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Abstract 
Conventional blind search techniques generally assume 
that the goal nodes for a given problem are distributed 
randomly along the fringe of the search tree. We ar- 
gue that this is often invalid in practice, suggest that 
a more reasonable assumption is that decisions made 
at each point in the search carry equal weight, and 
show that a new search technique that we call iter- 
ative broadening leads to orders-of-magnitude savings 
in the time needed to search a space satisfying this as- 
sumption. Both theoretical and experimental results 
are presented . 

1 Introduction 
Imagine that we are searching a tree of uniform depth 
d using conventional depth-first search. We work our 
way to the fringe of the tree and check to see if we 
are at a goal node. Assuming that we are not, we 
back up a minimal amount, generate a new node at 
depth d, and check to see if that is a goal node. This 
process continues until we finally succeed in solving the 
problem at hand. 

The process of depth-first search generates the fringe 
nodes (the nodes at depth d) in a particular order - 
from left to right, if we were to draw the tree in its 
entirety. Assuming that the goal nodes (of which there 
may be more than one) are randomly placed along the 
fringe of the search tree, this left-to-right order is a 
reasonable way to search the tree. 

Now imagine that we are trying to solve some hard 
problem, say buying a birthday present for a friend. 
We decide to buy her a book on Tennessee walking 
horses, and visit a few book and tack stores looking 
for one but without success. 

At this point, rat her than continue looking for this 
particular gift, we may well decide to try something 
else. Even if we have good reason to believe that a 
book of the kind we want exists, we view our continued 
failure as an indication that we would be better off 
looking for a different gift, and end up buying her a 
saddle pad. 

*This work has been supported by General Dynamics 
and by NSF under grant number DCR-8620059. 

Figure 1: Search with a breadth cutoff 

If all of the inference steps we might take while solv- 
ing the problem were equally likely to lead to a so- 
lution, this would make no sense. But in practice, 
we view the fact that we have been unable to solve 
the problem of finding the Tennessee-walker book as 
evidence that the whole idea of getting the book is 
misguided. Does this idea have an analog in search 
generally? 

It does. The reason is that it is possible to make a 
mistake. Going back to our tree of depth d, it is quite 
possible that one of the nodes at depth 1 (for example) 
has committed us to a course from which there is no 
recovery, in that this particular node has no goal nodes 
at all underneath it. 

The way we deal with this in practice is by impos- 
ing an artificial breadth limit on our search. Thus we 
may try three different book stores before giving up 
and getting our friend something else for her birth- 
day. What we are proposing in this paper is that blind 
search techniques do the same thing. 

Specifically, we will suggest that depth-first search 
be augmented with an artificial breadth cutoff c. What 
this means is that when we have had to backtrack to 
a particular node n in the tree c times, we continue to 
backtrack to the previous choice point, even if there are 
still unexplored children of the node n. An example is 
depicted in Figure 1, where we have shown a tree with 
breadth 4 but a breadth cutoff of 3; the dashed lines 
indicate paths that have been pruned as a result. 

Of course, the search with an artificial breadth cut- 
off will never search the entire tree; we need some way 
to recover if we fail to find an answer in our search to 
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depth d. We will suggest that the most practical way 
to deal with this problem is to gradually increase the 
breadth cutoff. So we first start by searching the tree 
with an artificial breadth cutoff of 2, then try with a 
breadth cutoff of 3, and so on, until an answer is found. 
We will refer to this technique as “iterative broaden- 
ing,” borrowing terminology from Korf’s notion of it- 
erative deepening [Korf, 19851. 

We will show in this paper that given reasonable 
assumptions about the distribution of the goal nodes 
along the fringe, this technique leads to tremendous 
expected savings in the amount of time needed to 
search the tree. The reason, roughly speaking, is that 
the searches with limited breadth retain a reasonable 
chance of finding a goal node while pruning large frac- 
tions of the complete space and enabling us to back- 
track past early mistakes more effectively. Even if the 
preliminary searches fail to find a goal node, the time 
spent on them is often sufficiently small that overall 
performance is not much affected. 

The outline of this paper is as follows: In the next 
section, we present a mathematical analysis of the tech- 
nique, computing the utility of a search with breadth 
cutoff c in a space of branching factor b. In Section 
3, we discuss the ratio of the time needed by our ap- 
proach to that needed by the conventional one for var- 
ious choices of b and d, and for various densities of goal 
nodes at the fringe of the tree. We present both theo- 
ret ical values (which incorporate some approximations 
made in Section 2) and experimental results. 

In Section 4, we show that the inclusion of heuris- 
tic information makes our met hod still more powerful, 
and also that it remains viable when used in com- 
binat ion with other search techniques (dependency- 
directed backtracking, etc.). Related work is discussed 
in Section 5. 

