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Abstract without regard to the amount of time it is taking or 
the changes meanwhile going on, is not likely to make 
ra.tional decisions. We describe a system called Tileworld, which con- 

sists of a simulated robot agent and a simulated 
environment which is both dynamic and unpre- 
dictable. Both the agent and the environment 
are highly parameterized, enabling one to control 
certain characteristics of each. We can thus ex- 
perimentally investigate the behavior of various 
meta-level reasoning strategies by tuning the pa- 
rameters of the agent, and can assess the success 
of alternative strategies in different environments 
by tuning the environmental parameters. Our hy- 
pothesis is that the appropriateness of a pa.rticu1a.r 
meta-level reasoning strategy will depend in large 
pa,rt upon the characteristics of the environment 
in which the agent incorporating that strategy is 
situated. We describe our initial experiments us- 
ing Tileworld, in which we have been evaluating a 
version of the meta-level reasoning strategy pro- 
posed in earlier work by one of the authors [Brat- 
man e2 al., 19SS]. 

One solution that has been proposed eliminates ex- 
plicit execution-time reasoning by compiling into the 
agent all decisions a.bout what to do in particular 
situations [Agre and Chapman, 1987, Brooks, 1987, 
Ka.elbling, 198S]. This is an interesting endeavor, but 
its ultimate feasibility for complex domains remains an 
open question. 

Introduction 

An alternative is to design a.gents that perform ex- 
plicit reasoning at execution time, but manage that 
reasoning by engaging in nzeta-level reasoning. Within 
the past few years, researchers in AI have provided the- 
oretical analyses of meta-level reasoning, often a.pply- 
ing decision-theoretic notions to it [Boddy and Dean, 
19s9, Horvitz, 1987, Russell and Wefald, 1989]. In ad- 
dition, architectural specifications for agents perform- 
ing meta-level reasoning have been developed [Brat- 
man et al., 19881, and prototype systems that engage 
in meta-level reasoning have been implemented [Cohen 
et nl., 1989, Georgeff and Ingrand, 19891. The project 
we describe in this paper involves the implementa.tion 

competing 
Recently there has been a surge of interest in systems 
that are capable of intelligent behavior in dynamic, un- 
predictable environments. Because agents inevitably 
have bounded computational resources, their delibera- 
tions about what to do take time, and so, in dynamic 
environments, they run the risk that things will change 
while they reason. Indeed, things ma-y change in ways 
that undermine the very assumptions upon which the 
reasoning is proceeding. The agent may begin a delib- 
eration problem with a particular set of available op- 
tions, but, in a dynamic environment, new options ma,y 
arise, and formerly existing options disappear, during 
the course of the deliberation. An agent that blindly 
pushes forward with the original deliberation problem, 

of a system for experimentally evaluating 
theoretical and architectural proposals. 

*This research was supported by the Office of Naval 
Research under Contract No. N00014-89-C-0095, by a 
contract with the Nippon Telegraph and Telephone Cor- 
poration and by a gift from the System Development 
Foundation. 

More specifically, we ha.ve been constructing a sys- 
tern called Tileworld, which consists of a simulated 
robot agent and a sim&ted environment which is both 
dynamic and un)cedictable. Both the agent and the 
environment a.re highly parameterized, enabling one to 
control certain characteristics of each. We can thus ex- 
perimentally investigate the behavior of various meta- 
level reasoning strategies by tuning the parameters of 
the a.gent, and can assess the success of alternative 
strategies in different environments by tuning the en- 
vironmental parameters. Our hypothesis is that the 
appropriateness of a particular meta-level reasoning 
strategy will depend in large part upon the charac- 
teristics of the environment in which the agent incor- 
porating that strategy is situated. We shall describe 
below how the parameters of our simulated environ- 
ment correspond to interesting characteristics of real, 
dynamic environments. 
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Figure 1: A Typical Tileworld Starting State 

In our initial experiments using Tileworld, we have 
been evaluating a version of the meta.-level reasoning 
strategy proposed in earlier work by one of the authors 
[I3 * t la. man et al., 19SS]. However, the Tileworld can 
be used to evaluate a range of competing proposals, 
such as the ones mentioned above: agents instantiating 
many alternative proposals can readily be imported 
into the Tileworld environment. 

