
ABTWEAK: Abstracting a Nonlinear, Least
Commitment Planner *

Qiang Yang
Computer Science Department

University of Waterloo
Waterloo, Ontario, Canada, N2L 3Gl

qyang@watdragon.waterloo.edu.

Abstract

We present the system ABTWEAK, which extends
the precondition-elimination abstraction of AB-
STRIPS to hierarchical planners using the non-
linear plan representation as defined in TWEAK.
We show that ABTWEAK satisfies the mono-
tonic property, whereby the existence of a lowest
level solution II implies the existence of a high-
est level solution that is structurally similar to II.
This property enables one to prune a considerable
amount of the search space without loss of com-
pleteness.

Abstracting Planning Systems
Abstraction in planning systems can be viewed as a
mapping from one problem description (at a concrete
level) to another(at the abstract level). There has
been a considerable amount of research recently in
formalizing intuitions regarding abstraction and the
hierarchical problem solving strategies that abstrac-
tion gives rise to [Fikes et al., 1972; Knoblock, 1988;
Korf, 1985b; Nau, 1987; Sacerdoti, 1974; Tate, 1977;
Tenenberg, 1988; Wilkins, 1984; Yang, 19891.

However, there has been little work in extending
the formal results from linear STRIPS-like planners to
richer temporal planners, such as the nonlinear plan-
ners of Sacerdoti [1977] and Chapman [1985]. The ad-
vantage of these planners over linear planners is that
they allow temporal order and operator instantiations
to be only partially specified through the posting of
constraints; any fully specified plan consistent with

*This work was supported in part by an interim re-
search grant to Qian g Yang, from the Faculty of Mathe-
matics at the University of Waterloo, and by grants to Josh
D. Tenenberg in part from the Air Force Systems Com-
mand, Rome Air Development Center, Griffiss Air Force
Base, New York 13441-5700, and the Air Force Office of
Scientific Research, Boiling AFB, DC 20332, under Con-
tract Num. F30602-85-C-0008 which supports the North-
east Artificial Intelligence Consortium (NAIC), in part by
ONR/DARPA research contract #N00014-80-C-0197, and
in part by US Army Communication-Electronics Command
grant #DAABlO-87-D-022.

204 AUTOMATED REASONING

Josh D. Tenenberg
Computer Science Department

University of Rochester
Rochester, New York, U.S.A., 14627

josh@cs.rochester.edu

these constraints is guaranteed to solve the given prob-
lem.

One particular type of abstraction that we have pre-
viously formalized [Tenenberg, 19881, involves the elim-
ination of a subset of the predicates in the language as
one ascends the abstraction hierarchy (a generalization
of the precondition elimination strategy of ABSTRIPS
[Sacerdoti, 19741). The predicates of the planning sys-
tem are partitioned, which induces a partition on the
preconditions of the operators, and each partition is
assigned an integer value, a criticality. Each abstract
level i is derived from the previous level by eliminating
those preconditions having criticality < i, otherwise
being identical.

We define the system ABTWEAK, and demonstrate
in this paper that precondition-elimination abstraction
can be naturally extended to nonlinear least commit-
ment planners, and thus benefit from the advantages of
both abstraction and nonlinearity. Most importantly,
we show that each ABTWEAK system has a monoton-
ically expandable abstraction space, whereby the exis-
tence of a lowest level solution II implies the existence
of a highest level solution that is structurally similar to
II. This property enables one to prune a considerable
amount of the search space without loss of complete-
ness. In addition, the abstraction space is monotonic
regardless of the criticality assignment, i.e., it does not
depend upon obtaining the “right” assignment of crit-
icality values to preconditions.

We first present brief descriptions of TWEAK and
ABSTRIPS, and then define ABTWEAK. We demon-
strate that ABTWEAK has the monotonic property,
and show how this affects search. All lemmas and the-
orems are presented without proofs. These proofs can
be found in the longer version of this paper [Yang and
Tenenberg, 19901.