2 Formal analysis 
Suppose that our tree, of uniform branching factor b 
and depth d, has g successful goal nodes distributed 
along the fringe. What we will do is assume that de- 
cisions made at each point in the search are equally 
important - in other words, that there is some con- 
stant s such that if n is a node under which there is 
at least one goal node, then n has exactly s successful 
children. (We are calling a node successful if it has 
at least one goal node somewhere under it.) The fact 
that s is independent of the depth of n is the formal 
analog of our claim that decisions made at different 
depths are equally important. We assume that the s 
successful children are randomly distributed among the 
b children of n. 

Since the root node is successful, it is not hard to see 
that there are sd goal nodes in the tree as a whole, so 
that we must have s = g ‘id. In what follows, we will 
generally assume that s is an integer (so that we can 
evaluate the expressions that follow), and that s > 1 
(so that there is more than a single goal node on the 

fringe). 
Now suppose that we fix b, s and a breadth cutoff 

c. For a given depth d, we will denote the probability 
that the restricted-breadth search finds at least one 
goal node by p(d), and the number of nodes examined 
by this search by t(d). We begin by computing p(d) = 
1 - p(d). What is the probability that the search fails 
to find a goal node at depth d? 

For d = 0 (the root node), we clearly have ;is( 0) = 
0. For larger d, suppose that we denote by pr(i) the 
probability that of the s successful children of a node n, 
exactly i of them are included in the restricted search 
of breadth c. Now the probability that the search to 
depth d + 1 fails is given by 

f$d + 1) = x pr(i)p(d)i (1) 

since in order for the search to fail, the depth d search 
under each of the i successful children of the root node 
must also fail. We sum over the various i and weight 
the contributions by the probability that the i success- 
ful nodes at depth 1 all actually fail. 

We can evaluate pr( i) by noting that in order for 
there to be exactly i successful nodes in the restricted 
search, we much choose i successful nodes from the 
s that are available, and also c - i unsuccessful nodes 
from the b-s available. Since the total number of 
to choose the c nodes in the restricte 
b present in the entire tree is given 
hard to see that 

d search from the 
by (,“) , it is not 

This expression, together with (l), allows us to com- 
pute p(d) for various d. 

What about t(d), the number of nodes examined by 
the restricted search to depth d? We begin by defining 
t,(d) to be the number of nodes examined on average 
by the restricted search to depth d provided that the 
restricted search is successful. We immediately have 

t(d) = [l - F(d)]&(d) + p(d) (cd;:; ‘> (2) 

since the complete tree of breadth c and depth d must 
be searched if the restricted search fails. 

We also need pr, (i), the probability that exactly i 
of the depth 1 nodes are successful given that the re- 
stricted search succeeds. Bayes’ rule gives us 

prs(i) = pr(ils) = pr(sli)pr(i) = El - p(d - l>ilPr(i> 
PI+) 1 - WI 

To complete the calculation, we need to know that 
if we have c nodes at depth 1, of which i are successful, 
then the average number of these c nodes we need to 
examine before finding j of the successful ones is given 
bY 

dc + 1) 
i+l 
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Given that the restricted search is successful, how 
many of the nodes do we need to examine before find- 
ing one that is successful with the breadth cutoff c? If 
i nodes are successful, and each successful node has a 
probability of failure given by p, then the number of 
the c nodes we can expect to examine is given by 

i-l ,. 
NC + 1) $0 -a I-\ 

The rationale for this expression is as follows: Each 
term represents the number of nodes examined assum- 
ing that the first j successful nodes fail (which happens 
with probability j? for each) and the j + 1st succeeds. 
The terms are weighted by l/(1 - 8) because j? is 
the probability that none of the i nodes succeeds, and 
this is eliminated by our assumption that the restricted 
search is successful. 

Given this result, the number of failing nodes exam- 
ined at depth 1 is f (i, jj) - 1 and t, (d + 1) is therefore: 

1+ ~Pr,(~)fGJ$d)) - 1 
&+l - 1 I( ) + km (4) 

i C-l 

The first term corresponds to the fact that the root 
node is always examined; the final term t,(d) is the 
number of nodes examined below the depth 1 node 
that eventually succeeds. The summation is, as usual, 
over the number of successful children at depth 1; for 
each value of i, we compute the expected number of 
failing nodes examined at depth 1 and realize that each 
of these failing nodes leads to a complete search of 
breadth c and depth d. 

Using (1) and the expression for t, (d + 1) in (4)) we 
can easily compute the probability of success and ex- 
pected time taken for the first pass through the search 
tree, with breadth cutoff c = 2. 