The Tileworld Environment 
The Tileworld is a chessboard-like grid on which there 
a.re agents, tiles, obstacles, and holes. An agent is a 
unit square which is able to move up, down, left, or 
right, one cell at a time, and can, in so doing, move 
tiles. A tile is a unit square which “slides”: rows of 
tiles can be pushed by the agent. An obstacle is a 
group of grid cells which are immovable. A hole is a 
group of grid cells, each of which can be “filled in” by 
a tile when the tile is moved on top of the hole cell; the 
tile and particular hole cell disappear, leaving a blank 
cell. When all the cells in a hole are filled in, the a.gent 
gets points for filling the hole. The a.gent knows ahead 
of time how valuable the hole is; its overall goal is to 
get as many points as possible by filling in holes. 

Figure 1 depicts a typical Tileworld starting state. A 
Tileworld simulation takes place dynamically: it begins 
in a state which is randomly generated by the simulator 
according to a set of parameters, and changes contin- 
ually over time. Objects (holes, tiles, and obstacles) 
appear and disappear at rates determined by param- 
eters set by the experimenter, while at the same time 
the agent moves around and pushes tiles into holes. 
The dynamic aspect of a Tileworld simulation distin- 
guishes it from many earlier domains that have been 

used for studying AI planning, such as blocks-world. 
The Tileworld can be viewed a rough abstraction of 

the Robot Delivery Domain, in which a mobile robot 
roams the halls of an office delivering messages and ob- 
jects in response to human requests. We have been able 
to draw a fairly close correspondence between the two 
domains (i.e., the appearance of a hole corresponds to 
a. request, the hole itself corresponds to a delivery loca- 
tion, tiles correspond to messages or objects, the agent 
to the robot, the grid to hallways, and the simula.tor 
time to real time). 

Features of the domain put a variety of demands on 
the a.gent. Its spatial complexity is nontrivial: a sim- 
ple hill-climbing strategy can have modest success, but 
when efficient action is needed, more extensive reason- 
ing is necessary. But the time spent in reasoning has a.17 
associated cost, both in lost opportunities and in unex- 
pected changes to the world; thus the agent must make 
trade-offs between speed and accuracy, and must mon- 
itor the execution of its plans to ensure success. Time 
pressures also become significant a.s multiple goals vie 
for the agent’s attention. 

Of course, a single Tileworld simulation, however.in- 
teresting, will give only one data point in the design 
space of robot a.gents. To explore the space more vigor- 
ously, we must be able to vary the challenges that the 
domain presents to the agent. We have therefore pa- 
rameterized the domain, and provided “knobs” which 
can be adjusted to set the values of those parameters. 

The knob settings control the evolution of a Tile- 
world simulation. Some of the knobs were alluded t,o 
earlier, for instance, those that control the frequency 
of a.ppearance and disappearance of each object type. 
Other knobs control the number and average size of 
each object type. Still other knobs are used to control 
factors such as the shape of the distribution of scores 
associa.ted with holes, or the choice between the instan- 
taneous disappearance of a hole and a slow decrease in 
value (a hard bound versus a soft bound). For each set 
of parameter settings, an agent can be tested on tens 
or hundreds of randomly generated runs automatically. 
Agents can be compared by running them on the same 
set of pseudo-random worlds; the simulator is designed 
to minimize noise and preserve fine distinctions in per- 
forma.nce. 