Nonlinear Planning: TWEAK

Chapman [1985] p rovides a formalization of a least
commitment, nonlinear planner, TWEAK. TWEAK ex-
tends STRIPS by allowing for

1. a partial
plan,

temporal ordering on the operators in a

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

2. partial constraints on the binding
ignations) of the operators.

of variables (codes-

A TWEAK plan thus represents a space of STRIPS
plans: all totally ordered, fully ground plans that sat-
isfy the ordering and codesignation constraints.

Formally, a TWEAK system is a pair C = (L, 0). L
is a restricted language consisting of countably many
predicate, constant and variable symbols, but none of
the logical connectives (and, therefore, not the quanti-
fiers). The set of terms of L is the constants unioned
with the variables, and the set of propositions is all
expressions of the form

where P is an n-ary predicate and the xi are terms.
The set of liter&s of L is the set of propositions unioned
with the set of negations of propositions.

0 is a set of operator templates (referred to simply
as operators), defined in terms of preconditions and ef-
fects, with the variables in each operator standardized
apart. Each precondition or effect is a literal in L. If
a E 0 is an operator, then P, is the set of precondi-
tions of a, and 23, is the set of effects of a. An operator
a asserts literal p if p E E,, and denies p if lp E E,.

Chapman [1985] did not give a formal definition of a
TWEAK plan. Because this concept is very important
in defining a number of others later in the paper, we
formally define it below:

Definition 1 A plan II is a triple (A, B, C), where

o A(n) is a set of operators, defined in terms of pre-
conditions and effects,

o B(H) is a partial ordering on A (“‘4 ‘),
0 C(II) is a set of codesignation and non-codesignation

constraints of the form p w q or p $S q, where p and
q are both either terms or propositions.

If CL, b are operators in A(II), we say B(R) I- (a 3 b) if
and only if (a + b) follows from the transitive closure of
B(II). That is, a precedes b under every total ordering
that satisfies B(II). If P(xr, . . . , x~) and P(yr, . . . , ym)
are propositions, we say

if and only if each (x; = yi) follows from the symmetric
and transitive closure of the codesignation constraints
of C(II). Likewise for non-codesignation.

With the above definition, we can now restate for-
mally several terminologies used in [Chapman, 19851.
A complete plan is a plan where B(n) is a total or-
dering on A(II), and C(II) is such that every variable
in every operator of A(n) codesignates with some con-
stant. A plan completion refers to any complete plan
that satisfies the partial constraints of a plan.

An input problem is taken to be a pair, p = (I, G),
where I is the initial state, and G is the goal state,
each state consisting of a finite set of literals. A com-
plete plan for a problem implicitly defines a sequence

of states: the first element of the sequence is the given
initial state, and the i + lSt element of the sequence
is the ith state without the literals denied by the ith
operator, and including the literals asserted by the ith
operator. A proposition is satisfied in a state if it is an
element of that state.

For simplicity, the goal G can be represented by a
special operator g, where Ps = E, = G. The initial
state I can likewise be viewed as a special operator i,
with Z?i = 0 and Ei = I. These two operators will be
an element of each plan II, under the constraint that,
for every other operator a E A(II), (i 4 u) and (u 4 g).

A complete plan is correct if all preconditions of each
operator in the plan are satisfied in the state in which
the operator is applied. A complete plan solves a prob-
lem if it is correct, and the goal is satisfied in the final
state. A .plan solves a problem if every completion
solves the problem; similarly for correctness of plans.

In a partial plan, two terms necessarily codesignate,
that is, unify, if they codesignate under every comple-
tion. Two terms possibly codesignate if they codesig-
nate under some completion. Operator a necessarily
precedes b if a precedes b under every completion. a
possibly precedes b if a precedes b under some com-
pletion. We will use •I and 0 to denote necessarily
and possibly, and w, #, and < to denote codesignates,
non-codesignates and precedes. Necessary and pos-
sible precedence, codesignation and noncodesignation
can be defined precisely, for plan P, as:

The following definitions introduce simplifying nota-
tion.

