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Abstract 
The virtue of the STRIPS assumption for planning is 
that it bounds the information relevant to determin- 
ing the effects of actions. Viewing the “assumption” 
as a statement about beliefs, we find that it does not 
actually assume anything about the world itself. We 
can characterize the assertion about beliefs in terms of 
probabilistic independence, thereby facilitating analysis 
of representations for planning under uncertainty. This 
interpretation separates the STRIPS assumption from 
other necessary features of a planning architecture, such 
as its model of persistence and its inferential policies. 
By isolating these factors, we can understand the role of 
dependence across a wide range of planners and action 
represent ations. Graphical models of dependence de- 
veloped for probabilistic analysis provide a convenient 
tool for verifying the STRIPS assumption for a variety of 
planning systems. Investigation of a few representative 
systems reveals a Markovian event structure common 
to these planning models. 

The Frame Problem and the STRIPS 
Assumption 

The classic dilemma in representing and reasoning 
about the effects of actions is the frame problem, orig- 
inally identified by McCarthy and Hayes [1969]. The 
frame problem has come to stand for a variety of com- 
putational and notational complexities arising from the 
apparent necessity of considering the possible change 
in status of every proposition for each action. Char- 
acterizations of the problem vary widely [Brown, 1987; 
Pylyshyn, 19871, proposed solutions even more so, but 
a kernel of consensus does seem to exist. AI researchers 
agree that part of the problem, at least, has to do with 
specifying the effects of actions without explicitly de- 
scribing all ramifications and qualifications. In partic- 
ular, we want to avoid a requirement for explicit frame 
axioms specifying the propositions not affected by each 
action. 

Actual planners eschew frame axioms and restrict at- 
tention to propositions explicitly mentioned in their 
action specifications, a convention first applied by 

STRIPS [Fikes and Nilsson, 19711. Waldinger has named 
this policy the "STRIPS assumption” [1977]. McDer- 
mott [1987] asserts that no program since STRIPS has 
been practically bothered by the frame problem, which 
is true if we define the problem narrowly as the need for 
frame axioms in the deductive planning approach. Nev- 
ertheless, building planners that perform well in com- 
plex dynamic environments is no easy task, in large part 
due to difficulties of representing and reasoning about 
change. As McDermott also points out, the frame prob- 
lem does frustrate attempts at logical analyses of these 
programs and their environments, which should be rel- 
evant to the goal of designing better algorithms and 
representations. Much of the work on nonmonotonic 
logic is addressed to this issue. 

Understanding the nature of the STRIPS assump- 
tion and the extent to which it circumvents the frame 
problem is a first step to understanding the larger is- 
sues in reasoning about actions. Previous discussions 
of the STRIPS assumption, including the original by 
Waldinger [1977], tended to encompass all of these 
issues, failing to distinguish the relatively small role 
played by this particular notational convention. While 
the broader views provide fuller accounts of the plan- 
ners they address, their analyses are not transferable 
to planning frameworks that take significantly different 
approaches to representing and reasoning about change. 

For example, Lifschitz’s analysis [1986] focuses on 
conditions under which STRIPS'S add/delete mechanism 
will be guaranteed to produce only valid plans. The 
analysis concludes essentially that STRIPS systems are 
sound as long as 
1. the use of non-atomic sentences in operator descrip- 

tions and world models is restricted (in a precise man- 
ner described by Lifschitz), and 

2. a kind of strong persistence holds, where no changes 
occur except as specified in add and delete lists. 

These conditions (which clarify STRIPS significantly) 
apply to planning frameworks that adopt the same 
strong persistence model and forbid inference about the 
further consequences of specified effects. Many have 
been unwilling to accept these restrictions, and have 

198 AUTOMATEDREASONING 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



worked on methods and semantic accounts of systems 
that go beyond them. 

Research on the task of determining the implications 
of specified effects of actions (called the ramification 
problem), its counterpart for preconditions (the quulifi- 
cation problem), and development of models of persis- 
tence are important areas of investigation for AI plan- 
ning. The point of this paper is that there is a separable 
aspect of the STRIPS assumption that is orthogonal to 
these issues, and therefore applicable across a variety of 
planning frameworks. Generally stated, the STRIPS as- 
sumption per se dictates that the effect of an action on 
the world model be completely determined by the direct 
effects explicit in its specification. By saying only that 
it is “completely determined,” we permit the nature of 
the implicit effects to vary among planning systems. 