The Tileworld environment is intended to provide 
a testbed for studying a wide range of dynamic do- 
mains and tasks to be performed in them. It exhibits 
spatial complexity, a central feature of many such do- 
mains; and it includes tasks of varying degrees of im- 
portance and difficulty. It is generic: although we have 
explored connections between Tileworld and tasks in- 
volving robot delivery, Tileworld is not tightly coupled 
to any particular application domain, but instead al- 
lows an experimenter to study key characteristics of 
whatever domain he or she is interested in, by varying 
parameter settings. For example, the experimenter can 
focus on doma.ins in which the central characteristic is 
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a wide distribution of task values (simulated in Tile- 
world by hole scores), or of task difficulty (simulated 
by hole size). In this regard, Tileworld differs from 
the Phoenix simula.tor [Cohen e2 al., 19891, which is 
more closely tied to a pa.rticu1a.r a.pplica.tion. Instead, 
the goals of the Tileworld project are closer to those of 
the MICE simula.tor [Durfee and h’fontgomery, 19901. 
However, Tileworld is a more highly dynamic environ- 
ment than MICE. Also, where h4ICE is used to focus 
on issues of real-time inter-a.gent c6ordina.tion, Tile- 
world is intended as a framework for the more general 
investigation of intelligent behavior in dynamic envi- 
ronments. 

Using Plans to Constrain Reasoning 
The a.gent we have implemented and used in our exper- 
iments insta,ntiates IRMA-the Intelligent Resource- 
Bounded Machine Architecture [Bra.tma.n e-t al., 1988]. 
IRMA builds on observa.tions ma.de by Bratman [Brat- 
man, 19871 that agents who a.re situated in dynamic 
environments benefit from ha.ving plans because their 
plans ca.n constrain the amount of subsequent reason- 
ing they need to perform. Two constraining roles of 
plans concern us here: 

o An agent’s plans focus subsequent means-end rea- 
soning so that the agent can, in general, concentrate 
on elaborating its existing pla.ns, rather than on com- 
puting all possible courses of action that might be 
underta.ken. 

e An agent’s plans restrict the set of further poten- 
tial courses of action to which it needs to give full 
consideration, by filtering out options that are in- 
consistent with the performance of what the agent 
alrea.dy plans to do. 

The first role of plans has always been at least implicit 
in the standard models of AI planning: AI plamlers 
compute means to goals that the agent already has. 
The second has a more dramatic effect on the architec- 
ture we are investigating: it leads to the introduction of 
a filtering mechanism, which manages execution-time 
reasoning by restricting deliberation, in general, to op- 
tions that ‘are compatible with the performance of al- 
ready intended actions. (To have the desired effect of 
lessening the amount of reasoning needed, the filter- 
ing mechanism must be computationally inexpensive, 
relative to the cost of deliberation.) 

Of course, a rational agent cannot aEways remain 
committed to its existing plans. Sometimes plans may 
be subject to reconsideration or abandonment in light 
of changes in belief. But if an agent constantly recon- 
siders its plans, they will not limit deliberation in the 
way they need to. Thus, an agent’s plans should be 
reasonably stable. 

To achieve stability while at the same time allowing 
for reconsideration of plans when necessary, the filter- 
ing mechanism should have two components. The first 

checks a new option for compatibility with the exist- 
ing plans. The second, an override mecha.nism, encodes 
the conditions under which some portion of the exist- 
ing plans is to be suspended and weighed against some 
other option. The filter override mechanism operates 
in parallel with the compa.tibility filter. For a new 
option to pass through the filter, it must either pass 
the compatibility check or else trigger an override by 
matching one of the conditions in the override mecha- 
nism. A critical task for the designer of an IRMA-a.gent 
is to construct a filter override mechanism so tl1a.t it 
embodies the right degree of sensitivity to the problems 
and opportunities of the agent’s environment. 

The options that pass through the filter are subject 
to deliberation. The deliberation process is what actu- 
ally selects the actions the agent will form intentions 
towards. In other words, it is the deliberation pro- 
cess t.hat performs the type of decision-making that 
is the focus of traditional decision theory. The filter- 
ing mechanism thus serves to frame particular decision 
problems, which the deliberation process then solves. 

The process of deliberation is different from means- 
ends reasoning in our view, and this distinction is 
worth discussing further. As we see it, deliberation 
is deciding which of a set of options to pursue, while 
means-ends reasoning is more a process of determining 
how to achieve a given goal. We see means-ends rea- 
soning producing options (candidate plans to achieve 
a goal), which can then be the subject of deliberation. 