O(a 4 c + b) e O(u 4 c) and O(c --x b),
~(a 4 c 4 b) e q (u + c) and q l(c 4 b).

The Modal Truth Criterion
The modal truth criterion (MTC) defines the condi-
tions under which an assertion will be true at a point
in a partially ordered plan. Chapman [1985] provides
a concise statement of the criterion that is both nec-
essary and sufficient. A problem with his definition
is that it is stated in terms of situations, which are
not well-defined in a partially ordered and instantiated
plan. For that reason, we provide a modified version
of the MTC, defined in terms of operators in a plan.

Coarsely stated, a proposition p is necessarily true in
the state in which operator b is applied if there exists,
for every total ordering, some operator a that asserts
p (adds a proposition that codesignates with p), and
for which no operator between a and b asserts up.

YANGANDTENENBERG 205

Definition 2 Proposition p is necessarily true in the
state in which operator b is applied in plan II if and
only if two conditions hold:

1. there is un operator a E A(D) and u E E,, such that
q (u 4 b) and O(p M u), and

2. for every operator c E A(II) and q E E,, if O(c -X b),
and O(lq M p), then there is an operator w E A(II)
and r E EW such that q (c 4 w 4 b) and C(II) u
+4 = PII I- (T = P)*

This last condition says that (T x p) whenever (lq M
P).

ABTWEAK

In ABSTRIPS, Sacerdoti developed an elegant means
for generating abstract problem spaces, by assigning
criticality values (an integer between 0 and h, for some
small Ic) to preconditions, and abstracting at level i
by eliminating all preconditions having criticality less
than i. The formalisms for this system are straight-
forward, and are provided below when criticalities are
assigned to the precondition literals in a TWEAK sys-
tem.

A b level ABTWEAK system is a triple C =
(L, 0, crit), where

(1) L is a TWEAK language;
(2) 0 is an operator set, as in TWEAK, and
(3) crit is a function:

U P, + (0, 1, . . .) Ic - l}.
OEO

Intuitively, crit is an assignment of criticality values to
each proposition appearing in the precondition of an
operator.

Let a be an operator. We take iPa to be the set of
preconditions of a which have criticality values of at
least i:

i Pa = (p 1 p E P, and crit(p) 2 i.},

and iu is operator a with preconditions iPa and effects
E,. Let the set of all such ia be i0. This defines a
TWEAK system on each level i of abstraction:

ix = (L, i0).

Upward Solution Property
As with ABSTRIPS the strategy for planning with
ABTWEAK is governed by length first search. When a
problem is input, planning proceeds first at the most
abstract, least constrained level. This plan is then ex-
panded at the next lower level by inserting new oper-
ators to satisfy the re-introduced preconditions. Only
after all the preconditions are satisfied on the current
level does the planner pass the plan to the level below.
The primary reason for using this control strategy is
for solving the frame problem.

Implicit in this strategy is the assumption that short
plans to solve a given problem are guaranteed to ex-
ist at the abstract level which can be successively ex-
panded, and that search strategies exist to find such
abstract plans. Our intent is to formally prove this
property, and to show how it places some useful con-
straints on search. The intuition behind the proof is
to show that if there exists a lowest (base) level solu-
tion to a problem, then this solution will also solve the
problem at each higher level of abstraction, since these
higher levels do not place any new constraints on the
problem. Further, since there are fewer preconditions
at the higher levels, one can eliminate from this plan
those operators whose purpose at lower levels is solely
to satisfy one of the eliminated preconditions, either
directly or indirectly.

For instance, consider a plan for getting a box from
one room into an adjacent room, in which the robot
picks up the box, goes to the door, sets the box down,
opens the door, picks up the box, and goes through
the doorway. Suppose that the status of the door -
whether it is open or closed - is ignored at the abstract
level. In this case, since opening the door is no longer
considered as a precondition, the intermediate steps of
setting down and re-picking up the box are no longer
necessary; their sole purpose was to free the agent’s
hands for the door opening. Thus, the abstract level
plan is simpler than the concrete level plan.

