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Abstract

We describe a planner that works on the description of
a multi-path environment and generates a conditional
plan. The resulting plan is guaranteed to fulfill its
goal whatever path of the description the environment
follows during the plan execution.

Introduction

Classical planning systems [Fikes et al., 1971; Colien
and Feigenbaum, 1982; Wilkins, 1984] assume that
the planning agent operates in a static environment
(world). That is, at every moment of time, the world
is in a given state and that state remains unchanged
until an action is performed by the agent.

Yet most interesting environments in which an in-
telligent agent is expected to operate are not static.
Most realistic worlds are changing and nondeterminis-
tic. The assumption that the world remains static be-
tween successive actions of the agent no longer holds.
Furthermore, the agent usually has only nondetermin-
istic information on how the world is going to evolve.

Recent work has considered the problem of planning
in such environments. Allen and Koomen [Allen and
Koomen, 1983] use an interval temporal logic to model
the past, the present, and the future knowledge of the
agent. The changes of the environment and the non-
determinism of its behavior are conveyed by formu-
las of the logic. McDermott [McDermott, 1982] uses
a branching structure (tree of chronsets) to represent
a nondeterministic future. Pednault [Pednault, 1987]
uses a STRIP-like representation of actions to model
some changing worlds, especially in motion problems
for which one can give a prediction of the state of the
world after an action. Lansky [Lansky, 1987] uses a
point-based logic and an event-based representation of
states to express synchronization properties between
agents in a multiagent domain. Dean [Dean, 1987] de-
scribes a framework for scheduling tasks with imposed
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deadline constraints. In that approach, the planner
can use statistical information to predict the future.

In this paper, we also consider the problem of plan-
ning in a multi-path environment. We introduce a
planning method that is inspired by recent develop-
ments in program synthesis from temporal logic speci-
fications {Abadi et al., 1989; Pnueli and Rosner, 1989a;
Puueli and Rosner, 1989b]. The multi-path environ-
ment is viewed as a tree of states, which we call a
world-automaton. Each path in the tree represents a
possible behavior of the environment. We call envi-
ronment knowledge the knowledge represented by the
world-automaton. We assume that the planner has
no control over this tree and that he cannot predict
which path the world is actually going to follow. The
operational knowledge of the plan is given by a set
of actions. The planning problem can now be stated
as follows: given an environment characterized by a
world-automaton, an operational knowledge, an ini-
tial state, and a goal, find a (conditional) plan that
is guaranteed to achieve the goal whatever path of the
world-automaton the environment actually follows.

'To handle this problem, one first needs a formalism
for describing the environment knowledge. One could
give the set of world states and the transition relation
between these states, but such a description would be
tedious and hence prone to error in complex environ-
ments. Instead, we use propositional branching time
temporal logic (CTL [Emerson and Clarke, 1982]). For
instance, let us assume that the world-automaton is
specified by the C'TL formula “30guard A YOdark”
stating that it might be the case that there is always a
guard present and that it will definitely end up being
dark. Consider the goal “rob($20 million) from Bank”
and an initial state where it is not dark. Then the
plan that is generated should work whether a guard
is present or not, though it can wait for darkness to
appear since this is guaranteed to happen.

The problem of generating the plan is related to
that of synthesizing a reactive module as described
in [Rosenschein, 1989; Pnueli and Rosner, 1989a;
Puueli and Rosner, 1989b]. A reactive program is one
that continuously interacts with its environment dur-



ing execution. The environment controls some vari-
ables, the program others. The synthesis problem con-
sists in building a program that satisfies a given specifi-
cation (expressed in temporal logic) for all possible be-
haviors of the environment (also expressed in temporal
logic). This is done by first building a formula express-
ing the statement : “for any execution of the environ-
ment, there i1s an execution of the program that satis-
fies the specification”. One then uses a decision proce-
dure to generate a model for this formula. One could
adapt the algorithms of [Pnueli and Rosner, 1989a;
Pnueli and Rosner, 1989b] to the synthesis of plans.
Unfortunately these methods are of very high compu-
tational complexity (double exponential), which makes
them of limited use in practice.