This ma.y be a surprising distinction to those fa,mil- 
ia.r with the sta.ndard AI planning paradigm, in which 
the job of a planner is usually to produce the single 
best p1a.n according to some set of criteria. Any delib- 
era.tion which is to be done in such a system is done 
by the planner, and it might be argued that a planner 
is the best place for such reasoning. Certainly some 
pruning of alternatives must be done by a planner; 
however, there are reasons to believe that some delib- 
eration belongs outside the planner. In some situations 
it is a.ppropriate to have several means-ends reasoners 
with differences in solution quality and time required; 
these must be invoked appropriately and a single so- 
lution chosen. In other circumstances it is desirable 
to engage in a decision-theoretic analysis of compet- 
ing alternatives. Consequently, we have maintained 
the distinction between deliberation and means-ends 
reasoning in our system. 

The Tileworld Agent 
In implementing an IRMA-agent for the Tileworld, we 
adopted a model of a robot with two sets of process- 
ing hardware. One processor executes a short control 
cycle (the act cycle), acting on previously formulated 
plans and monitoring the world for changes. The sec- 
ond processor executes a longer cycle (the reusoning 
cycle), which permits computations with lengths of up 
to several seconds. 

The act cycle is straightforward; the agent performs 
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al 1 existing intentions, or if it triggers an override. 
Compatibility checking of top-level options, as im- 

Action 

Figure 2: Tileworld Agent Architecture 

those acts that have been identified during the pre- 
vious reasoning cycle, monitoring for limited kinds of 
failures. Perception also occurs during the act cycle: 
the agent can access a global map of the world that in- 
dicates the loca.tions of all objects, as well as the score 
and time remaining to timeout for a.11 holes. 

The reasoning cycle makes decisions about what 
goa.ls to pursue and how to pursue them. The por- 
toion of the agent architecture that controls reasoning 
is depicted in Figure 2. Processing is aimed at main- 
taining the intention structure, a time-ordered set of 
tree-structured plans that represents that agent’s cur- 
rent intentions. During any given reasoning cycle, one 
of two things can happen: 

Potential additions to the intention structure, called 
options, can be considered by the filtering and delib- 
eration processes. These options can come from two 
sources. One, the agent may perceive environmen- 
ta.1 changes that suggest new options-in Tileworld, 
this occurs when new holes or tiles appear. Alterna- 
tively, options may be suggested by the means-end 
reasoner. 

Means-ends reasoning can be performed to produce 
new options that can serve as means to current in- 
tentions. The bulk of our means-ends reasoner is a 
special-purpose route planner. 
We will concentrate here on the filtering and deliber- 

ation mechanisms. All options are in principle subject 
to filtering and deliberation; so far, however, we have 
confined such reasoning to top-level options, i.e., op- 
tions to fill a particular hole. 

Recall that the IRMA filtering mechanism has two 
parts: the compatibility filter and the filter override. 
An option passes the filter if it is either compatible with 

plemented, is straightfo&ard. - A top-level option is 
either to fill a hole now or Inter; if the agent alrea.dy 
hcas a current intention to fill a particular hole now, 
then an option to fill some other hole now is incompat- 
ible. All intentions 
with each other. 

to fill a hole later a.re compatible 

The filter override must identify options that are 
potentially valuable enough that they warrant delib- 
eration even if they fail the compatibility test. The 
simplest override mechanism compares the score of a 
hole being considered as an option to that of the hole 
currently being filled. If the difference between them 
equals or exceeds some threshold value v, then the new 
option passes the filter. The threshold value is set by 
a Tileworld pa.rameter. Sometimes it may sensibly be 
set to a negative value: in that case, a new option 
could be subject to deliberation even if it involved fill- 
ing a hole with a lower score than the hole currently 
being filled. This might be reasonable, since the new 
hole may, for instance, be much easier to fill. Setting 
the threshold value to --co results in all options being 
subject to deliberation. 