Ascending Preserves Correctness

For notational simplicity, if II is a plan on the base
level, then for i = 1,2, . . . , Ic - 1, let ill represent the
plan formed by replacing every occurrence of a (except
i and g) in II by iu. As defined above, a plan II is cor-
rect if and only if Vu E A(II), Vq E P,, q is necessarily
true in the state in which a is applied. Removing a pre-
condition of an operator while holding the plan fixed
does not affect the necessary truth of any condition.
Thus, after removing a precondition of an operator in
II, the resulting plan II’ is still correct. However, we
can establish a stronger property. Namely, if II is a
plan correct at the base level, then a plan iIt’ is also
a correct plan on level i, where iII’ is simpler than
II in that it is ill with possibly one or more opera-
tors removed. Thus, A(iII’) is possibly smaller than
A(II). Moreover, the constraints in iII’ are B(II) and
C(H) with possibly one or more constraints removed.
Thus, the plan iII’ is less constrained than II. This
will be shown by specifying the precondition establish-
ment structure of the plan, that is, which operators
satisfy preconditions of other operators, either directly
or indirectly.

Definition 3 Let II be a correct plan. Let a and b
be operators in A(II), p b e a precondition of b, and u
be an e#ect of a. Then a establishes p for b with u
(‘Establishes(u, b, p, u)) if and only if

I. q (u -x b),

206 AUTOMATEDREASONING

2. q (ue p), a nd
3. Vu’ E A(lI),Vu’ E -Eat, if q l(a 4 a’ 4 b), then

lO(U’ x p).

This final condition states that a must be the last such
operator that necessarily precedes b which necessarily
asserts precondition p.

Given this definition, it can be proven that every
precondition in every operator of a correct plan has an
establisher.

Nothing else is justified.

Lemma 4 Let II be a correct plan, b E A(D),
and p E Pb. 3u E A(II), 3~ E E, such that
Establishes(u, b, p, u).

Informally, a clobberer is an operator which possibly
precedes and possibly denies the precondition of an-
other operator in the plan. A white knight is another
operator which necessarily re-establishes this clobbered
precondition.

Definition 5 c is a clobberer of b, (GB(c, b,p, 4)) if
and only if

(1) P E Pbr

(2) 4 (5 EC,

(3) OhI = P),
(4) 3u, u such that Establishes(u, b, p, u),
(5) O(a -< c 4 b).

Definition 6 w is a white knight for b,
PJw-4 b, c, P, 4, T)), if and only if

(1) CB(c7 h P, cl),
(2) r E E,,
(3) q (c 4 w 4 b), a nd
(4) C(l--g ” +4 = P)> I- (T = PI*

An operator or constraint in a plan is justified if it
is subservient, directly or indirectly, to the satisfaction
of the goal.

Definition 7 Let II be a plan, and i, g be the special
operators for the initial and goal states. Then in plan
JA
Initial/Goal justification i and g are justified,
Establishment justification If b is justified, and

3u,3u E E,, 3p E Pb such that Establishes(u, b,p, u),
then

(I) a is justified, (2) (a 4 b) is justified, (3)
(u x p) is justified.

White knight justification
If WK(w, b, c,p, q, r) and b and c are justified, then
w, (c < w), and (w < b) are justified. Moreover,
let D be a minimal set of codesignation constraints
such that D U ((14 z p)} F (T ==: p). Then every
codesignation constraint in D is also justified.

Separation justification If c and b are justified, and
3p E Pb, 3q E E, such ihat q (p $ -q), then (p $ -q)
is justified.

Precedence Justification If b and c are justified
and q l(b 4 c), then b 4 c is also justified.