The approach we follow proceeds in three steps.
First, we generate a description of the world-
automaton from the CTL formula describing the en-
vironment. This can be done with the algorithms de-
scribed in [Emerson and Clarke, 1982; Emerson and
Halpern, 1985; Manna and Wolper, 1984] and sum-
marized in [Wolper, 1989]. Then, from this world-
automaton, the operational knowledge, and the goal,
we build a graph representing a synchronization of the
executions of the agent and of the environment. A
node of this graph represents an action that has to be
executed by the agent. A transition between two nodes
is labeled by an event of the world-automaton, that is,
of the environment. Finally, we extract the desired
plan from this graph. This approach allows us to ex-
ploit classical heuristic methods (as in SIPE [Wilkins,
1984]) to only explore a fragment of the search space
of possible action sequences.

In the next section, we start with a formal descrip-
tion of world-automata and plans. We then discuss
the specification language and the algorithm that auto-
matically generates the world-automaton from a CTL
specification. The following section describes the plan-
ner. The last section is devoted to other features of the
planner and to possible extensions.

Describing Environment Knowledge
and Plans

Actions, Events, Goals, and Strategies

Actions are described, as in classical systems such as
STRIPS or SIPE [Fikes et al., 1971; Wilkins, 1984],
essentially by their precondition and their effect. How-
ever, we also allow an exclusive disjunction as the effect
of an action to represent an effect that depends on the
state in which the action is applied. We will call ac-
tions with disjunctive effects disjunctive actions. The
action NULL means “do nothing”.

Goals are also described. as in classical systems, by
a set of propositions. But in addition, we allow condi-
tional goals of the form p — a, where p is a proposition
and a is an action. Such a goal means “do a every time
pis true”.

A strategy is a set of linearly ordered goals. The or-
der must be safe, that is, if a goal g; precedes a goal
g2, then all actions leading to g, have to be performed
before any action for ¢» during execution. Therefore
a goal is a special strategy. Strategies are more or
less similar to Chapman’s “cognitive cliches” [Chap-
man and Agre, 1987].

Environment Knowledge and Plans

A world-automaton is a tuple W = (Q, E, v, next, ),
where

Q ={q1,...q.} is a set of states;

E = {NOTH,e;,...c,,} is a set of events (the event
NOTH is aspecial event indicating that nothing (in-
teresting) happens in the environment);

7 :Q — E is a function mapping states to events;

next : Q — 29 is the transition relation between
states;

q € @ is the initial state.

The fact that there is only one initial state is not re-
strictive. If an automaton has many initial states we
can make them the successors of an initial state with
event NOTH. An execution of a world-automaton is
defined as in classical automata theory. We start in
the initial state ¢q. The first event to appear is y(g).
Being in state ¢; means that the event y(¢;) is the last
one to have occurred.

The environment knowledge is described by a world-
automaton. The possible executions of this automaton
constitute an infinite tree. Each path of this tree de-
scribes a possible behavior of the environment. Hence-
forth, we will use the terms “execution”, “behavior”,
and “path” of the environment interchangeably.

The plans we generate are also represented by world-
automata. An automaton representing a plan contains
both the actions (events) of the environment and those
of the planning agent. To execute a plan, an agent
performs the actions in the plan that are his own and
waits for the environment to perform all other actions.

Events can be generic, that is, have many possible
instances. But, at any moment, only one instance of
an event may happen. For example, the event on(a, z)
has on(a,table) and on(a,b) among its instances. In
the world-automaton, a transition happens when any
instance of the corresponding event happeus.

Example 1 Suppose we have to build a reactive plan
for robot Agent? stacking on table T2 parts produced
on a separate table 7'1 by another robot Agent].
Agentl produces parts by groups of four: blocks a,
b, ¢ and d. It stacks each block on a separate rack
appropriate for its type. When a rack is occupied, the
agent waits until it becomes clear. The block b is al-
ways produced just after the block «. and d is always
produced just after ¢. In figures and in formulas, we
abbreviate “rack i" by ;.
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The environment knowledge for Agent2 is thus the
production activity of Agentl. It is described by the
world-automaton of Figure 1. A part of the plan that
our method generates for Agent2 is given in Figure 2.
In this figure, all actions that have to be performed by
Agent2 are prefixed by ad.