Recall t1la.t an option’s passing the filter does not 
1ea.d directly to its introduction into the intention 
structure: instea.d, it is passed to the deliberation pro- 
cess for more detailed consideration and comparison 
with the current intention. Deliberation may involve 
extensive analysis; deliberation stra.tegies ca.n be cho- 
sen in the Tileworld agent by the setting of a para.m- 
eter. We currently have implemented two deliberation 
strategies. 

The simpler deliberation module evaluates compet- 
ing top-level options by selecting the one with the 
higher score. When there is a nonnegative threshold 
value in the filter, this mode of deliberation always se- 
lects the new option; with a negative threshold value, 
it instead always maintains the current intention. This 
illustrates a general point: if deliberation is extremely 
simple, it may be redundant to posit separate deliber- 
ation and filtering processes. 

A more sophisticated deliberation strategy computes 
the likely value (LV) of a top-level goal. LV is an esti- 
mate of expected utility, combining information about 
reward (score) with information about likelihood of 
success. For a given option to fill a hole h, LV is com- 
puted as 

LV(h) = 
score(h) 

dist(a, h) + Ck, 2 * dist(h, ti) 

where score(h) is the reward for filling the hole, 
dist(a, h) is the distance between the agent and the 
hole, n is the number of tiles needed to fill the hole, 
and dist(h, ti) is the distance from the hole to the jth 
closest tile. The factor of 2 occurs because the agent 
must traverse the interval in both directions, i.e., it 
must make a “round trip”. If there are fewer than n 
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tiles available, LV(h.) is zero. 
We intend to design additional deliberation modules, 

including one that performs complete means-end rea.- 
soning for all options under consideration before mak- 
ing its decision. Such a. deliberator must not be in- 
voked caxelessly; we expect our filtering mechanism to 
be increasingly useful as we add more sophisticated 
and time-consuming delibera.tion components. 

Prelhinary Experiments 
With both the simulator and the agent in place, we axe 
in a position to conduct experimental studies of the the 
performance of the agent. By a.djusting the Tileworld 
“knobs”, we ca.n control a. number of domain character- 
istics. We can vary what we call dynamism (the rate at 
which new holes a.ppear), hostility (the ra.te at which 
obsta.cles a.ppear), vurinbility of vdilily (differences in 
hole scores), variability of dificulty (differences in hole 
sizes and distances from tiles), and hnrd/soft bounds 
(holes having either hard timeouts or gra.dua.lly decay- 
ing in value). There are also variables we can a.djust 
in the a.gent: act/think rate (the relative speeds of act- 
ing and thinking), the filter’s ?hreshold level, and the 
sophisticution of the deliberidion m.echanism. 

Experiment 1 
To begin with, we set all of these parameters to pro- 
vide a baseline enviromnent which is dyna.mic, vari- 
able, and moderately paced. In this environment, a 
competent agent ca.n achieve reasonable scores, but is 
pena.lized for wa.sting time or making poor choices. We 
will sta.rt by compaxing the simple deliberation mech- 
anism, based on score value, with the LV evaluator, 
which provides a better estimate of marginal utility. 
For orientation, we have also included the results of a 
human playing the role of the a.gent in the same sim- 
ulation; and to gain an idea of the benefit of acting in 
parallel with reasoning, we have included results for an 
agent that that acts and reasons serially. 

All of these agents were tested in the baseline en- 
vironment and in a similar but more rapidly changing 
one. In the faster environment, objects appear and dis- 
appear on the average ten times more quickly, but the 
agent can also move ten times more quickly. However, 
the agent’s reasoning takes place at the same rate of 
speed as in the baseline ca.se, so the opportunity cost of 
reasoning is correspondingly greater in the faster en- 
vironment. The agents were all eva.lusted by taking 
the average score from 30 trials; the huma,n performed 
10. Each trial is a self-contained simulation with a du- 
ration of 5000 ticks of the clock, where the agent can 
move once per clock tick. 

