal
g2, then all actions leading t>o yl have to be performed
before a.ny action for gz during execution. Therefore
a goal is a special strategy. Strategies are more or
less similar to Chapma.n’s “cognitive cliches” [Chap-
man and Agre, 19871.

Environment Knowledge and Plans
A world-automaton is a
where

tuple

Q = {ql,. . .a,} is a set of states;

E = {NOTH,el,. . . e,,,} is a set of events (the event
NOTH is a special event indicating that nothing (in-
teresting) ha.ppens in the environment);

r:Q - E is a function mapping states to events;

2& is the transition relation between next : Q -+
st a.tes;

(I E Q is the initial state.

The fact that there is only one initial state is not re-
strictive. If an automaton has many initial sta.tes we
can make them the successors of an initial state with
event NOTH. An execution of a world-automaton is
defined as in classical automata theory. We start in
the initia.1 state (I. The first, event) to appear is ~(‘1).
Being in state (I! mea.ns t(hat, the rven~, -r(q2) is t,hc> last
Ollt‘ too 11aw occurrecl.

‘I’he 611 u~w1~7~1~7t 1 ho toledgc is descrilxxl by a world-
a.u tSonlatou. ‘IYlic possiblt~ esecutious of his a.u t,olila t.oll
constitute an infinite t,ree. Each path of this Lrw cl+

scribes a. possible behavior of’ the environment. He~lce-
forth, we will use the t*erius “esecut#ion”, %eliavior”.
and “pa.th” of the environment, interchangeably.

The pla~ls we generate a.re also represented by world-
automata.. An aut,omatou representing a p1a.n contains
both the actions (events) of the environment a.nd those
of the planning a.geiit,. To execute a. plan, ail agelit
performs the actions in the plan that are his own and
wa.its for the environment t#o perform all other actions.

Events can be generic, that is, lia.ve many possible
insta.nces. But, at any molnent, only one insta.nce of
an event n1a.y ha.ppen. For example, the event o?z(a, X)
has o?z(a, table) and o?z(a, 6) among its insta.llces. In
the world-automaton, a transition happens when an?.
instance of the corresponding event ha,ppeus.

Example 1 Suppose we ha.ve to build a reactive plan
for robot Agent.2 stacking on table T2 parts produced
on a separate ta.ble Tl by another robot Agentl.
Agent11 produces parts by groups of four: blocks u,
6. c and cl. It stacks ea.41 block on a sepaxate rack
a.ppropriat,c-> for ih tylw. Wiic~u a rack is occupit>d, tilt>
ageut wait,s until it t)oc*ollles clear. ?‘lle i)locl; 6 is al-
ways produced just aI’t.c>r t.lic I,locl; cl, alid d is al\1,;l~‘3
produced just. aft,er c. 111 figures a11d ill forlilulas, \VC~
abbrevia.te *‘rack i” by I’, .

KABANZA 165

The environment knowledge for Agent2 is thus the
production activity of Agentl. It is described by the
world-automaton of Figure 1. A part of the plan that
our method generates for Agent2 is given in Figure 2.
In this figure, all actions that have to be performed by
Agent2 are prefixed by ad.

Figure 1: Enviromnent for Agent2

Specifying the World-Automaton
We use propositional branching time temporal logic
(CTL) to describe the environment. This logic is for-
mally defined in [Emerson and Clarke, 1982; Wolper,
19891. We only introduce it informally here.

CTL formulas are built from atomic propositions,
boolean connectives, and eight temporal operators. A
temporal operator is a path quantifier directly fol-
lowed by a modality operator. The path quantifiers
are V meaning “for all execution paths”, and 3 meaning
“there is an execution path”. The modality operators
are 0 (“eventually”), •I (“always”), 0 (“next”) and I!
“until”. They are all unary, except U which is binary.
Proposional formulas (i.e. without temporal operator)
are the basic CTL formulas. Any formula built by
prefixing a CTL formula. with a temporal operator is
also a CTL formula. Exa.mples of CTL formulas are :
30accep ted A V(lpresen ted U accep ted).

Formulas are interpreted over infinite trees of propo-
sitions. They can be naturally interpreted over world-
automata.

A formula is satisfied by an interpretation if it is
satisfied by the initial state of the interpretation.
A proposition is satisfied by a. state if it is true (iii
the classical sense) of the event of that state.
3 0 f means “possibly nest f”. Its dual V 0 f I~W~JIS;
“surely next f” .
3Of means “possibly f rvill hal>yelJ” . 1~s dual VOf
means “surely eventually f” .
30f means “possibly it is the case that. alrvaJ7.s f”,
w1ierea.s Vof means “surely alwa-vs f” .