CETAN

puton{a,ra) ppton(c,rc)
Cad [ SO
b rb) pu[or‘l\ d,rd)

c-fl T

lere) ppign(a,ra)

uton(d,rd) puto:

Figure 1: Environment for Agent2

Specifying the World-Automaton

We use propositional branching time temporal logic
(CTL) to describe the environment. This logic is for-
mally defined in [Emerson and Clarke, 1982: Wolper,
1989]. We only introduce it informally here.

CTL formulas are built from atomic propositions,
boolean connectives, and eight temporal operators. A
temporal operator is a path quantifier directly fol-
lowed by a modality operator. The path quantifiers
areV meaning “for all execution paths”, and 3 meaning
“there is an execution path”. The modality operators
are O (“eventually”), O (“always”), O (“next”) and U
“until”. They are all unary, except U which is binary.
Proposional formulas (i.e. without temporal operator)
are the basic CTL formulas. Any formula built by
prefixing a CTL formula with a temporal operator is
also a CTL formula. Examples of CTL formulas are :
JOaccepted A VY(—-presented U accepted).

Formulas are interpreted over infinite trees of propo-
sitions. They can be naturally interpreted over world-
automata.

e A formula is satisfied by an interpretation if it is
satisfied by the initial state of the interpretation.

e A proposition is satisfied by a state if it is true (in
the classical sense) of the event of that state.

e 3O f means “possibly next f”. Its dual VO f means
“surely next f”.

o dCf means “possibly f will happen”
means “surely eventually f”.

e J0f means “possibly it is the case that always [,
whereas VO f means “surely always f”.

. Its dual VO f

166 AUTOMATED REASONING

e 3(fUg) means “possibly it is the case that f holds
until g”, and V(fUyg) means “surely f holds until y”

For instance, the world-automaton of Figure 2 satisfies
the formula ICputon(d, rd).

Generating the World-Automaton

We use the algorithm of [Emerson and Clarke, 1982]
to generate the world-automaton from a CTL specifi-
cation. The worst case complexity of the algorithm is
exponential in the size of the formula. However, with
an implementation that uses all possible optimizations,
it often gives good results.

Example 2 The following formulas are the bulk of
the specification from which the world-automaton for
Agent2 (Figure 1) has been generated.

1. A block is produced if its rack is empty
VO(puton(a,rs) D clear(r,y))
(Similar axioms for b,c and d.)
2. Every time r, is empty, ¢ will eventually be pro-
duced
VO(clear(ry) D VOputon(a 1))
(A similar axiom is given for r..)
3. The order of block production: when ¢ is produced,
the following block must be b
VO(puton(a,r,} D
Y(—(puton(a.ry) VvV
Uputon(b,r,)))
(Similarly for ¢ and d.)
4. At each cycle we do not know the first block to be
produced
IOputon(a,r,) A IOputon(c, r.)

puton(c.r.)V pulon{d.rq))

- clfm(x@

puton(é,rc)

VAN

putori(a,ra)

adtake(a) —_—
‘}L(Ib) O pulon(b,rb)

adputon(a,T2)
\ \a‘ rmO
putory(b, rb)

- cleat(rc) @)

pyton(c,rc)
- rd)

putory(d,rd)
adtake(d)

Figure 2: Plan for Agent2



The Planner
The General Idea

We start with the following data: a world-automaton,
an operational knowledge, and a strategy (set of goals).
From this, we first build an intermediate structure.
This structure is a directed graph whose nodes are la-
beled with actions of the operational knowledge and
whose transitions are labeled with events of the world-
automaton. This graph represents a synchronization
of the agent trying to complete the goals with the en-
vironment: at a node of the graph, the agent executes
the associated action; it then waits for an event la-
beling a transition from that node. When the event
happens, the agent goes to the node indicated by the
transition labeled by the event, executes the action cor-
responding to that node, and waits again. Actions of
the graph are chosen by the planner so that they lead
to the goals.

It then remains to extract a plan from the con-
structed graph. As mentioned in the knowledge de-
scription section, the plan has the form of a world-
automaton. Hence, it can be used as input for another
planning agent.

