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Abstract 

We present the system ABTWEAK, which extends 
the precondition-elimination abstraction of AB- 
STRIPS to hierarchical planners using the non- 
linear plan representation as defined in TWEAK. 
We show that ABTWEAK satisfies the mono- 
tonic property, whereby the existence of a lowest 
level solution II implies the existence of a high- 
est level solution that is structurally similar to II. 
This property enables one to prune a considerable 
amount of the search space without loss of com- 
pleteness. 

Abstracting Planning Systems 
Abstraction in planning systems can be viewed as a 
mapping from one problem description (at a concrete 
level) to another(at the abstract level). There has 
been a considerable amount of research recently in 
formalizing intuitions regarding abstraction and the 
hierarchical problem solving strategies that abstrac- 
tion gives rise to [Fikes et al., 1972; Knoblock, 1988; 
Korf, 1985b; Nau, 1987; Sacerdoti, 1974; Tate, 1977; 
Tenenberg, 1988; Wilkins, 1984; Yang, 19891. 

However, there has been little work in extending 
the formal results from linear STRIPS-like planners to 
richer temporal planners, such as the nonlinear plan- 
ners of Sacerdoti [1977] and Chapman [1985]. The ad- 
vantage of these planners over linear planners is that 
they allow temporal order and operator instantiations 
to be only partially specified through the posting of 
constraints; any fully specified plan consistent with 
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these constraints is guaranteed to solve the given prob- 
lem. 

One particular type of abstraction that we have pre- 
viously formalized [Tenenberg, 19881, involves the elim- 
ination of a subset of the predicates in the language as 
one ascends the abstraction hierarchy (a generalization 
of the precondition elimination strategy of ABSTRIPS 
[Sacerdoti, 19741). The predicates of the planning sys- 
tem are partitioned, which induces a partition on the 
preconditions of the operators, and each partition is 
assigned an integer value, a criticality. Each abstract 
level i is derived from the previous level by eliminating 
those preconditions having criticality < i, otherwise 
being identical. 

We define the system ABTWEAK, and demonstrate 
in this paper that precondition-elimination abstraction 
can be naturally extended to nonlinear least commit- 
ment planners, and thus benefit from the advantages of 
both abstraction and nonlinearity. Most importantly, 
we show that each ABTWEAK system has a monoton- 
ically expandable abstraction space, whereby the exis- 
tence of a lowest level solution II implies the existence 
of a highest level solution that is structurally similar to 
II. This property enables one to prune a considerable 
amount of the search space without loss of complete- 
ness. In addition, the abstraction space is monotonic 
regardless of the criticality assignment, i.e., it does not 
depend upon obtaining the “right” assignment of crit- 
icality values to preconditions. 

We first present brief descriptions of TWEAK and 
ABSTRIPS, and then define ABTWEAK. We demon- 
strate that ABTWEAK has the monotonic property, 
and show how this affects search. All lemmas and the- 
orems are presented without proofs. These proofs can 
be found in the longer version of this paper [Yang and 
Tenenberg, 19901. 

Nonlinear Planning: TWEAK 

Chapman [1985] p rovides a formalization of a least 
commitment, nonlinear planner, TWEAK. TWEAK ex- 
tends STRIPS by allowing for 

1. a partial 
plan, 

temporal ordering on the operators in a 
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2. partial constraints on the binding 
ignations) of the operators. 

of variables (codes- 

A TWEAK plan thus represents a space of STRIPS 
plans: all totally ordered, fully ground plans that sat- 
isfy the ordering and codesignation constraints. 

Formally, a TWEAK system is a pair C = (L, 0). L 
is a restricted language consisting of countably many 
predicate, constant and variable symbols, but none of 
the logical connectives (and, therefore, not the quanti- 
fiers). The set of terms of L is the constants unioned 
with the variables, and the set of propositions is all 
expressions of the form 

where P is an n-ary predicate and the xi are terms. 
The set of liter&s of L is the set of propositions unioned 
with the set of negations of propositions. 

0 is a set of operator templates (referred to simply 
as operators), defined in terms of preconditions and ef- 
fects, with the variables in each operator standardized 
apart. Each precondition or effect is a literal in L. If 
a E 0 is an operator, then P, is the set of precondi- 
tions of a, and 23, is the set of effects of a. An operator 
a asserts literal p if p E E,, and denies p if lp E E,. 

