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Abstract 

The construction of a program that generates cross- 
word puzzles is discussed. As in a recent paper by 
Dechter and Meiri, we make an experimental compar- 
ison of various search techniques. The conclusions to 
which we come differ from theirs in some areas - al- 
though we agree that directional arc consistency is bet- 
ter than path-consistency or other forms of lookahead, 
and that backjumping is to be preferred to backtrack- 
ing, we disagree in that we believe dynamic ordering of 
the constraints to be necessary in the solution of more 
difficult problems. 

1 Introduction 

Appearances notwithstanding, this is not a paper 
about crossword puzzles. It is a paper about search. 
More specifically, it is a paper about constraint satis- 
faction in large databases. 

What we have done is to write a program that gen- 
erates crossword puzzles by filling words into an empty 
frame. For frame sizes greater than 4 x 4, the associ- 
ated search space is large enough to make brute force 
depth-first search impractical; heuristics must be used. 
The large branching factor is a consequence of the fact 
that any particular word can be chosen in many possi- 
ble fashions - the dictionary used in this research con- 
tained some 24,000 entries. Crossword puzzle genera- 
tion can therefore be used to compare the general tech- 
niques that have been proposed for solving constraint- 
satisfaction problems in large databases. 

Crossword puzzles are fairly typical constraint- 
satisfaction problems; we share, for example, the 
constraint-satisfaction community’s interest in finding 
a single solution to a given problem, as opposed to 
finding all such solutions. But crossword puzzles also 
tend to be far more difficult than most of the problems 
that have been discussed in the literature thus far. The 

*This work has been supported by the Rockwell Palo 
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recent work of Dechter and Meiri, for example, consid- 
ers randomly-generated problems with lo-15 variables 
and 5 values [Dechter and Meiri, 19891; our crosswords 
involved perhaps 60 variables and 7000 values. 

In the next section, we discuss the general framework 
in which our experiments were performed. We also dis- 
cuss some simple improvements to existing techniques 
that we developed in order to allow our program to 
solve more difficult crosswords. 

Section 3 contains our experimental data. For each 
combination of the heuristics discussed in Section 2, we 
attempted to complete a variety of crossword frames; 
the average times needed to complete the search are 
shown, and the computational merits of the various 
techniques are discussed. Concluding remarks are con- 
tained in Section 4. 

2 Existing work 

There is very little existing work on the automatic gen- 
eration of crossword puzzles; an old paper of Mazlack’s 
[Mazlack, 19761 is the only one of which we are aware.’ 
More relevant to our purposes is the work on constraint 
satisfaction. 

As noted in [Dechter and Pearl, 19881, there are 
four choices to be made when solving a constraint- 
sat isfact ion problem: which variable to instantiate 
next, what value to use as the instantiation, how to 
handle backtracking, and what sort of preprocessing 
to do. 

By a “variable,” we will mean a particular word slot 
in the puzzle being generated; the constraints corre- 
spond to the fact that if two words intersect in a square 
s, they must use the same letter in that square.2 

‘We will have little to say about Mazlack’s work here. 
His techniques are very different from ours, and the per- 
formance of his program - even correcting for hardware 
advances since it was written - appears to be at least one 
or two orders of magnitude worse than ours. 

2Constraint-satisfaction problems have duals, where the 
roles of the constraints and the variables are swapped. 
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Choice of variable 

When choosing which variable to instantiate next (i.e., 
which word to fill in), one must decide whether the 
choice should be made when the puzzle is first exam- 
ined (at “compile time” ) or whether it should be made 
dynamically as the other variables are assigned values 
(at “run time”). 

A variety of compile time heuristics have been dis- 
cussed elsewhere in the literature. The so-called 
“cheapest-first heuristic” suggests constructing a sta- 
tistical estimate of the number of choices remaining for 
each variable, and to then instantiate the variable that 
is the most constrained.3 The “connectivity heuristic” 
suggests instantiating a variable that is constrained by 
the last variable instantiated, in order to ensure that 
one backtracks effectively when a dead end is reached.* 

The best-known run time heuristic is known as “dy- 
namic search rearrangement” and suggests that at any 
particular point in the search one should pick the vari- 
able that actually is the most constrained (by counting 
the number of possible solutions for each uninstanti- 
ated variable), instead of simply the one that is statis- 
tically expected to be the most sharply restricted as in 
the cheapest-first heuristic. 