0 3(fUy) means b‘possibly it is the case that f !rolds
until y” , a.nd V(f[‘y) ineans “surely f holds UIJ til y”

For instance, the world-automaton of Figure 2 satisfies
the formula 3Opul;o?s(d, 7ad).

Generating the World-Automaton

We use the algorithm of [Emerson and Cla.rke, 19821
to generate the world-automaton from a CTL specifi-
cation. The worst case complexity of the algorithm is
exponential in the size of the formula. However, with
an implementation that uses all possible optimiza.tions,
it often gives good results.

Example 2 The following formulas are the bulk of
the specification from which the world-au toma.ton foi
Agent2 (Figure 1) has been generated.

1.

2

3

4

I

A block is produced if its rack is empty
VJCl(puton(a, ra) 3 clear(r,))
(Similar axioms for b, c and cl.)
Every time I*, is empty, u will eventually be pro-
duced
Wl(cleur(r,) 3 VOyuton(u, r,))
(A similar asiom is given for I*,.)
The order of block production: wheu CL is producecl,
tht~ following block rl~ust, be b
vq/mtoll(u, I’,,) 3

v(~(put0n((1. rtL) v puton (c, I’,) v p’Llor/(cl. /-(1))
1 ‘puton(G. rl,)))

(Simila.rly for c aud cl.)
At each cycle we do not know the first block to be
produced
301mton(a, ?a,,) A 3O]mton(c, 7’J

adtalk
1

Figure 2: Plau for Ageut;!

166 AUTOMATEDREASONING

The Planner goals, ii0 generic events, and the operational knowl-

The General Idea
We stast with the following data: a. world-a.utomaton,
an operational knowledge, and a. strategy (set of goals).
From this, we first build an intermediate structure.
This structure is a directed graph whose nodes are la.-
beled with actions of the operational knowledge and
whose transitions are labeled with events of the world-
automaton. This graph represents a synchronization
of the agent trying to complete the goals with the en-
vironment: at a node of the graph, the agent executes
the associated action; it then waits for an event la-
beling a transition from that node. When the event
happens, the agent goes to the node indicated by the
transition labeled by the event, executes the action cor-
responding to that node, and waits again. Actions of
the graph are chosen by the planner so that they 1ea.d
to the goals.

It then remains to extract a plan from the con-
strutted graph. As mentioned in the knowledge de-
scription section, the p1a.n has the form of a. world-
automaton. Hence, it ca.n be used as input for another
planning a.gent.

Building the gra.ph is thus the core of the a.lgo-
rithm. MJe associa.te the following additional informa-
tion to each node of the graph: a state of the world-
automatou, a. goa. to be completed within the uode.
aad a. sta.ck of stra.tegies t,o be performed by desceu-
da.uts of the node (the pa.rt of the initial strategy that
still has to be completed). Recall that the strategy is
the goa.1 of the a.gent.

We build the graph sta.rting from a state in which the
associated node of the world-a.utomaton is the initial
sta.te of that automa.ton, the strategy is the overa.
goa.l, and the action is NULL. The graph is then built
incrementa.lly as follows.

e A graph node with no successor a.nd with a
nonempty strategy is chosen.

e An action whose precondition is satisfied and tl1a.t
reduces the distance from the goal is chosen (nonde-
terministically).

e Successor nodes are constructed for each possible a.c-
tion: the action chosen for the agent and a.11 possible
environment actions.

Of course, backtracking is used to implement the non-
deterministic choices. Also, goal-reduction is used:
when the precondition of the chosen action cannot be
sa.tisfied, we attempt to apply goal reduction to the ac-
tion. If this is impossible, we look ahead in the world-
automa.ton to see if more promising states are coining
up and we wait for them; if this is not. t,lie case. ~‘e
backtrack.

The Algorithm
In this pa.per, we sketch the pla.nning a.lgorithul with
the following restrictions: there are no conditional

-
edge does not contain disjunctive actions.

The planning algorithm operates in oue of two
modes: wait. and reduw. 111 the wait mode, it is search-
ing the world-automaton for an event to happeu. In the
reduce mode, it is trying to find an a.ction tl1a.t fulfills
a goal. We use the following convention for varia.bles:
s and s’ for nodes of the graph, e for events of the
world-automaton. S is the set of nodes of the graph
and E is the set of events of the environment. The
data-structures used by the planning algorithm are:
e The world-automaton (Q, E, y, next, ~0);

e The intermediate structure (graph) in which:
S is a set of nodes of the graph,
succ : (S x E) -, S is the graph transition function.
The information associated with each node s COII-

sists of: an action actiol2(s), a world-automaton
state was(s), a goal G(s), and a strategy stuck(s);

e The va.riable J1ode that takes values l/1/ (wait) and
R (reduce) ;

o The event waited up011 when in mode I/T/ is wuhted-
event.