I examine this interpretation below from the perspec- 
tive of planning under uncertainty. Uncertainty pro- 
vides further motivation for this view of the STRIPS as- 
sumption, and concepts from uncertain reasoning help 
to characterize it more precisely for application to ex- 
isting planning frameworks. 

Planning under Uncertainty 
An agent plans under uncertainty whenever it can- 
not flawlessly predict the state of the environment re- 
sulting from its actions. By this definition, uncer- 
tainty is a characteristic of the agent’s knowledge rather 
than an inherent property of the environment. Given 
that we are never likely to achieve perfect prediction 
in realistic environments, all planning is actually per- 
formed under uncertainty; planning under certainty is 
an unrealizable-albeit often useful-idealization. 

The frame problem arises in planning under uncer- 
tainty just as it does in the idealized framework. Plan- 
ners must employ something like the STRIPS assump- 
tion to justify leaving non-effects of an action implicit in 
their omission from the action’s specification. However, 
semantic accounts of the STRIPS assumption in classical 
planning (e.g., STRIPS itself [Lifschitz, 19861) do not eas- 
ily map over to the uncertain case, The conventional 
interpretation, that planners assume that relations in 
the world model are unchanged unless explicitly speci- 
fied, cannot literally apply to planners that admit they 
have incomplete knowledge about the effects of their 
actions on the world. 

Perhaps we could modify the interpretation to as- 
sume that changes of unspecified relations are un- 
likely rather than impossible. The problem of this 
approach is identifying a particular, well-motivated, 
likelihood assumption that is sufficiently general for 
domain-independent planning. As demonstrated by 
some work along these lines [Dean and Kanazawa, 1988; 
Hanks, 19901, defining such a convention is tantamount 
to adopting a model of persistence and probabilistic in- 
ference. Moreover, these persistence models tend to 
be more varied and complicated than those proposed 

for planning under certainty. These differences provide 
further motivation for a characterization of the STRIPS 
assumption that does not depend on a particular model 
of persistence. 

The essential property of the STRIPS assumption that 
justifies implicit treatment of non-effects is the pre- 
sumption that the information specified explicitly is 
sufficient to describe the agent’s change in belief. In 
other words, once the direct effects are known, knowl- 
edge of the action itself is superfluous for purposes of 
prediction. Thus, the STRIPS assumption is fundamen- 
tally a statement that the agent’s beliefs about changes 
in propositions not mentioned in an action’s speciflca- 
tion are independent of the action, given those effects 
explicitly specified. For planning under uncertainty, we 
can characterize beliefs in terms of probability distribu- 
tions and use the concept of probabilistic independence 
to formalize this interpretation of the STRIPS assump- 
tion. 

Probabilistic Independence 
In a state of uncertainty, an agent’s beliefs are repre- 
sentable by a probability distribution over possible situ- 
ations (which is not to say that the agent’s beliefs need 
be encoded as such in some data structure). We take 
situations to be assignments on a universe of variables 
describing the world, including such things as what 
actions are performed and their consequences. Belief 
states are then probability distributions over this space. 
Note that this framework avoids imposing a temporal 
ontology, which, while providing essential structure for 
the planning problem, would also detract from the gen- 
erality of our analysis of the issue at hand. 

To capture the meaning of the STRIPS assumption 
proposed above, we need a way to express the suffi- 
ciency of explicitly specified effects to describe the full 
impact of an action on the agent’s beliefs about the 
world. For this purpose, the natural concept in proba- 
bility theory is conditional independence. We say that 
random variables z and y are conditionally independent 
given z iff 

Pr(zly,z) = Pr(zjz) (1) 
for any possible values of the variables. In other words, 
once the value z is known, finding out the value of y 
has no effect on the agent’s belief about 2. In this case, 
y is superfluous information. 

The STRIPS assumption is paraphrased by a schema 
for equation (1). Performance of an action is repre- 
sented by y, z stands for the explicit effects of y plus the 
“background,” and x represents “everything else.” The 
independence assertion is that for a given background, 
knowing the explicit effects of y provides all the infor- 
mation useful for predicting its implicit effects, that is, 
everything else. Given its explicit effects, knowledge 
about the action’s performance is redundant. 