Chapman [1985] did not give a formal definition of a 
TWEAK plan. Because this concept is very important 
in defining a number of others later in the paper, we 
formally define it below: 

Definition 1 A plan II is a triple (A, B, C), where 

o A(n) is a set of operators, defined in terms of pre- 
conditions and effects, 

o B(H) is a partial ordering on A (“‘4 ‘), 
0 C(II) is a set of codesignation and non-codesignation 

constraints of the form p w q or p $S q, where p and 
q are both either terms or propositions. 

If CL, b are operators in A(II), we say B(R) I- (a 3 b) if 
and only if (a + b) follows from the transitive closure of 
B(II). That is, a precedes b under every total ordering 
that satisfies B(II). If P(xr, . . . , x~) and P(yr, . . . , ym) 
are propositions, we say 

if and only if each (x; = yi) follows from the symmetric 
and transitive closure of the codesignation constraints 
of C(II). Likewise for non-codesignation. 

With the above definition, we can now restate for- 
mally several terminologies used in [Chapman, 19851. 
A complete plan is a plan where B(n) is a total or- 
dering on A( II), and C(II) is such that every variable 
in every operator of A(n) codesignates with some con- 
stant. A plan completion refers to any complete plan 
that satisfies the partial constraints of a plan. 

An input problem is taken to be a pair, p = (I, G), 
where I is the initial state, and G is the goal state, 
each state consisting of a finite set of literals. A com- 
plete plan for a problem implicitly defines a sequence 

of states: the first element of the sequence is the given 
initial state, and the i + lSt element of the sequence 
is the ith state without the literals denied by the ith 
operator, and including the literals asserted by the ith 
operator. A proposition is satisfied in a state if it is an 
element of that state. 

For simplicity, the goal G can be represented by a 
special operator g, where Ps = E, = G. The initial 
state I can likewise be viewed as a special operator i, 
with Z?i = 0 and Ei = I. These two operators will be 
an element of each plan II, under the constraint that, 
for every other operator a E A(II), (i 4 u) and (u 4 g). 

A complete plan is correct if all preconditions of each 
operator in the plan are satisfied in the state in which 
the operator is applied. A complete plan solves a prob- 
lem if it is correct, and the goal is satisfied in the final 
state. A .plan solves a problem if every completion 
solves the problem; similarly for correctness of plans. 

In a partial plan, two terms necessarily codesignate, 
that is, unify, if they codesignate under every comple- 
tion. Two terms possibly codesignate if they codesig- 
nate under some completion. Operator a necessarily 
precedes b if a precedes b under every completion. a 
possibly precedes b if a precedes b under some com- 
pletion. We will use •I and 0 to denote necessarily 
and possibly, and w, #, and < to denote codesignates, 
non-codesignates and precedes. Necessary and pos- 
sible precedence, codesignation and noncodesignation 
can be defined precisely, for plan P, as: 

The following definitions introduce simplifying nota- 
tion. 

O(a 4 c + b) e O(u 4 c) and O(c --x b), 
~(a 4 c 4 b) e q  (u + c) and q  l(c 4 b). 

The Modal Truth Criterion 
The modal truth criterion (MTC) defines the condi- 
tions under which an assertion will be true at a point 
in a partially ordered plan. Chapman [1985] provides 
a concise statement of the criterion that is both nec- 
essary and sufficient. A problem with his definition 
is that it is stated in terms of situations, which are 
not well-defined in a partially ordered and instantiated 
plan. For that reason, we provide a modified version 
of the MTC, defined in terms of operators in a plan. 

Coarsely stated, a proposition p is necessarily true in 
the state in which operator b is applied if there exists, 
for every total ordering, some operator a that asserts 
p (adds a proposition that codesignates with p), and 
for which no operator between a and b asserts up. 
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Definition 2 Proposition p is necessarily true in the 
state in which operator b is applied in plan II if and 
only if two conditions hold: 

1. there is un operator a E A(D) and u E E,, such that 
q  (u 4 b) and O(p M u), and 

2. for every operator c E A(II) and q E E,, if O(c -X b), 
and O(lq M p), then there is an operator w E A(II) 
and r E EW such that q  (c 4 w 4 b) and C(II) u 
+4 = PII I- (T = P)* 

This last condition says that (T x p) whenever (lq M 
P). 