The two techniques that we chose to consider were 
the cheapest-first heuristic and its run time analog, 
dynamic search rearrangement. Connectivity was not 
considered because, as noted by Dechter and Meiri in 
[Dechter and Meiri, 19891, many of its advantages can 
be obtained by using backjumping [Gaschnig, 19791 in- 
stead of simple backtracking. 

Choice of instant iat ion 

Suppose, then, that we have selected a variable (i.e., 
word) to be filled next. How do we select among the 
possible values for it ? In doing so, it is important to 
select one that restricts the possible choices for subse- 
quent variables as little as possible. Why use a word 
with a Q when one with an S could be used inste’ad? 

In crossword puzzles, it is impractical to use this idea 
exactly; there are simply too many possible choices for 
each variable. Instead, we did the following: Suppose 
that we have decided to instantiate some particular 

As Rich Korf has pointed out, the dual problem in the 
crossword-puzzle domain is also a natural one - the vari- 
ables are the letters in the puzzle, and the constraints come 
from the fact that each letter sequence must be a legal En- 
glish word. 

3For example, if there are 2139 4-letter words in the 
dictionary, it is assumed that 2139/26 choices remain after 
the second letter is filled in. This is independent of whether 
the choice is E (in which case 281 completions remain) or Q 
(in which case there is in fact only 1). 

4Thus having filled in one word, we would next fill a 
word that intersects it. By not jumping from one section 
of the puzzle to another, we ensure that chronological back- 
track always considers a difficulty related to the one that 
actually caused the backup. 

variable by filling a particular word in the puzzle. The 
program considers the first k words that can legally fill 
this slot; suppose that we denote them by wl,. . . , wk. 
For each wi , the number of possibilities for each unfilled 
crossing word is computed, and the product of all of 
these values is calculated. The word actually chosen is 
that wi that maximizes this product. 

Of course, the behavior of this heuristic will be sen- 
sitive to the choice made for Ic. If k = 1, the first 
available word will be used at all times. But making k 
too large is also a mistake - all we really need to do is 
to make it large enough that one of the first k words 
is a fairly good choice. The time spent examining the 
rest of the possible words is unlikely to be justified by 
the small impact on the size of the subsequent search 
space. Some experimentation indicated that Ic = 10 
was a reasonable value, and this is the value used in 
Section 3, where it is compared with the choice k = 1. 
The parameter k was called min-look in the imple- 
mentation and this is how we will refer to it in Section 
3. 

Backtracking 

When a dead end is reached (i.e., some slot is found 
for which there is no legal word), the program needs to 
backtrack and try something else. Simple chronological 
backtracking (backtrack to the last choice point, as in 
PROLOG) suffers from the problem that it may fail to 
address the source of the difficulty. If the program is 
having trouble filling the upper-left-hand corner of the 
puzzle, it is a mistake to make changes in a portion 
of the puzzle that have no effect on this problematic 
region. 

This difficulty can be ovnrcome using a technique 
known as backjumping [Gaschnig, 19791, which actu- 
ally backs up to the source of the difficulty. It has been 
shown both theoretically [Dechter, 19901 and experi- 
mentally [Dechter and Meiri, 19891 that backjumping 
outperforms its chronological counterpart. 

If no lookahead is done, backjumping can be imple- 
mented simply by always backtracking to a word that 
intersects a word that cannot be filled satisfactorily; 
the connection with the connectivity heuristic is clear 
in this case. If lookahead information is used as well 
(see the next section), then backjumping requires us to 
maintain, for each instantiated variable, a list of those 
subsequent variables that it affects in some way. This 
idea is obviously closely related to dependency-directed 
backtracking [Stallman and Sussman, 19771, although 
it is not quite the same because the expense of main- 
taining complete dependency information is avoided. 