For a satisfactory interpretation, we need a more 
complete account of concepts like “background” and 
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“everything else.” To understand their role in planning 
systems, we investigate a class of representations for 
actions and events based on graphical models. Graphs 
provide a formal language for expressing (via adja- 
cency) the locality of explicit effects in planning rep- 
resentations. 

Graphical Dependence Models 
A probabilistic network (also called a Buyesiun or belief 
network [Pearl, 19881 or influence diugrum) is a directed 
acyclic graph (DAG) with nodes for the random vari- 
ables connected by links indicating probabilistic rela 
tions. Associated with each node is a probability dis- 
tribution for its variable given the possible values for 
its predecessors in the graph. Thus, a link from x to 
y indicates that y might depend probabilistically on x. 
Conversely, the absence of links restricts the dependen- 
cies that can be encoded in the network. The graph- 
ical condition for conditional independence in proba- 
bilistic networks is called d-separation [Geiger, 1990; 
Pearl et ad., 19891. Two nodes 2 and y.are d-separated 
by a set of nodes 2 in a DAG iff for every undirected 
path between them either: 
1. there is a node z E 2 on the path with 

of the incident edges leading out of Z, or 
at least one 

2. there is a node z’ on the path with both incident 
edges leading in, and neither .z’ nor any of its succes- 
sors are in 2. 
A dependency graph for which all d-separations are 

valid conditional independencies is called an I-map. Al- 
though any joint distribution can be represented graph- 
ically by some probabilistic network (which are all I- 
maps), the most efficient representations are those with- 
out superfluous links, called minimal I-maps. 

We can characterize the independence condition un- 
derlying the STRIPS assumption in terms of these depen- 
dency graph concepts. Consider a probabilistic network 
with variables for all actions and events relevant to the 
planner. Every action node has an outgoing link exactly 
to those events explicitly represented as direct effects. 
Events may have arbitrary connections among them- 
selves, as dictated by some world model (outside the 
scope of discussion here). Action nodes have no incom- 
ing links, reflecting our presumption that the planner 
has control over which actions are to be performed. 

The STRIPS assumption is that the graph so con- 
structed is an I-map. Let Sa be the set of event vari- 
ables that action variable a directly affects, a’s imme- 
diate successors in the dependency graph. By virtue 
of I-mapness, a is conditionally independent of any 
e 4 S, given e’s predecessors (see, for example, [Well- 
man, 1990b, Lemma 4.11). Each predecessor d of e, in 
turn, is either a direct effect of a or is conditionally in- 
dependent given its own predecessors. Ultimately, the 
effect of a on e is completely determined by u’s direct 
effects and e’s relation to them. Note that we still need 

to describe the interaction, if any, between a and e in 
their joint effects. 

The probabilistic STRIPS assumption does not require 
that a be conditionally independent of e given the direct 
effects S,, or even by any subset of S,. In Figure 1, 
for example, a and e are d-separated by (s, b} but bY 
no other variable set. The variable b is necessary for 
conditional independence of a and e even though b itself 
is unconditionally independent of a. 

n “background” 

“other” event 

action 

Figure 1: Action a is conditionally independent of e 
given 2, = {s, b) but not given any subset of its direct 
effects Scr = (s). 

If we enlarge the conditioning set to include predeces- 
sors of u’s direct effects, however, we get another valid 
independence condition. Let Za = S, U I?,, where B, 
(the “background”) is the set of variables that affect u’s 
direct effects: 

B, = U predecessors(s) - {a}. 
SE-S, 

The d-separation condition implies that a is condition- 
ally independent of e given Za. In the graph of Figure 1, 
for example, the background B, = {b), and 2, = {s, b). 

The dependency graph model permits us to formalize 
the STRIPS assumption in terms of probabilistic condi- 
tional independence. In particular, there must exist an 
I-map of variables in the world model where any vari- 
able e not specified as an effect of action a is not directly 
connected to a. Under this condition there may be a 
probabilistic dependency between a and e in some situ- 
ations, but this-can always be described in terms of u’s 
and e’s relations to Sa. - 

We can apply the graph construction to the informal 
statement of the independence condition given in the 
previous section. Filling in the terms, our statement is 
that the complete effects of an action a are fully speci- 
fied by the direct effects, S,, and the background, B,. 
Everything else, e, is implicit in these variables. That 
is, e is conditionally independent of a given S, and 
BiZ . The fragment of Figure 1 can serve as a graphi- 
cal schema for this pattern of relations, by interpreting 
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the nodes as sets of variables and permitting the vari- 
ables e to be connected via arbitrary paths to b and 
S. 