Building the graph is thus the core of the algo-
rithm. We associate the following additional informa-
tion to each node of the graph: a state of the world-
automaton, a goal to be completed within the node.
and a stack of strategies to be performed by descen-
daunts of the node (the part of the initial strategy that
still has to be completed). Recall that the strategy is
the goal of the agent.

We build the graph starting from a state in which the
associated node of the world-automaton is the initial
state of that automaton, the strategy is the overall
goal, and the action is NULL. The graph is then built
incrementally as follows.

e A graph node with no successor and with a
nonempty strategy is chosen.

e An action whose precondition is satisfied and that
reduces the distance from the goal is chosen (nonde-
terministically).

e Successor nodes are constructed for each possible ac-
tion: the action chosen for the agent and all possible
environment actions.

Of course, backtracking is used to implement the non-
deterministic choices. Also, goal-reduction is used:
when the precondition of the chosen action cannot be
satisfied, we attempt to apply goal reduction to the ac-
tion. If this is impossible, we look ahead in the world-
automaton to see if more promising states are coming
up and we wait for them; if this is not the case. we
backtrack.

The Algorithm

In this paper, we sketch the planning algorithin with
the following restrictions: there are no conditional

goals, no generic events, and the operational knowl-
edge does not contain disjunctive actions.

The planning algorithm operates in one of two
modes: wait and reduce. In the wait mode, it 1s search-
ing the world-automatou for an event to happen. In the
reduce mode, 1t is trying to find an action that fulfills
a goal. We use the following convention for variables:
s and s’ for nodes of the graph, e for events of the
world-automaton. S is the set of nodes of the graph
and E is the set of events of the environment. The
data-structures used by the planning algorithm are:

e The world-automaton (Q, F,v,next, q);
e The intermediate structure (graph) in which:

S 1s a set of nodes of the graph,
succ : (S x E) — S is the graph transition function.
The information associated with each node s con-
sists of: an action action(s), a world-automaton
state was(s), a goal G(s), and a strategy stack(s);
e The variable Mode that takes values W (wait) and
R (reduce);
o The event waited upon when in mode W is wauted-
event.

A sketch of construction of the intermediate graph
1s given in Figure 3.

The goal-reduction is any of the heuristics available
in Al [Wilkins, 1984}, used to decompose a goal to
primitive subgoals. Any of these heuristics can be ap-
plied since we have the same problem: find a sequence
of actions to complete a goal ((s) from an initial state
4o, given a set of actions (the operational knowledge).

Nodes can be fused when they are defined by the
same elements (action, stack,...). Hence loops might
be introduced. The planning algorithm has to check
that the loops that are introduced are safe. This is
done with techniques similar to those used to check
that eventuality formulas are satisfied when build-
ing models of temporal logic formulas [Emerson and
Clarke, 1982; Manna and Wolper, 1984].

The plan is extracted from the intermediate struc-
ture as follows. First build a new structure from the
intermediate structure, by introducing between two
successive nodes a new node labeled with the tran-
sition label between those nodes. The plan is induced
from that last structure by skipping NULL actions and
NOTH events.

Example 3 Consider the environment knowledge of
Example 1. Suppose we are given the following opera-
tional knowledge:

Actions

take(x) precond: on(x, z) A clear(x)
add-list: have(x) A clear(z)
precond: have(x) A clear(y)
add-hst: on(x. y).

puton(.r,y)
The goal of Agent2 is to arrange blocks on a different
table 7'2, as follows:
on(a. T2) N on(d,a) N on(b, d) A on(c,b).
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Construct-Intermed-Struct(strategy)

Create an initial node s with G(s) = NU LL, stack(s)=
strategy, and waes(s) = qo.

Set Mode to R.

Repeat

Select a node s with stack(s) not empty and with no
successors. If there is no such node, break from the
loop.

If Mode=W then:

Check if was(s) =waited-event. If so, set Mode to
R. If not, set action(s) to NULL; for each event
e successor of was(s), create the node succ(s,e),
set G(succ(s,e)) to G(s), and stack(succ(s,e)) to
stack(s).