The justification of plan II, Jus(II), is the set of op-
erators, precedence and codesignation constraints of II
that are justified. It is obvious that the justified ver-
sion of a plan is simpler than the plan itself, in the
sense that the set of operators, precedence and codes-
&nation constraints of the justified plan are a subset
of those in the unjustified plan.

Lemma 8 If II is a correct plan that solves goal G,
then Jus(II) also is a correct plan that solves G.

The following theorem establishes the Upward Solu-
tion Property: if there is a solution to a problem at the
base level, then the justified version of that solution
at each higher level of abstraction is correct, and also
solves the problem on that level. More formally,

Theorem 9 If Il is a correct plan that solves G at
the base level, then the justified version of iII is also a
correct plan that solves G on the ith level, 0 < i < k- 1. - -

Monotonic Expansion
The Upward Solution Property guarantees the exis-
tence of an abstract level solution to a problem, when-
ever there exists a lowest level solution. Length-first
search, on the other hand, proceeds from the highest
level to the lowest. Since the converse of the Upward
Solution Property does not hold, one cannot be sure
that an arbitrary solution obtained at the abstract level
is one which can be expanded into a low level solu-
tion. It is therefore important to uncover constraints
that will be helpful in plan expansion. The monotonic
property is one such constraint, and was first defined
by Knoblock, for linear ABSTRIPS systems [Knoblock,
1988]. We will define it here (in a slightly different
form than Knoblock).

Definition 10 Let II’ be a level i plan, and II a level
i - 1 plan. c : A(II’) H A(II) is a correspondence
function if and only if

I. c is 1 - 1 and into, and
2. Vu E A(W), ;(~(a)) = a.

Definition 11 Let II’ be an abstract plan that solves
p at level i, i > 0. II’ monotonically expands to level
i - 1 plan II if and only if

I. II solves p at level i - 1, and
.2. there exists a correspondence function c : II’ H II

such that Va, b,p, u if Establishes(u, b,p, u) in II’
then Establishes(c(u), c(b),p, u) in II.

Definition 12 A k-level ABTWEAK system is mono-
tonic, if and only if, f or every problem p solvable at the
concrete (Oth) level, there exists a sequence of plans
&-1, . * -, II0 such that IIlk- solves p at level k - 1,
and for 0 < i < k, II, monotonically expands to II,-1.

The following Lemma can now be proven:

Lemma 13 Every ABTWEAK system of k levels, for
any k, is monotonic.

YANGANDTENENBERG 207

Search Control
In this section, we explore the implications of the
Monotonic Property on search control in ABTWEAK.
We will discuss global completeness of ABTWEAK as
an abstraction system, and show that ABTWEAK can
backtrack on violations of higher-level establishment
relations and unresolvable conflicts.

Completeness of ABTWEAK

Search for a plan with ABTWEAK proceeds in a Eength-
wise fashion, by first finding a plan at the most abstract
level, and then, for each lower level i, expanding the
plan II from level i + 1 by inserting operators into II, or
imposing new constraints to satisfy the re-introduced
preconditions in II. Thus, ABTWEAK searches for a
correct concrete-level plan in a space of abstract plans.
In this search space, if a plan II is not correct yet on
an abstract level, then the set of state.-space operators
applicable to II is the set of plan modification opera-
tions in TWEAK. On the other hand, if a plan II is
correct on level i > 0, then the state-space operator
is simply plan expansion, which inserts all i - 1 level
preconditions to each operator in II.

In this section, we discuss the global search control
strategy for ABTWEAK. Before describing it in detail,
we first explain what seems to be an obvious choice for
search control, and why it is not used for ABTWEAK.

We first define what we mean by completeness, and
monotonic completeness:

Definition 14 A control strategy is complete if when-
ever there is a solution at the concrete level, the strat-
egy will terminate by finding a solution.

Definition 15 A control strategy for a k-level
ABTWEAK system is monotonically complete if and
only if for every problem p solvable at the concrete
(Ot”) level, the strategy outputs a sequence of plans
Q&l,..., I& such that l&-l solves p at level k - 1,
and for 0 < i < k, l& monotonically expands to Iii-1.