ABTWEAK 

In ABSTRIPS, Sacerdoti developed an elegant means 
for generating abstract problem spaces, by assigning 
criticality values (an integer between 0 and h, for some 
small Ic) to preconditions, and abstracting at level i 
by eliminating all preconditions having criticality less 
than i. The formalisms for this system are straight- 
forward, and are provided below when criticalities are 
assigned to the precondition literals in a TWEAK sys- 
tem. 

A b level ABTWEAK system is a triple C = 
(L, 0, crit), where 

(1) L is a TWEAK language; 
(2) 0 is an operator set, as in TWEAK, and 
(3) crit is a function: 

U P, + (0, 1, . . .) Ic - l}. 
OEO 

Intuitively, crit is an assignment of criticality values to 
each proposition appearing in the precondition of an 
operator. 

Let a be an operator. We take iPa to be the set of 
preconditions of a which have criticality values of at 
least i: 

i Pa = (p 1 p E P, and crit(p) 2 i.}, 

and iu is operator a with preconditions iPa and effects 
E,. Let the set of all such ia be i0. This defines a 
TWEAK system on each level i of abstraction: 

ix = (L, i0). 

Upward Solution Property 
As with ABSTRIPS the strategy for planning with 
ABTWEAK is governed by length first search. When a 
problem is input, planning proceeds first at the most 
abstract, least constrained level. This plan is then ex- 
panded at the next lower level by inserting new oper- 
ators to satisfy the re-introduced preconditions. Only 
after all the preconditions are satisfied on the current 
level does the planner pass the plan to the level below. 
The primary reason for using this control strategy is 
for solving the frame problem. 

Implicit in this strategy is the assumption that short 
plans to solve a given problem are guaranteed to ex- 
ist at the abstract level which can be successively ex- 
panded, and that search strategies exist to find such 
abstract plans. Our intent is to formally prove this 
property, and to show how it places some useful con- 
straints on search. The intuition behind the proof is 
to show that if there exists a lowest (base) level solu- 
tion to a problem, then this solution will also solve the 
problem at each higher level of abstraction, since these 
higher levels do not place any new constraints on the 
problem. Further, since there are fewer preconditions 
at the higher levels, one can eliminate from this plan 
those operators whose purpose at lower levels is solely 
to satisfy one of the eliminated preconditions, either 
directly or indirectly. 

For instance, consider a plan for getting a box from 
one room into an adjacent room, in which the robot 
picks up the box, goes to the door, sets the box down, 
opens the door, picks up the box, and goes through 
the doorway. Suppose that the status of the door - 
whether it is open or closed - is ignored at the abstract 
level. In this case, since opening the door is no longer 
considered as a precondition, the intermediate steps of 
setting down and re-picking up the box are no longer 
necessary; their sole purpose was to free the agent’s 
hands for the door opening. Thus, the abstract level 
plan is simpler than the concrete level plan. 

Ascending Preserves Correctness 

For notational simplicity, if II is a plan on the base 
level, then for i = 1,2, . . . , Ic - 1, let ill represent the 
plan formed by replacing every occurrence of a (except 
i and g) in II by iu. As defined above, a plan II is cor- 
rect if and only if Vu E A(II), Vq E P,, q is necessarily 
true in the state in which a is applied. Removing a pre- 
condition of an operator while holding the plan fixed 
does not affect the necessary truth of any condition. 
Thus, after removing a precondition of an operator in 
II, the resulting plan II’ is still correct. However, we 
can establish a stronger property. Namely, if II is a 
plan correct at the base level, then a plan iIt’ is also 
a correct plan on level i, where iII’ is simpler than 
II in that it is ill with possibly one or more opera- 
tors removed. Thus, A(iII’) is possibly smaller than 
A(II). Moreover, the constraints in iII’ are B(II) and 
C(H) with possibly one or more constraints removed. 
Thus, the plan iII’ is less constrained than II. This 
will be shown by specifying the precondition establish- 
ment structure of the plan, that is, which operators 
satisfy preconditions of other operators, either directly 
or indirectly. 