Applications 
The conditional independence interpretation is a valu- 
able tool for studying specific planning systems and val- 
idating their use of the STRIPS assumption. A practical 
prerequisite for applying these results is identifying the 
relevant background context, B,, for the various plan- 
ners. Note that while planners adopt different policies 
regarding how the implicit effects are derived from the 
explicit effects and background, validity of the STRIPS 
assumption does not depend on these policies. 

In the following sections I illustrate the application 
of the independence concepts by analyzing aspects of 
three planning systems. The planners examined differ 
in their probabilistic or deterministic representations 
for the effects of actions, as well as the type of temporal 
structure imposed on the planning environment. 

SUDQ-Planner 
SUDO-PLANNER [Wellman, 199Oa] uses qualitative prob- 
abilistic networks (QPNs) [Wellman, 1990b], abstrac- 
tions of the models described above, for representing 
and reasoning about the effects of actions. When intro- 
ducing actions and events of interest, the planner mod- 
ifies the structure of the existing network to preserve 
the model’s validity. One class of constructs appear- 
ing in SUDO-PLANNER'S knowledge base, called Murkov 
influences, specify the effect of an action on an event 
variable and its dependence on the previous value of 
that variable. 

For example, consider a QPN for a medical therapy 
problem that includes a variable for the extent of a pa- 
tient’s coronary artery disease (CAD). One action con- 
sidered by the planner is a coronary artery bypass graft 
(CABG): bypass surgery to alleviate the coronary dis- 
ease. The effect of CABG is to decrease CAD (in a 
precise probabilistic sense [Wellman, 1990b]). Further- 
more, the Markov influence specifies that the decrease 
is greater for patients who have more severe CAD ini- 
tially. This relationship refers to the variable CAD at 
two distinct points in time-before and after CABG- 
and thus cannot be captured by simply adding CABG 
to the network. Instead, SUDO-PLANNER modifies the 
QPN by splitting CAD into two variables, CADi and 
CAD2. Figure 2 diagrams the result of this mitosis 
process. CABG negatively influences CAD2, which is 
otherwise positively related to its value before surgery, 
CADI. The boxed minus sign indicates the synergistic 
interaction of CABG with CADI. Predecessors of the 
original CAD variable are connected to CADl, while 
its successors before processing the Markov influence 
are transferred to CA D2. 

This process has direct implications for conditional 
independence (which indeed was the reason for calling 

CAD influences 

influences CAD 

Figure 2: The Markov influence of CABG on CAD. 

them Murkov influences). Specifically, influencers of the 
original variable CAD are independent of CAD2 given 
CA D1, and CAD’s original influences cannot depend on 
CA D1 given CAD2. (The reason is that any path be- 
tween influences and influencers that circumvents the 
CADi variables must include at least one node with 
both incident edges leading in.) These conditions in 
turn imply that any variable in the network is indepen- 
dent of CABG given CA D1 and CAD2. 

More generally, suppose the action a is defined ex- 
clusively by Markov influences on a set of event vari- 
ables E. The STRIPS assumption dictates that the ef- 
fects of a be completely captured by these influences. 
The corresponding independence condition is that any 
other event be conditionally independent of a, given 
za = S, U B,, where the direct effects S, = Es, the 
second halves of the split event variables, and the back- 
ground B, = El, the first halves produced by SUDO- 
PLANNER'S variable mitosis process. 

Markov Influence Diagrams 
Kanazawa and Dean [1989] propose a framework for 
planning under uncertainty based on “causal models,” 
influence diagrams with the Markov property and some 
other features inessential for our purposes. In a Markov 
influence diagram, there is a node corresponding to ev- 
ery proposition of interest at every distinguished instant 
of time. The Markov property is enforced by permit- 
ting nodes at time t to depend only on nodes from time 
t -1. If this convention applies to actions as well, then - - 
any event at time t is d-separated from actions at time 
t’ < t by the action’s direct effects (all at time t’ + l), 
plus the events of time t’. 