Our aim is to explore control strategies that are mono-
tonically complete.

An intuitively obvious choice of control is to use a
separate TWEAK for control on each level of abstrac-
tion, similar to the way ABSTRIPS uses STRIPS. This
is especially appealing, since it is not difficult to spec-
ify complete control strategies for TWEAK, either us-
ing a complete state-space search procedure such as
A*, or breadth-first search, or the procedure provided
by Chapman [1985]. Using this approach, if a plan is
formed on abstraction level i, then it is passed down
to the level below. At level i - 1, all the conditions
of criticalities no less than i - 1 are planned for. The
process continues, until either a correct plan is formed
at the base level, or it is found that a plan cannot be
made correct at a level. Then the planner backtracks
to the level immediately above the current one, and
tries to find an alternative solution.

The fact that TWEAK is complete may lead one into
believing that the above control structure is also mono-
tonically complete. Unfortunately, this is not the case
in general. The reason is that any search strategy
for TWEAK will be semi-decidable, in the sense that
if there is no solution, it is not guaranteed to termi-
nate. Suppose that a plan II is found on level i + 1
that is not monotonically expandable, and is passed
to the level i below. Then it is possible for TWEAK
to run forever, without knowing it should backtrack to
the level above. Incompleteness may result since there
may exist a correct solution at the concrete level, and
II cannot be expanded to that solution.

Thus, although on each level of abstraction com-
pleteness is guaranteed separately, it is not ensured
monotonically. A complete search strategy will be
obliged to do a “diagonalizing enumeration,” that is,
it cannot simply pick an abstract plan, and attempt to
specialize this plan further without regard to the re-
maining abstract solutions, but must instead do only a
quanta of planning steps, and go to the next abstract
solution. But, it cannot be simple minded about this
either, since there may be an infinite number of ab-
stract solutions. So, it must do some quanta on the
next abstraction, and then return to the first one. That
is, the enumeration must “diagonalize in two dimen-
sions.”

The above argument suggests a monotonically com-
plete control procedure, in the sense that any state in
ABTWEAK’S search space may be selected next accord-
ing to a complete search control strategy. Recall that
ABTWEAK’S search space operations include not only
the plan modifications of TWEAK, but also the plan
expansions. Thus, if a path exists in the original state
space from the initial state to a goal state, one such
path will eventually be found. Any complete search
strategy will suffice for the purpose: breadth-first, A*
[Nilsson, 19801, depth-first iterative deepening[Korf,
1985a], etc.

Backtracking on Protection Violations

The monotonic property provides a powerful heuris-
tic for guiding the search in ABTWEAK. It can be
considered as a criteria for backtracking that does not
sacrifice completeness. More specifically, one can back-
track on precondition-establishment violations, that is,
if for some operators a and b, and literals p and u,
Establishes(u, b, p, u) in a plan at abstraction level i,
then at level i - 1, if the only choices left are to insert
an operator that possibly asserts lp, then ABTWEAK
can backtrack without losing monotonic completeness.
Thus, the causal relation between preconditions and
effects should be preserved when going down abstrac-
tion levels. This effectively imposes a strong constraint
on how an abstract plan should be refined at a lower
level.

208 AUTOMATED REASONING

Backtracking on Incompleteable Plans
Sometimes no solution can be found at a particular
level of abstraction. In that case, one would like to
know whether a solution exists at the base level. For
ABTWEAK, it follows from the Upward-Solution Prop-
erty that if there is no solution at one level, then no
solution exists at all at any lower levels of abstraction.

A related problem is whether to backtrack from an
incompleteable plan. A plan II is said to be incom-
pleteable if no correct completion of II exists, and no
operators and constraints can be inserted to obtain a
correct completion. One way for II to be incomplete-
able is that it contains a set of clobberers of the oper-
ators in II, and that no white knights and constraints
exist to remove all of the clobbering. This situation
corresponds to what is commonly known as the “un-
resolvable conflicts” in nonlinear planning. It can be
proven that ABTWEAK can backtrack from an incom-
pleteable plan without losing completeness[Yang and
Tenenberg, 19901.