Definition 3 Let II be a correct plan. Let a and b 
be operators in A(II), p b e a precondition of b, and u 
be an e#ect of a. Then a establishes p for b with u 
(‘Establishes(u, b, p, u)) if and only if 

I. q  (u -x b), 
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2. q  (ue p ), a nd 
3. Vu’ E A(lI),Vu’ E -Eat, if q  l(a 4 a’ 4 b), then 

lO(U’ x p). 

This final condition states that a must be the last such 
operator that necessarily precedes b which necessarily 
asserts precondition p. 

Given this definition, it can be proven that every 
precondition in every operator of a correct plan has an 
establisher. 

Nothing else is justified. 

Lemma 4 Let II be a correct plan, b E A(D), 
and p E Pb. 3u E A(II), 3~ E E, such that 
Establishes(u, b, p, u). 

Informally, a clobberer is an operator which possibly 
precedes and possibly denies the precondition of an- 
other operator in the plan. A white knight is another 
operator which necessarily re-establishes this clobbered 
precondition. 

Definition 5 c is a clobberer of b, (GB(c, b,p, 4)) if 
and only if 

(1) P E Pbr 

(2) 4 (5 EC, 

(3) OhI = P), 
(4) 3u, u such that Establishes(u, b, p, u), 
(5) O(a -< c 4 b). 

Definition 6 w is a white knight for b, 
PJw-4 b, c, P, 4, T)), if and only if 

(1) CB(c7 h P, cl), 
(2) r E E,, 
(3) q  (c  4  w 4  b ), a nd 
(4) C(l--g ” +4 = P)> I- (T = PI* 

An operator or constraint in a plan is justified if it 
is subservient, directly or indirectly, to the satisfaction 
of the goal. 

Definition 7 Let II be a plan, and i, g be the special 
operators for the initial and goal states. Then in plan 
JA 
Initial/Goal justification i and g are justified, 
Establishment justification If b is justified, and 

3u,3u E E,, 3p E Pb such that Establishes(u, b,p, u), 
then 

(I) a is justified, (2) (a 4 b) is justified, (3) 
(u x p) is justified. 

White knight justification 
If WK(w, b, c,p, q, r) and b and c are justified, then 
w, (c < w), and ( w < b) are justified. Moreover, 
let D be a minimal set of codesignation constraints 
such that D U ((14 z p)} F (T ==: p). Then every 
codesignation constraint in D is also justified. 

Separation justification If c and b are justified, and 
3p E Pb, 3q E E, such ihat q  (p $ -q), then (p $ -q) 
is justified. 

Precedence Justification If b and c are justified 
and q  l(b 4 c), then b 4 c is also justified. 

The justification of plan II, Jus(II), is the set of op- 
erators, precedence and codesignation constraints of II 
that are justified. It is obvious that the justified ver- 
sion of a plan is simpler than the plan itself, in the 
sense that the set of operators, precedence and codes- 
&nation constraints of the justified plan are a subset 
of those in the unjustified plan. 

Lemma 8 If II is a correct plan that solves goal G, 
then Jus(II) also is a correct plan that solves G. 

The following theorem establishes the Upward Solu- 
tion Property: if there is a solution to a problem at the 
base level, then the justified version of that solution 
at each higher level of abstraction is correct, and also 
solves the problem on that level. More formally, 

Theorem 9 If Il is a correct plan that solves G at 
the base level, then the justified version of iII is also a 
correct plan that solves G on the ith level, 0 < i < k- 1. - - 

Monotonic Expansion 
The Upward Solution Property guarantees the exis- 
tence of an abstract level solution to a problem, when- 
ever there exists a lowest level solution. Length-first 
search, on the other hand, proceeds from the highest 
level to the lowest. Since the converse of the Upward 
Solution Property does not hold, one cannot be sure 
that an arbitrary solution obtained at the abstract level 
is one which can be expanded into a low level solu- 
tion. It is therefore important to uncover constraints 
that will be helpful in plan expansion. The monotonic 
property is one such constraint, and was first defined 
by Knoblock, for linear ABSTRIPS systems [Knoblock, 
1988]. We will define it here (in a slightly different 
form than Knoblock). 