A sketch of construction of t,he intermediate graph
is given iu Figure 3.

The goal-reduction is ally of the heuristics available
iu Al [Wilk ins, 1%4], used to deconlpow a goal into
priuiiLivc> subgoalh. Aiij of’ Lh~sr heuristics ~‘a.11 be ap-
plivcl siuccb we have Liir salilt~ l)roblt’lil: fiucl a srqueuce
of act,ious I.0 coliipl(~L(~ a goal c-;(s) fro111 ali iuitial staCc>
q0, giveu a set. of actioiis (t,h(> operatioiial kuowledg~).

Nodes cali be fused wheu t#hep are tlefiued 1’3. t,llc>
saine elements (action, stack,.). Hence 1001)s Inight.
be introduced. The planning algorithm has to check
that the loops that are introduced are safe. This is
done with techniques similar to those used to check
that even tuulity for?,aulus are satisfied when build-
ing models of temporal logic formu1a.s [Emerson aud
Cla.rke, 1982; Manna and Wolper, 19841.

Tl1.e plu7~. is extracted from the iutermediate struc-
t,ure as follows. First. build a II~\V structure frolu t,he
int,ermediate structure. by introducing between two
successive nodes a new uode la.beled ivith the trau-
sition label between those nodes. The plan is induced

from tl1a.t la.st struct#ure by skipping MULL actions a11d
NOTH events.

Example 3 Consider the clnvironment. knowledgr of
Example 1. Suppose we are given the following opera-
tional knowledge:

Actions
lake(de) prec011d : OII (d’, 2) A clt n/j -1.)

add-list.: hu rlf(.L’) A cltul(.t)
]I(1 t 0 11(.C) JJ) pr”‘“lld : hu L’I’(x) A (If?0 r(y)

add-lisl. OII(.I*. y).

‘l’he goal of Ageut2 is t,o arrange blocks 011 a diffxellt
table 7’2, as follo\Vs:

Oll(W, 1’2) A Oll(d, a) A o/1(6, d) A O/l.(C, 6).

KABANZA 167

Construct-Intermed-Struct (strategy)
Create an initial node s with G(s) = NULL, stack(s)=
strategy, and was(s) = ~0.
Set Mode to R.
Repeat
Select a node s with stack(s) not empty and with no
successors. If there is no such node, break from the
loop.
If Mode=W then:

Check if was(s) =waited-event. If so, set Mode to
R. If not, set action(s) to NULL; for each event
e successor of was(s), create the node succ(s,e),
set G(succ(s,e)) to G(s), and stuc~(succ(s,e)) to
stuck(s).

Else:

-If G(s) is not an atomic action reduce it to
a sequence of atomic actions by applying goal-
reduction. If such a sequence can be found then
update G(s) and stuck(s) and continue.
-From now, we can assume G(s) is atomic. If the
precondition of G(s) is not satisfied use the veri-
fication algorithm of [Clarke et al., 19861 to see if
the precondition of G(s) can be satisfied by further
states of the world-automaton; if it, can, set Mod6
to I/T/, and set waited-event to the precondition of
G(s); else backtrack.
-If the precondition of G(s) is satisfied, set
action(s) to G(s); then determine the strategy
and the stack for successors nodes : for each event
successor of was(s), create a, new node s’ of the
graph and a transition, labeled by the event, from
the current node to the new node s’; set G(s’) to
the first element of &clc(s) and stack(s’) to the
rest of stacl(s).

End of Repeat
End of Construct-Intermed-Struct

Figure 3: Constructing the intermediate structure

It is reduced to the strategy:
take(a.) - pzlton(a,T2) - take(d) - yuton(d, u) -
take(b) - pton(b, d) -- t&e(c) - puton(c, b).

The initial part of the plan generated is show~l in
Figure 2. I

Additional Features and Possible
Extensions

The following features ha.ve also been developed: the
use of past temporal formulas to express conditions of
conditional goals. We keep a 1inea.r structure recording
the past activity. We can then use a polynomial algo-
rithm to verify if past preconditions of actions are sat-
isfied on that structure. The verification algorithm is
similar to that of [Clarke et ud., 19861. We can also use
temporal formulas to describe the effects of an action.