We also considered a small further improvement. 
Suppose that we have reached a dead end, and have de- 
cided to backjump to a particular word, wi, that is the 
source of the difficulty. It is not too hard to determine 
what letter or letters in wi are causing the problem, 
and to then ensure that the new choice for wi avoids 
it. In conventional constraint-propagation terms, we 
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Figure 1: Is multiple lookahead worthwhile? 

realize that the variable wr is causing trouble because 
of the constraints it places on a subsequent variable 
w2 (or perhaps a collection of subsequent variables). 
Having done so, we make sure that the new choice for 
wr allows us to change our selection for 202. 

In Section 3, we will refer to the possible choices 
as “bt” (simple backtrack), “bj” (backjump to the 
relevant problem, but make no effort to ensure that 
the difficulty has been addressed) and “sbj” (smart 
backjump, ensuring that some relevant letter changes 
value). 

Preprocessing 

Finally, there is the possibility of preprocessing the 
data in some way that will reduce the need to back- 
track in the first place. In [Dechter and Meiri, 19891, 
Dechter and Meiri suggest that the most effective way 
to do this is to.preprocess the information at each node 
of the constraint graph in a way that ensures that when 
a particular variable w is instantiated, there will always 
be an instantiation for every other variable that shares 
a constraint with w. In terms of crossword puzzles, we 
make sure that the choice made for one word is con- 
sistent with the choices that will need to be made for 
the words that intersect it. This is called directional 
arc-consistency [Dechter and Pearl, 19881. 

There are other possibilities as well. If we think 
of directional arc-consistency as a simple lookahead to 
depth 1, directional path-consistency is lookahead to 
depth 2, so that for the word being instantiated and 
every choice for a word w’ that meets it, there will be 
a choice for every word that meets w or w’. 

In a crossword puzzle, it is impractical to store all 
of this consistency information; there are simply too 
many possibilities. Indeed, this was already observed 
by Dechter and Meiri on the simple problems they in- 
vestigate in [Dechter and Meiri, 19891. 

It is possible, however, to repeat the analysis at 
run time, essentially doing a lookahead to a depth of 
greater than one when each variable is instantiated. 

It seems at first that this should be a good idea. 
Consider the puzzle in Figure 1, for example. It might 
be the case that there are no two five letter words wr 
and w2 such that wr ends in Y, w2 has T as its fourth 
letter, and the last letter of w2 is the same as the first 
letter of wi. A two-level lookahead would notice this, 

04 

Figure 2: Test puzzles 

and one of the two words in Figure 1 would be with- 
drawn immediately. 

In practice, this does not work so well. The reason is 
that the computation involved is a fairly difficult one - 
we need to look at the possible choices for wi, check 
to see which letters are still possible in which spaces 
(this is the expensive part, since it involves examining 
each of the choices for wi ) , and then to use this in- 
formation to prune the set of possibilities for ~2. The 
analysis is expensive enough that the cost incurred is 
not in general recovered by the associated pruning of 
the search space. More conventionally put, the for- 
ward branching factor for the problem is high enough 
that additional levels of lookahead draw conclusions no 
more effectively than their backward counterparts. 

3 Experimental results 

Frames used and raw data 

In order to evaluate the usefulness of the ideas in the 
last section, the four puzzles appearing in Figures 2 
and 3 were solved by the program. The program al- 
ways used one level of lookahead (i.e., arc-consistency) 
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(4 

Figure 3: Test puzzles (ctd.) 

and some form of the cheapest-first heuristic, since it 
was quickly discovered that without these, all but the 
simplest puzzles were intractable. The other parame- 
ters were set as follows: 

cheapest-first could be either stat, indicating 
that a compile-time statistical approximation was 
used, or exact, indicating that the exact (run-time) 
value was used. 