Definition 10 Let II’ be a level i plan, and II a level 
i - 1 plan. c : A(II’) H A(II) is a correspondence 
function if and only if 

I. c is 1 - 1 and into, and 
2. Vu E A(W), ;(~(a)) = a. 

Definition 11 Let II’ be an abstract plan that solves 
p at level i, i > 0. II’ monotonically expands to level 
i - 1 plan II if and only if 

I. II solves p at level i - 1, and 
.2. there exists a correspondence function c : II’ H II 

such that Va, b,p, u if Establishes(u, b,p, u) in II’ 
then Establishes(c(u), c(b),p, u) in II. 

Definition 12 A k-level ABTWEAK system is mono- 
tonic, if and only if, f or every problem p solvable at the 
concrete (Oth) level, there exists a sequence of plans 
&-1, . * -, II0 such that IIlk- solves p at level k - 1, 
and for 0 < i < k, II, monotonically expands to II,-1. 

The following Lemma can now be proven: 

Lemma 13 Every ABTWEAK system of k levels, for 
any k, is monotonic. 
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Search Control 
In this section, we explore the implications of the 
Monotonic Property on search control in ABTWEAK. 
We will discuss global completeness of ABTWEAK as 
an abstraction system, and show that ABTWEAK can 
backtrack on violations of higher-level establishment 
relations and unresolvable conflicts. 

Completeness of ABTWEAK 

Search for a plan with ABTWEAK proceeds in a Eength- 
wise fashion, by first finding a plan at the most abstract 
level, and then, for each lower level i, expanding the 
plan II from level i + 1 by inserting operators into II, or 
imposing new constraints to satisfy the re-introduced 
preconditions in II. Thus, ABTWEAK searches for a 
correct concrete-level plan in a space of abstract plans. 
In this search space, if a plan II is not correct yet on 
an abstract level, then the set of state.-space operators 
applicable to II is the set of plan modification opera- 
tions in TWEAK. On the other hand, if a plan II is 
correct on level i > 0, then the state-space operator 
is simply plan expansion, which inserts all i - 1 level 
preconditions to each operator in II. 

In this section, we discuss the global search control 
strategy for ABTWEAK. Before describing it in detail, 
we first explain what seems to be an obvious choice for 
search control, and why it is not used for ABTWEAK. 

We first define what we mean by completeness, and 
monotonic completeness: 

Definition 14 A control strategy is complete if when- 
ever there is a solution at the concrete level, the strat- 
egy will terminate by finding a solution. 

Definition 15 A control strategy for a k-level 
ABTWEAK system is monotonically complete if and 
only if for every problem p solvable at the concrete 
(Ot”) level, the strategy outputs a sequence of plans 
Q&l,..., I& such that l&-l solves p at level k - 1, 
and for 0 < i < k, l& monotonically expands to Iii-1. 

Our aim is to explore control strategies that are mono- 
tonically complete. 

An intuitively obvious choice of control is to use a 
separate TWEAK for control on each level of abstrac- 
tion, similar to the way ABSTRIPS uses STRIPS. This 
is especially appealing, since it is not difficult to spec- 
ify complete control strategies for TWEAK, either us- 
ing a complete state-space search procedure such as 
A*, or breadth-first search, or the procedure provided 
by Chapman [1985]. Using this approach, if a plan is 
formed on abstraction level i, then it is passed down 
to the level below. At level i - 1, all the conditions 
of criticalities no less than i - 1 are planned for. The 
process continues, until either a correct plan is formed 
at the base level, or it is found that a plan cannot be 
made correct at a level. Then the planner backtracks 
to the level immediately above the current one, and 
tries to find an alternative solution. 

The fact that TWEAK is complete may lead one into 
believing that the above control structure is also mono- 
tonically complete. Unfortunately, this is not the case 
in general. The reason is that any search strategy 
for TWEAK will be semi-decidable, in the sense that 
if there is no solution, it is not guaranteed to termi- 
nate. Suppose that a plan II is found on level i + 1 
that is not monotonically expandable, and is passed 
to the level i below. Then it is possible for TWEAK 
to run forever, without knowing it should backtrack to 
the level above. Incompleteness may result since there 
may exist a correct solution at the concrete level, and 
II cannot be expanded to that solution. 