Unfortunately, we cannot use these expressions to 
evaluate the probabilities and time taken for subse- 
quent searches with c = 3 and higher. The reason 
is that when we do the search with c = 3, we know 
that the search with c = 2 has already failed. Assum- 
ing that we do not reorder the children of the various 
nodes when we iterate and search the tree again, we 
need to take the fact that the c = 2 search has failed 
into account when analyzing c = 3. 

For f < c, let us denote by $c, f) the probability 
that the search with cutoff c fails given that the search 
with cutofl f is known to fail. Now it is obvious that 

s4 = F(c7 f E(f) 

so that we immediately have 

jj(c , f) = FCC) 
P(f) 

(5) 

We also need to do something similar for t. We will 
assume (wrongly) that the expected number of nodes 

branching depth 
factor 4 7 11 15 

4 1.9 5.9 19.8 59.9 
6 1.7 5.8 20.2 55.2 
9 1.4 4.9 17.4 46.7 
12 1.2 4.1 14.6 38.7 
15 1.0 3.5 12.4 32.6 

Figure 2: Performance improvement for s = 2 

branching depth 
factor 4 7 11 15 

4 2.9 26.2 451.3 7276.6 
6 3.9 30.7 292.3 1990.3 
9 3.4 24.3 186.0 928.1 
12 2.9 19.0 129.0 559.9 
15 2.4 15.5 97.3 390.2 

Figure 3: Performance improvement for s = 3 

examined during a successful search to depth d is un- 
changed by the fact that the search with breadth cut- 
off f has failed. In practice, it is possible to reorder 
the nodes so that the expected number is less than 
this. However, this may not be desirable because it 
will abandon heuristic information present in the orig- 
inal order; it is because of these competing reasons that 
we are taking the number to be unchanged. As in (2), 
this leads to 

t(c, f) = [l - F(c, f )IW) + Pk, f) 
rd+l-lJ c-l * 

The hard work is now done. The expected time 
taken to solve the problem using iterative broadening 
is given by 

xB(i - l)t(i, i - 1) (6) 

where the term being summed corresponds to the time 
taken by the search of breadth i, given that the previ- 
ous search has failed to solve the problem. 

3 Results 
Theoretical 
Given the results of the previous section, it is straight- 
forward to compute the expected time taken by an 
iterative-broadening search and compare it to the ex- 
pected time taken by a simple depth-first search (i.e., 
c = b) . The tables in Figures 2 and 3 do this for s = 2 
and s = 3 respectively and for various choices of b 
(branching factor) and d (depth of tree). The numbers 
appearing in the table are the ratios of these two times 
and indicate the factor saved by the new approach. 
(Thus the 15.5 appearing in Figure 3 for b = 15 and 
d = 7 indicates that iterative broadening will typically 
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solve the problem 15.5 times faster than depth-first 
search.) 

It can be seen from these figures that iterative broad- 
ening outperforms conventional search for s 2 2 and 
d >_ 4. (For shallower searches, this was not always 
the case. The worst case examined was s = 2, b = 
15, d = 2, when iterative broadening was 0.4 times 
as fast as depth-first search.) Furthermore, as the 
depth of search increases, so does the time saved. For 
large depths and branching factors, it appears that 
the iterative broadening technique reduces the time 
needed to solve the problem by an overall factor ap- 
proximately linear in b and additionally reduces the 
effective branching factor by s - 1. 

Note that if s were known in advance, the reduction 
in effective branching factor could also be achieved by 
working with a breadth cutoff of b - s + 1, since this 
breadth cutoff will never prune all of the goal nodes 
from the search space. Iterative broadening achieves 
this savings without advance information about the 
size of s. Additional savings are also obtained because 
of the possible success of the searches with narrower 
breadth cutoffs. 

The large depth limit In the large d limit, it is 
possible to use these results to determine general con- 
ditions under which iterative broadening leads to com- 
putational speedups. 

As a preliminary, we can use (4) to find the expected 
time needed by conventional depth-first search, obtain- 
ing for large d 

bd+l(b - s) 
tdf(d) = (b - 1)2(s + 1) 

The time needed by iterative broadening is bounded 
by the time needed for complete searches with breadth 
cutoffs up to b + s - 1. We set E = s - 1 to get 

Setting t(d) = tdf(d) and solving for E gives us E = 
b/2d so that s = 1 + E = 1 + b/2d and the number of 
goal nodes is 

d 
= eb/2 

Proposition 3.1 In the large depth limit, iterative 
broadening will lead to computational speedup when- 
ever the 
eb/2 . 