If the run-time ordering were used, min-look could 
be either 1 (always use the first acceptable word) or 
10 (use the best choice among the first ten acceptable 
words). This calculation was not performed when 
the statistical ordering was used, since only dynamic 
information about variable orderings can be used to 
distinguish among words in this fashion. 

connected-backtrack could be either bt, bj or sbj, 
as described in the previous section. 

For each allowable selection of parameters, each of 
the above puzzles was solved 10 times; the dictionary 
was shuffled between each solution attempt to ensure 
that the performance of the program was not affected 
by a particularly fortunate or unfortunate choice of 
word at any point. 

The results are as reported in Figure 4; the times 
reported are in seconds for a Symbolics 3620 with 2 
megawords of memory. We feel that time of solution is 
a more valuable gauge of performance than the num- 
ber of nodes examined or the number of backtracks 
(as used in [Dechter and Meiri, 19891) because it is of- 
ten possible to prune the search space but only at a 
prohibitive cost in terms of the time spent expanding 
a single node. This is the argument we made when 
considering lookahead to multiple depths. 

For the harder puzzles, many of the choices of pa- 
rameters did not lead to solutions being found within 
20 minutes of CPU time, and no timing information is 
reported for these parameter choices. The most diffi- 
cult puzzle ((d) in Figure 3) was solved in only 8 of 10 
cases with min-look set to 1. 

Analysis 

As already mentioned, arc-consistency and cheapest- 
first were needed to solve any of the puzzles. With 
regard to the other choices, we observed the following: 

Choice of variable Unlike the results reported by 
Dechter and Meiri in [Dechter and Meiri, 19891, it is 
apparent even for the 5 x 5 puzzle that runtime infor- 
mation plays an important role in the choice of word 
to be filled next. The difference in performance be- 
tween the programs that used an exact version of the 
cheapest-first heuristic and those that used the statis- 
tical approximation available at compile time is signif- 
icant in all cases; the two most difficult puzzles could 
not be solved at all within the twenty minute time limit 
unless runtime information was used. 
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Choice of instantiation The overhead involved in 
finding a word that minimally restricts the subsequent 
search is worthwhile only on puzzles of size 9 x 9 and 
larger, and it is not until the most difficult of the four 
puzzles is considered that this heuristic begins to play 
a significant role. This suggests that the choice of 
min-look (the number of words considered to fill a par- 
ticular slot) should be closely coupled to the apparent 
difficulty of the puzzle being constructed. 

Backtrack Backjumping (as opposed to simple 
backtracking) is another heuristic the value of which 
is only apparent on the larger puzzles; on smaller ones, 
the cheapest-first heuristic tends to order the words 
in a way that results in a particular word intersecting 
the word being filled next and the two techniques co- 
incide. “Smart” backjumping is needed for puzzle (d) 
only - but here, it turned out to be absolutely cru- 
cial. The reason is that many of the 13-letter words 
have endings like “tion” and if this choice made the 
upper-right hand corner of the puzzle impossible to 
fill, it was important not to try another word with the 
same ending. Of course, it is not clear to what extent 
other constraint-satisfaction problems will share these 
features, but it is not unreasonable to think that they 
will. 

Things that didn’t work 

It is also probably worthwhile to report on search 
heuristics that we tried, but that didn’t reduce the time 
needed to find a solution to the puzzle. 

Tree reordering while backtracking Suppose 
that backjurnping has caused us to backtrack over a 
word w because it was not relevant to the problem 
that caused the backtrack in the first place. Is it rea- 
sonable to put w back into the puzzle before resuming 
the search, thereby modifying the order in which the 
search is conducted so that we can reuse the informa- 
tion that would otherwise be lost? 

Unfortunately not. Just because removing w doesn’t 
directly alleviate a particular difficulty is no reason to 
believe that keeping w won’t commit us to the same 
problem. As an example, suppose that we put in a 
word 201, then a crossword ~2, then discover that an- 
other crossword ws to wr cannot be filled satisfactorily. 
Provided that the choices for ws are not constrained 
by the selection of wz, we will backtrack directly to wi, 
and the above suggestion would therefore cause us to 
replace w2 in the puzzle. Unfortunately, this replace- 
ment might well commit us to wi once again. 