~1 

Experiment #1 

The differences here are quite apparent. In the nor- 
ma.1 speed environment, the human subject performed 
best, beca.use he had more-sophisticated planning ca- 
pa.bilities than the robot. But in the faster environ- 
ment, the human’s response speed was insufficient to 
allow him to keep up with the pace of change. 

The robot a.gents were better able to adjust to the 
more rapidly changing environments, but it is clear 
that the cost of reasoning is still significant for them. 
This is evident both from an overall decrease in score 
in the high-speed environment, and from the superi- 
ority of the robot agents that could reason and act in 
parallel. 

The other distinction of note is that the LV evalua.tor 
performs better than the simple evaluator, as expected. 

Experiment 2 
We now move on to our initial experiments directed 
at understanding some of the design trade-offs in our 
agent. The use of Tileworld to experimentally evalu- 
ate our a.gent architecture is a.n ongoing project, and 
these a.re early results. We stress that the hypothe- 
ses presented below are preliminary; significantly more 
esperimenta.tion and statistical analysis of the results 
need to take place before we can make strong claims 
about the relative appropriateness of any particular 
agent-design strategy. 

In Experiment 2, we attempt to test the usefulness of 
the filtering mechanism in our a.gent as implemented, 
using the LV evaluator as the deliberation component, 
and using the most quickly computed evalua.tion met- 
ric, thresholding on tlhe score value, as the filter over- 
ride mechanism. We vary the threshold from -100 to 
100. Since the score for each hole ranges from 1 to 
100, a threshold setting of -100 means that every new 
option is subject to delibera.tion, while a setting of 100 
means that no new option will ever be considered until 
the currently executing plan is complete. The result- 
ing scores are summarized in the following chart, where 
each value represents an average over 30 trials. 

420 

Score 
320 

-25 

Threshold 

Experimen #2 

SLOW 

q  NOR M AL 

q  FAST 

At the slowest speed setting, 100 times slower than 
our “normal” setting, it is better to do no filtering at 
all. The scores achieved at this speed decrease con- 
sistently as the threshold is increa.sed. At the normal 
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speed setting, the effect of increased filtering still ap- 
pears to be negative, but less markedly so. At a setting 
10 times faster than the normal one, there seems to be 
little correlation between threshold level and perfor- 
mance, although the uncertainty in the results, which 
appears to be in the range of lo-20 points, prevents a 
sure determination. We hope, in the future, to be able 
to maeke even these relatively subtle determinations; 
the noise in the data comes, we believe, largely from 
our decision to use actual CPU-time measurements to 
determine reasoning time. If we wish to get the clea,n- 
est trials possible, we ma.y need to use a time estimate 
that does not depend on the vagaries of the underlying 
machine and Lisp system. Failing that, we will need 
to model the uncertainty involved, and run larger trial 
sets. 

To sum up the results of this experiment, we see that 
filtering is harmful at slow speeds, and even at high 
speeds does not give a net benefit. Our hypothesis is 
that the time cost of the LV evaluator is not very high, 
a.nd consequently, it is usually worth taking the time to 
engage in extra deliberation about new opportunities. 
The fact that filtering is less detrimental in the faster 
environment leads us to hypothesize that there may be 
a break-even point at even faster speeds, above which 
filtering is useful; we intend to test for such a point. We 
also intend to implement more accurate (and costly) 
deliberation mechanisms in the near future. For these, 
filtering may be much more valuable; perhaps the LV- 
estimator is efficient enough that it can itself be used 
as the filter override mechanism for the more complex 
deliberation components. 

Experiment 3 

In our third experiment, we attempt to test a conjec- 
ture that the LV evaluator as described is deficient in 
an important way: it does not consider the time cost 
of means-end reasoning already performed. We modify 
the deliberation functions by adding a bias in favor of 
existing intentions, since typically at deliberation time, 
some means-end reasoning about how to achieve these 
has already taken place. This is distinct from Experi- 
ment 2, in which we adjusted the filtering mechanism 
in an attempt to save deliberation time; here we inves- 
tigate a bias in the deliberation process itself with the 
intent of reducing the time cost of means-end reason- 
ing. 