Else:

-If G(s) is not an atomic action reduce it to
a sequence of atomic actions by applying goal-
reduction. If such a sequence can be found then
update G(s) and stack(s) and continue.

-From now, we can assume G(s) is atomic. If the
precondition of G(s) is not satisfied use the veri-
fication algorithm of [Clarke et al., 1986] to see if
the precondition of G(s) can be satisfied by further
states of the world-automaton; if it can, set M ode
to W, and set waited-event to the precondition of

G(s); else backtrack.

-If the precondition of G(s) is satisfied, set
action(s) to G(s); then determine the strategy
and the stack for successors nodes : for each event
successor of was(s), create a new node s’ of the
graph and a transition, labeled by the event, from
the current node to the new node s’; set G(s') to
the first element of stack(s) and stack(s’) to the
rest of stack(s).

End of Repeat
End of Construct-Intermed-Struct

Figure 3: Constructing the intermediate structure

It is reduced to the strategy:
take(a) — puton(a,T2) — take(d) — puton(d,a) —
take(b) — puton(b,d) — take(c) — puton(c,b).

The initial part of the plan generated is shown in
Figure 2. B

Additional Features and Possible
Extensions

The following features have also been developed: the
use of past temporal formulas to express conditions of
conditional goals. We keep a linear structure recording
the past activity. We can then use a polynomial algo-
rithm to verify if past preconditions of actions are sat-
isfied on that structure. The verification algorithm is
similar to that of [Clarke et al., 1986]. We can also use
temporal formulas to describe the effects of an action.
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This is a partial response to the commitment problem
[Cohen and Levesque, 1987]. When an action with a
temporal effect is selected at a state in the intermedi-
ate structure, we replace the sub-automaton rooted at
the corresponding state in the world-automaton by a
cross-poduct of the sub-automaton with an automaton
representing the effects formula.

If there are paths of the world-automaton on which
it is impossible for the agent to achieve its goal, there is
no solution to the planning problem. However, it seems
reasonable for the agent to move ahead anyway mak-
ing the assumption that the path for which he cannot
plan is unlikely. This implies that it would be useful
to have probabilistic information for each path of the
world automaton. The planner would then use that
information to estimate the probability that the plan
will work. Another interesting approach is for the plan-
ner to procrastinate when, for some goals, the future
is very uncertain. He would delay planning for those
goals until information about the future becomes more
precise.

Automatic generation of environiment specifications
is a problem we intend to investigate, possibly using
techniques similar to those in [Kautz and Allen, 1936;
Kautz, 1987] to construct a prediction module.

Planning is also expected to be interleaved with
the execution. During execution some information
could confirm or disconfirm the current structure of
the world-automaton. The planner can then deter-
mine whether or not the plan could go awry and, if
necessary, replan with respect to the new environment
structure.

Conclusions

We have shown how temporal logic can be fruitfully
used for generating reactive plans. The problem we
considered is that of planning for agents evolving in a
changing and nondeterministic world. The generation
algorithm is in fact a blend of goal-reduction and envi-
ronment enabling, and it can be viewed in the tread of
recent work done by [Bresina and Drummond, 1990).
The performance of this planner depends on the
available strategies. The lower level the strategies are,
the faster the plan generation is going to be. We be-
lieve the method viable if refined strategies are avail-
able. Such refined strategies are analogous to those
used in human behavior. If you are told to go from
Liége to Brussels, you imnediately decide to take a
bus to the station, where you hope to catch a train. if
you know there might not be a bus, you immediately
plan to take a cab. ‘That is, you act as if you had
strategies triggered by goals you have to commit to.
You don’t think “to be in Brussels 1 must have been
in a train; to be in a train I must have been to the
station, and so on.” Such reasoning only appears 1n
rather unusual situations (lost in a town, ... ).
Clearly the method, as it stands now, has some lin-
tations. The world-automaton has to be correct for the



plan to be correct too. Thus there is need for some way
of dealing with unpredictable events. Another limita-
tion is the seemingly great complexity of the algorithm.
With all that in mind, we expect this work will serve
as a good guideline for future investigations towards a
tractable planner.
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