It may be possible to identify a limited set of situ- 
ations where words that are passed over during back- 
tracking can be safely replaced, but these situations 
appear to be fairly rare in practice and the cost of 
searching for them seems not to be justified. 
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Compile-time dictionary ordering We also con- 
sidered the possibility of ordering the dictionary not 
randomly, but in a way that would prefer the use of 
words containing common letters. 

For small puzzles, this led to significant performance 
improvements; the preference of common letters virtu- 
ally eliminated the need to backtrack on puzzles (a) 
and (b). On puzzle (c), however, the performance gain 
was much more modest (perhaps 20%), while on puz- 
zle (d), the performance appeared to actually worsen 
- the program was no longer able to solve the puzzle 
within the twenty minute time limit if min-look was 
set to 10. (For min-look set to 1, however, only 15 
seconds were required.) 

It is difficult to know what to make of such conflict- 
ing data; since the ordered dictionary can no longer be 
shuffled to eliminate statistical fluctuations in solution 
time, it is possible that the observed behavior is not re- 
flecting the fundamental nature of the algorithm. The 
best explanation we can offer is the following one: 

On large puzzles, where backtracking is inevitable, 
the ordered dictionary is likely to result in the first 
ten choices for any particular word being fairly simi- 
lar. As a result, the program might just as well select 
the first word as any of the first ten; in fact, the time 
spent considering the others is unlikely to be repaid in 
practice. This is consistent with the observed behav- 
ior - the performance for an ordered dictionary with 
min-look set to 1 was uniformly better than if this pa- 
rameter were set to 10. We feel this to be undesirable 
for the following reasons: 

The performance of the program becomes quite brit- 
tle. If lucky, it will solve a puzzle very quickly; if un- 
lucky, it may not solve it at all. This is the behavior 
that was observed on puzzle (d). 

The program cannot improve its performance on 
very difficult puzzles by increasing the value of 
min-look, since this technique has been essentially 
invalidated by the diet ionary ordering. 

In addition, further experimentation showed that it 
was not possible to avoid this problem by segmenting 
the dictionary or ordering it in any other way (such 
as maximizing the letter differences between words ap- 
pearing near each other). 

We wish that we could make more definitive remarks 
about this technique, but cannot. 

4 Conclusion 

Summarizing, the conclusions that we have drawn from 
the experimental data. in Figure 4 are the following: 

1. 

2. 

Arc-consistency is needed if difficult constraint- 
satisfaction problems are to be solved effectively. 

It is far more efficient to order variables at run time 
than to use the statistical information available at 
compile time. 



3. 

4. 

It is important to select the instantiation for each 
variable carefully, although not so important that 
every choice should be considered in large domains. 

Backjumping is to be preferred to simple backtrack- 
ing. In addition, it is important to ensure that subse- 
quent labels for a particular variable actually address 
a difficulty that was found previously in the search; 
this can be done without incurring the prohibitive 
costs involved in maintaining complete dependency 
information when the tree is expanded. 
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exact 
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exact 
exact 
exact 
stat 

exact 
stat 
stat 

exact 
exact 
exact 
exact 
exact 
exact 
stat 
stat 
stat 

exact 
exact 
exact 
exact 

1 bt 0.505 
1 bj 0.533 
1 sbj 0.605 
10 sbj 0.607 
10 bt 0.612 
_ sbj 0.693 
10 b j 0.719 

bj 1.015 
bt 1.041 

10 bt 2.363 
10 sbj 2.453 
10 b j 2.497 

sbj 4.967 
1 bt 6.327 
1 bj 6.587 
- sbj 17.022 
_ b j 17.170 
_ bt 31.526 

10 sbj 11.904 
10 b j 15.539 
1 sbj 17.668 

b j 17.798 

exact 10 sbj 71.693 
exact 1 sbj 4oEA555* 

* Completed on only 8 of 10 attempts 

Figure 4: Test results; techniques not listed were not 
able to solve the puzzles in question 
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