Thus, although on each level of abstraction com- 
pleteness is guaranteed separately, it is not ensured 
monotonically. A complete search strategy will be 
obliged to do a “diagonalizing enumeration,” that is, 
it cannot simply pick an abstract plan, and attempt to 
specialize this plan further without regard to the re- 
maining abstract solutions, but must instead do only a 
quanta of planning steps, and go to the next abstract 
solution. But, it cannot be simple minded about this 
either, since there may be an infinite number of ab- 
stract solutions. So, it must do some quanta on the 
next abstraction, and then return to the first one. That 
is, the enumeration must “diagonalize in two dimen- 
sions.” 

The above argument suggests a monotonically com- 
plete control procedure, in the sense that any state in 
ABTWEAK’S search space may be selected next accord- 
ing to a complete search control strategy. Recall that 
ABTWEAK’S search space operations include not only 
the plan modifications of TWEAK, but also the plan 
expansions. Thus, if a path exists in the original state 
space from the initial state to a goal state, one such 
path will eventually be found. Any complete search 
strategy will suffice for the purpose: breadth-first, A* 
[Nilsson, 19801, depth-first iterative deepening[Korf, 
1985a], etc. 

Backtracking on Protection Violations 

The monotonic property provides a powerful heuris- 
tic for guiding the search in ABTWEAK. It can be 
considered as a criteria for backtracking that does not 
sacrifice completeness. More specifically, one can back- 
track on precondition-establishment violations, that is, 
if for some operators a and b, and literals p and u, 
Establishes(u, b, p, u) in a plan at abstraction level i, 
then at level i - 1, if the only choices left are to insert 
an operator that possibly asserts lp, then ABTWEAK 
can backtrack without losing monotonic completeness. 
Thus, the causal relation between preconditions and 
effects should be preserved when going down abstrac- 
tion levels. This effectively imposes a strong constraint 
on how an abstract plan should be refined at a lower 
level. 

208 AUTOMATED REASONING 



Backtracking on Incompleteable Plans 
Sometimes no solution can be found at a particular 
level of abstraction. In that case, one would like to 
know whether a solution exists at the base level. For 
ABTWEAK, it follows from the Upward-Solution Prop- 
erty that if there is no solution at one level, then no 
solution exists at all at any lower levels of abstraction. 

A related problem is whether to backtrack from an 
incompleteable plan. A plan II is said to be incom- 
pleteable if no correct completion of II exists, and no 
operators and constraints can be inserted to obtain a 
correct completion. One way for II to be incomplete- 
able is that it contains a set of clobberers of the oper- 
ators in II, and that no white knights and constraints 
exist to remove all of the clobbering. This situation 
corresponds to what is commonly known as the “un- 
resolvable conflicts” in nonlinear planning. It can be 
proven that ABTWEAK can backtrack from an incom- 
pleteable plan without losing completeness[Yang and 
Tenenberg, 19901. 

Conclusion 
This research has been aimed at formalizing domain- 
independent, nonlinear planning systems that plan in 
hierarchies of abstraction levels. The resultant plan- 
ner, ABTWEAK, extends the precondition-elimination 
methods in ABSTRIPS for building abstraction hierar- 
chies, and allows for least-commitment representations 
of plans in TWEAK. We have shown that ABTWEAK 
satisfies the monotonic property, that is, as planning 
descends from top to concrete levels of abstraction, the 
precondition establishment structure of a plan need not 
be changed. This, to a large extent, formalizes our in- 
tuition for using abstraction in planning: that it is 
generally more efficient to use an abstract solution to 
guide search at lower levels of abstractions than with- 
out abstraction. In addition, we have demonstrated 
that a simplistic application of a control strategy for a 
single-level problem solver to each level of the abstrac- 
tion hierarchy will not in general provide a complete 
multiple-level system. We also discussed how to ensure 
the monotonic completeness for ABTWEAK systems. 

We believe that ABTWEAK also offers computational 
advantages over some of the existing hierarchical plan- 
ning systems. However, to provide concrete evidence 
for this claim, it might take a considerable amount 
of experimentation. Indeed, our ongoing work is to 
implement ABTWEAK and make such computational 
comparisons. 
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