This is a partial response to the commitment problem
[Cohen and Levesque 1 19871. When an action with a
temporal effect is selected at a state in the intermedi-
ate structure, we replace the sub-automaton rooted at
the correspondin, T state in the world-automaton by a
cross-poduct of the sub-automaton with an automaton
representing the effects formula.

If there are paths of the world-automaton on which
it is impossible for the agent to achieve its goal, there is
no solution to the planning problem. However, it seems
reasonable for the agent to move ahead anyway mak-
ing the assumption that the path for which he cannot
plan is unlikely. This implies that it would be useful
to have probabilistic information for each pa.th of the
world automaton. The planner would then use that
information to estimate the proba.bility that the plan
will work. Another interesting approach is for the plan-
ner to procrastinate when, for some goals, the future
is very uncertain. He would delay planning for those
goals until informa.tion about the future becomes more
precise.

Automatic genera.tion of environment, specifications
is a problem we intend to investiga.te, possibly using
t,ecliniques similar to those in [liautz and Allen, 1986;
Kautz, 19873 to construct, a prediction module.

Pla.nning is also expected to be interleaved with
the execution. During execution some information
could confirm or disconfirm the current, structure of
the world-automaton. The planner can then deter-
mine whether or not the plan could go awry and, if
necessary, replan with respect to the new environment
structure.

Conclusions
We have show11 how temporal logic can be fruitfully
used for generating reactive pla.ns. The probleill we
considered is that of planning for agents evolving in a
changing and nondeterministic world. The generation
algorithm is in fact. a blend of goal-reduction and envi-
ronment enabling, and it ca.n be viewed in the tread of
recent, work done by [Bresina a.nd Drunnnoiid, 19!)0].

The performa.nce of this planner depends on t,he
availa.ble stra.tegies. ‘I‘he lower level the strategies are.
the faster the plan generation is going to be. We he-
lieve the method viable if refined strategies are avail-
able. Such refined strategies are analogous to those
used in human behavior. If you are told to go from
Liege to Brussels, you immediately decide t,o t.ake a
bus to the sta.tion, where you hope to catch a train. If
you know there might, not be a bus, you iiiunediately
plan to ta.ke a cab. ‘1’ha.t is, you act as if you had
strategies triggered by goals you ha.ve to commit to.
You don’t think “to be in Brussels I must. have been
in a train; to be in a. train I must have been to the
station, and so on.” Such reasoning only appears in
rather unusual situations (lost in a. town,).

Clearly the method, as it stands now, has some limi-
tations. The world-automaton has to be correct for the

168 AUTOMATEDREASONING

plan to be correct too. Thus there is need for some way
of dealing with unpredictable events. Another limita-
tion is the seemingly great complexity of the algorithm.
With all that in mind, we espect this work will serve
as a. good guideline for future investigations towards a.
tractable planner.

Acknowledgments

I would like to thank two anonymous referees for help-
ful suggestions for a better presentation of this paper.
I am also grateful to Marianne Baudinet, Jean-Marc
Stevenne, and Pierre Wolper for careful reading of
this paper and thoughtful comments. Philippe Simar
helped in the typesetting of this pa-per. This work has
been made possible only through the enthusiastic su-
pervision of Professor Pierre Wolper, to whom I extend
my thanks.

References

Abadi, M.; La.mport, L.; and Wolper, P. 1989. Re-
alizable and unrea.liza.ble concurrent program spec-
ifications. In Proc. 10th Int. Colloquizlnz on Au-
tomutu, Languages and Progrumming. LNCS, Vol.
372, Springer-Verlag. 1-17.
Allen, J.F. and Koomen, J.F. 1983. Pla.nning using a
tempora.1 world wodel. In Bundy, A., editor 1983, 8th
IJCA41. 741-747.
Bresina., J . and Drummond, M. 1990. lntegra.ting
planning and reaction. Ill A=-1AI w0rtw10p 011 YlU’ll-

ning in Uncertain, Unpred~ctuble, or ChulLgzug h’:n UI-
rouments, Stanford Univ.
Cha.pma.n, D. and Agre, P. E. 1987. Abstra.ct reason-
ing as emergent from concrete activity. In Georgeff,
M. P. and Lansky, A., editors 1987, Reusonnzng ubout
Actions and Plans, Proceedzn.gs of the 1986 Work-
shop, Timberline, Oregon. Morgan Kaufmann. 411-
424.

Clarke, E.M.; Emerson, E.A.; and Sistla, A.P. 19S6.
Automatic verification of finite-sta.te concurrent8 sys-
tems using temporal logic specifications. A CM
Transactions on Programming Lunguuges and .>‘ys-
tems 8(2):244-263.