We consider two cases. In the first, deliberation is 
done by the simple evaluator, and we apply a bias to- 
wards existing intentions equal to a fixed number of 
points. In the second, deliberation is done by the LV 
evaluator, and we apply a bias equal to a fraction of 
the current LV. Thus, for example, with a 100 percent 
bias, a newly appearing hole must have double the LV 
of the current one to be adopted as a new intention. 
The environment settings and simulation sizes are the 
same as for Experiment 2. 
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Experiment #3: Simple Evaluator 
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Experiment #3: LV Evaluafor 

As shown by the experimental results, bias in the de- 
liberator does not appear to have a. clear effect on total 
performance. For the simple evaluator, this isn’t terri- 
bly surprising; it provides a fairly weak assessment of a 
hole’s actual potential value in any case. We expected 
to see much more effect of bias on the LV evaluator, 
however. Two hypotheses are availa.ble to espla.in this. 
First, our test environment may have too many oppor- 
tunities available, minimizing the potential cost of high 
bias: if the agent spends most of its time doing some- 
thing with high utility, a few missed opportunities will 
not have a significant impact on the final score. This 
hypothesis can be tested in a less fa.vorable environ- 
ment. Second, it may be tha.t means-end reasoning 
in the current implementation is too inexpensive, min- 
imizing the potential benefit of high bias. This hy- 
pothesis can be tested by increasing the size of the 
environment to increase the planning time required; 
the addition of more complex planning routines would 
also provide situations in which there is a higher time 
cost associated with planning. 

Conclusion 
The experiments we have run to date have included 
some important milestones in the Tileworld effort. The 
Tileworld domain has been demonstrated, and has 
been shown to be a viable system for evaluating agent 
architectures. The Tileworld agent was demonstrated 
and used to test differing deliberation and filtering 
strategies as described in [Bratman et nl., 19881. 

The Tileworld project is ongoing. There are a num- 
ber of specific research tasks that we intend to pur- 
sue in the near future. Perhaps most importantly, we 
will be continuing our experimental efforts. The hy- 
potheses we drew from our preliminary experiments 



suggested several obvious follow-ons, as described in 
the preceding section. It will be particularly useful to 
va.ry parameters other than those that control speed, 
for example, size of the overall space, distribution of 
task value and difficulty, and availability of limited re- 
sources such as tiles. 

We will also implement more sophisticated deliber- 
ation algorithms, and, having done so, will a.ttempt to 
identify better the principles separating the processing 
that is done in the filtering mechanism from that done 
in the delibera.tion procedure. In addition, we plan to 
implement a foveated perceptual scheme, in which the 
agent has access to detailed, precise informa.tion about 
its immediate surroundings and has only increasingly 
abstract, incomplete, and uncertain information about 
about more dista.nt locations in its environment. An- 
other possibility is to add learning to the system: two 
areas of potential benefit are in the means-ends rea- 
soner (e.g.,‘expla.nation-based lea.rning of control rules) 
a.nd in eva.lua.tions of ma.rginal utility (e.g., empiri- 
cal improvement of utility evalua.tions). Finally, we 
hope to extend the architecture to handle more difficult 
questions involving intention coordination. We expect 
that both means-end reasoning and deliberation will 
become much more difficult, and hence filtering much 
more important, when the intention structure involves 
more complex interactions among intentions. 

More generally, we continue to investigate the larger 
question of how an agent should structure and control 
its computa.tional effort. We believe that the a.rchitec- 
ture discussed here is a special case of a more genera.1 
framework, and we are working towards a definition of 
tl1a.t fra.mework and its verification in our domain. We 
also see the Tileworld testbed as a good basis for com- 
parison of other agent architectures proposed in the 
litera.ture, and we strongly encoura.ge other researchers 
to demonstrate their agents in our domain.’ 

The overall goal of our project is an improved un- 
derstanding of the relation between agent design and 
environmental factors. In the future, when faced with 
a performance domain for an agent, one should be 
able to draw on such an understanding to choose more 
wisely from the wide range of implementation possibil- 
ities available. 
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