Figure 3 depicts the generic structure of a h4arkov 
influence diagram. Note that all links relate an action 
or event to an event at the next time point. It is pos- 
sible to relax this restriction-for example, by adding 
auxiliary atemporal variables-as long as the regular- 
ity of temporal states is retained. See, for instance, the 
variant scheme described by Berzuini et al. [1989]. 
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t t+l t+k situation t . 

actions 

even 

eoe 

0.0 

l .0 

0.0 

0 0 -ci% 
Figure 3: A schematic view of Markov influence dia 
grams. Actions and events at time t need not be con- 
nected to every event at t + 1. 

With respect to our statement of the STRIPS assump- 
tion, the background is (conservatively) the state of the 
world at the time of the action, that is, the actions and 
events appearing in the same column of Figure 3. The 
direct effects are the events from the next time point 
with links from the action node. In schemes for proba- 
bilistic temporal projection [Dean and Kanazawa, 1988; 
Hanks, 19901, these links are typically specified by a set 
of causaZ rules associating actions and events with their 
possible consequences. 

STRIPS 

Instantiated propositionally for a finite world, we find 
that a STRIPS model is actually a degenerate kind of 
Markov influence diagram. The Markov property fol- 
lows from the linearity of the situation calculus frame- 
work [McCarthy and Hayes, 19691. The propositions 
at a situation s are deterministic functions of those of 
the previous situation. And under Lifschitz’s soundness 
conditions [1986], the relation of functional dependence 
is defined by mention in add and delete lists. The per- 
sistence model of STRIPS is that for a given proposition 
this function is the identity in the absence of an ac- 
tion performed at s affecting that proposition. Thus, 
the background required for any proposition is only its 
value in the previous situation. 

In terms of dependency graphs, the STRIPS model is 
constructed as follows. Let a and e denote action and 
event types, with nodes at and et for every type in every 

54 = {e ] e in a’s add or delete list), 
predecessors(et) = et-1 U (at-1 I e E S}. 

Most STRIPS-like systems do not specify what hap- 
pens when actions are performed in situations where 
their preconditions do not hold. To represent “context- 
dependent effects” [Pednault, 19881, we need only to 
add events mentioned in preconditions to the back- 
ground of affected events. 

For deterministic variables, there is a stronger graph- 
ical criterion for conditional independence, called D- 
sepamtion (note uppercase) [Pearl et ad., 19891. Al- 
though the independence condition for STRIPS’S sim- 
ple graph structure is trivial, the more powerful crite- 
rion might be useful for analyzing STRIPS-like systems 
that permit logical and perhaps probabilistic relations 
among propositions. 

Summary 
The interpretation presented here provides a new per- 
spective on the STRIPS assumption, constraining the se- 
mantics of a planner’s knowledge base of actions and 
events. Essehtially, it mandates that the implicit con- 
sequences of an action be completely specified by its di- 
rect effects. Although described and motivated in terms 
of probabilistic conditional independence, the interpre- 
tation has implications for planning systems regardless 
of whether they employ probabilistic representations. 
Moreover, it is sufficiently general to capture the princi- 
ple behind the STRIPS assumption for planning systems 
with action-event representations considerably more ex- 
pressive than that of STRIPS. 

The main advantage of this approach is that it dis- 
tinguishes the concept of belief dependency from the 
model of persistence of events in the world. It does not 
obviate the need for such a persistence theory, though it 
renders the issue orthogonal to the STRIPS assumption 
per se. 

Examination of a variety of planning systems indi- 
cates that the dependency graph is a useful analytical 
tool for investigating the structure of relations among 
actions and events. When the analysis reveals regular- 
ity in this structure (as should be expected for reason- 
able planning architectures), general d-separation pat- 
terns can be derived, yielding constraints on the impact 
of actions on the agent’s beliefs about the world. We 
can then exploit these constraints to design more effi- 
cient action representations and belief revision mecha- 
nisms. 

It is not surprising that all the analyses of planning 
systems above appeal to some sort of Markov prop- 
erty. Any temporal structure on a pattern of condi- 
tional independence constitutes a Markovian form of 
model. This suggests that the theory of Markov models 
may be a good place to search for structured patterns 
of uncertain relationships among events over time. 
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The most important limitation of the analysis is 
that dependency graphs are an inherently propositional 
represent ation. Application to planning systems with 
quantified constructs (any nontrivial action and event 
representation) requires some instantiation mechanism. 
A potential solution approach is to apply the first-order 
axioms of conditional independence directly. This tech- 
nique might be beneficial even for the propositional 
case, as the axiomatic theory may be stronger than the 
graphical [Pearl et al., 19891. 
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