Cohen, P. R. and Feigenbaum, E. A. 1982. Handbook
of Artificial Intelligence. Pitman, London.

Cohen, P. R. and Levesque, H. 3. 1987. Persistence,
intention, and commitment. In Georgeff, M. P. and
Lansky, A., editors 1987, Reusonnang uboui .4ctzons
und Plans, Proceedings of the 19S6 Workshop2 Trw
berline, Oregon. Morgan Kaufmann. 297-340.
Dean, Thomas L. 1987. Intractability and time-
dependent planning. Iii Georgeff, n4. P. and La.n-
sky, Amy, editors 1987, Reasonnang ubouf Actzo~~ CCII~
Plu11.s. Proceedings of th E 198h’ kl?o~kshop. ?‘ll,r bc 1.11.l) 6.
Oregon. M0rgall Iiaufmann. 245-266.

Emerson, E.A. and Cla.rke, E.M. 1982. Using branch-
ing time logic to synthesize synchronization skeletons.
Science of Conaputel* Progrummng 2:241-266.
Emerson, E.A. and Halpern, J.Y. 1985. Decision pro-
cedures and expressiveness in the teniyoral logic of
branching time. Jou~xul of C ‘or,Lputel. ur~d .Syste~~~
Sciences 30:1-24.
Fikes, R.; Hart, P. E.; and Nilsson, NJ. 1971.
STRIPS: A new approach to the application of theo-
rem proving. Arti’czul Intellzgence 2:189-208.
l&utz, H. A. and Allen, J. F. 1986. Generalized plan
recognition. In 5th NCAI. AAAI, Morgan Kaufmann.
32-37.
Kautz, H. A. 1987. A formal theory of plan recogni-
tion. Technical Report 215, Univ. of Rochester, NY.
Lansky, A. 1987. A representation of parallel ac-
tivit*y based on events, structure, and causality. In
Georgeff, M. P. and Lansky, A., editors 1987, Reu-
sonning ubout Actzons uud Pla.w, Proceedxngs of the
19S6 Workshop, Tzmbe&ue. Oregon. Morgan Kauf-
mann. 123-159.
Manna., Z. a.nd Wolper, P. 19154. Synthesis of co~u~llu-

nicating processes from temporal logic specifica.tions.
A CM Trunsuctwns 011 Progmmmxng Lu1Lguages and
,C;ysteiiis 6(1):68-93.
McDer~~dt, D. 1982. A teinpora.1 logic for reason-
ing about, processes aiid l)la.lis. c’og1L’1rlw S’c1ei,ce
6(2):101- 155.
l’c~clnault. E. P.D. 198i. I~oriiiulating illult.iag~~ilc.
dynamic-world problellls iu t,lie classical plaiulillg
fra.lllt~worl;. 111 Gmgdf’, Rl. 1’. a11d La11sliy, A ., cYi-
itors 1987, Keuson)bl~lg about .-1ct1ous UIL~ Pla~rs, YIO-
ceedzngs of ih e 1986’ I/l~~o~-kshop. TLm be rlzlst , Ore!~o I).
M0rga.11 l<aufma.nn. 47-82.
Pnueli, A. and Rosner, R. 1989a.. On the synthesis of
a reactive module. In 16th A~~nunl ACM Sy~nposa~unz
on POPL, Austin. 179-189.
Pnueli, A. and Rosner, R. 1989b. On the synthesis of
an asynchronous reactive module. In 1C,‘ilLY. LNCS,
Vol 372, Springer-Ver1a.g. 652-671.
Rosenscheiu, S. .J . 1989. Synthesizing inforniation-
tra.cking automa,ta from environment descriptions. In
Brachman, R. J .; Lcvesque, H. .J .; mcl Reiter, It.,
editors 1989, E’rrsl I~~le~~l~nl~o~~al C’onjerelscc on PTLI~-
czples of h~~~owledg~ Hepresentutxon u11d K.~USOILII~~,
Toronto. Morgan liaufinann. 386 393.
Wilkins. D. E. 1984. Domain-indepelldant planning:
Representation and plan b. o‘eneration. .q rlzafic~cil lintel-
ligence 22(3) :26Y- 30 1.
Wolper, P. 1989. 011 tl _ ie relation of prograiiis and
coinputat~ions to niodels of t8eniporal logic. 111 Bali-
ieybal. B.; Barringer, H.: a11t1 Pnueli, A., c>clit.ors
1989, hoc. Te~npoml Logrc 111 .5’pec~~fr;cut1on. LN(3,
\;ol. 3%. Sprilqyr-Verlag. 75 123.

KABANZA 169