Conclusion
This research has been aimed at formalizing domain-
independent, nonlinear planning systems that plan in
hierarchies of abstraction levels. The resultant plan-
ner, ABTWEAK, extends the precondition-elimination
methods in ABSTRIPS for building abstraction hierar-
chies, and allows for least-commitment representations
of plans in TWEAK. We have shown that ABTWEAK
satisfies the monotonic property, that is, as planning
descends from top to concrete levels of abstraction, the
precondition establishment structure of a plan need not
be changed. This, to a large extent, formalizes our in-
tuition for using abstraction in planning: that it is
generally more efficient to use an abstract solution to
guide search at lower levels of abstractions than with-
out abstraction. In addition, we have demonstrated
that a simplistic application of a control strategy for a
single-level problem solver to each level of the abstrac-
tion hierarchy will not in general provide a complete
multiple-level system. We also discussed how to ensure
the monotonic completeness for ABTWEAK systems.

We believe that ABTWEAK also offers computational
advantages over some of the existing hierarchical plan-
ning systems. However, to provide concrete evidence
for this claim, it might take a considerable amount
of experimentation. Indeed, our ongoing work is to
implement ABTWEAK and make such computational
comparisons.

Acknowledgements
We thank Craig Knoblock for many useful comments.

[Fikes et al., 19721 Richard Fikes, Peter Hart, and Nils
Nilsson. Learning and executing generalized robot
plans. Artificial Intelligence, 3~251-288, 1972.

[Knoblock, 19881 Craig Knoblock. A theory of ab-
straction for hierarchical planning. In Proceedings of
the First International Workshop in Change of Rep-
resentation and Inductive Bias, pages 53-65, 1988.

[Korf, 1985a] Richard Korf. Depth-first iterative-
deepening: An optimal admissible tree search. Ar-
tificial Intelligence, 27:97-109, 1985.

[Korf, 1985131 Richard Korf. Planning as search: A
quantitative approach. Artificial Intelligence, 33:65-
88, 1985.

[Nau, 19871 Dana Nau. Hierarchical abstraction for
process planning. In Proceedings of Second Interna-
tional Conference in Applications of Artificial Intel-
ligence in Engineering, 1987.

[Nilsson, 19801 Nils Nilsson. Principles of Artificial In-
telligence. Morgan Kaufmann Publishers Inc, 1980.

[Sacerdoti, 19741 Earl S acerdoti. Planning in a hier-
archy of abstraction spaces. Artificial Intelligence,
5:115-135, 1974.

[Sacerdoti, 19771 Earl S acerdoti. A Structure for Plans
and Behavior. American Elsevier, 1977.

[Tate, 19771 Austin Tate. Generating project net,-
works. In Proceedings of the 5th IJCAI, pages 888-
893, 1977.

[Tenenberg, 19881 Josh Tenenberg. Abstraction in
Planning. PhD thesis, University of Rochester,
Dept. of Computer Science, Rochester, NY, May
1988.

[Wilkins, 19841 David Wilkins. Domain-independent
planning: Representation and plan generation. Ar-
tificial Intelligence, 22, 1984.

[Yang and Tenenberg, 19901 Qiang Yang and Josh
Tenenberg. Abtweak: A hierarchical, least-
commitment planner. Technical Report 90-09, Uni-
versity of Waterloo, 1990.

[Yang, 19891 Qiang Yang. Improving the Eficiency of
Planning. PhD thesis, University of Maryland, 1989.

References
[Chapman, 19851 David Chapman. Planning for con-

junctive goals. AI Technical Report 802, Mas-
sachusetts Institute of Technology, 1985.

YANGANDTENENBERG 209