total number of goal nodes at the fringe exceeds 

Experimental 
In order to ensure that the approximations made in 

Section 2 not invalidate our theoretical results, we com- 
pared the iterative-broadening approach to conven- 
tional depth-first search on randomly generated prob- 
lems. The experimental results appear in Figure 4 and 

depth 1 1.5 ; 2.5 3 
3 0.5 0.7 0.8 1.3 1.5 

4 0.4 0.8 1.8 2.2 3.3 
5 0.5 1.1 2.1 3.4 5.1 
6 
7 I 0.4 0.9 2.3 3.0 15.2 

0.5 1.3 4.7 6.5 19.5 

Figure 4: Performance improvement observed for 
branching factor 6 and small s (100 samples) 

depth 
3 

4 
5 
6 
m 

1 1.5 ; 2.5 3 
0.6 0.8 1.7 1.6 2.3 
0.7 1.1 2.7 6.6 5.4 
0.9 1.7 4.6 8.7 11.3 
0.9 1.5 8.8 18.5 37.9 
1.1 2.3 12.1 17.8 45.0 

Figure 5: Performance improvement observed for 
branching factor 6 with heuristic information (100 sam- 
ples) 

are in overall agreement with our theoretical expecta- 
tions. 

The experimental data also includes values for s 
other than 2 and 3, since in practical applications a 
successful node may not have-a fixed number of suc- 
cessful children. Data is shown for s = 1.5 and s = 2.5, 
and s = 1 as well. 

The case s = 1 is exceptional because it leads to ex- 
actly one goal node. Since this goal node is randomly 
located on the fringe of the search tree, the fastest 
search is the one that examines the fringe most rapidly, 
and we can therefore expect depth-first search to out- 
perform iterative broadening in this case. At worst, it- 
erative broadening might be a factor of b slower (since 
there are b possible iterations); in practice, we observed 
only a factor of 2. This was roughly independent of the 
breadth and depth of the search. 

4 Heurist ii informat ion 
The experiment al work described in Section 3 was 

also extended to consider cases in which heuristic in- 
formation is used to order the children of any particular 
node so that subnodes that are likely to lead to solu- 
tions are examined first. We simulated a fairly weak 
heuristic that scaled by a factor of 2(b + 1 - i)/(b + 1) 
the probability that the ith child of a successful node 
was itself successful. Thus the probability of the first 
child’s success is approximately doubled and the prob- 
abilities for subsequent children are scaled by a linearly 
decreasing amount. The results are reported in Figure 
5 and indicate that heuristic informat ion improves the 
relative performance of iterative broadening with re- 
spect to standard search techniques. (In fact, for b >5 
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and d > 6, iterative broadening is the technique of 
choice even if s = 1.) 

These results can be understood by realizing that 
at any node, both search techniques examine the most 
likely children first. The consequences of making a 
mistake are different, however - if depth-first search 
examines an unsuccessful node near the top of the tree, 
it will go on to examine the entire subtree of that node 
at potentially devastating cost. Iterative broadening 
limits the fruitless search to a subtree of breadth c; 
the better the heuristic, the more likely it is that a goal 
will be encountered for small c. Even for the relatively 
weak heuristic used in our experiments, large relative 
performance improvements were obtained. 

Combination with other techniques Finally, we 
tested the iterative-broadening technique by includ- 
ing it in a program designed to create crossword puz- 
zles by filling words into an empty frame [Ginsberg 
et al., 19901. This program uses a variety of tech- 
niques, including a heuristic ranking of the children of 
the node being examined, directional arc-consistency 
[Dechter and Pearl, 19881, backjumping (a simple form 
of dependency-directed backtracking) [Gaschnig, 19791 
and dynamic search rearrangement. 

The results were as expected. Performance improved 
in almost all cases; the single exception was for a 5 x 
5 puzzle containing 5 5-letter words in each direction 
(i.e., no black squares at all). The depth of this puzzle 
was shallower than for most of the others (there are 
only 10 words to fill in), the branching factor is very 
large (due to the large number of 5-letter words in the 
dictionary) and the solutions are quite sparse in the 
search space (leading to a very small value of s). As 
can be seen from Figures 1 and 2, all of these factors 
combine to reduce the effectiveness of the technique we 
are proposing. 

5 Related work 

Iterative deepening 

An attractive feature of iterative broadening is that 
it can easily be combined with iterative deepening, 
the most effective known technique for searching trees 
where the depth of the solution nodes is unknown 
[Korf, 19851. Iterative deepening works by searching 
the tree to progressively larger fixed depths; any of 
these fixed-depth searches can obviously be performed 
using iterative broadening instead of the simple depth- 
first search proposed in [Korf, 19851. 

Parallel search 

Kumar and Rao have recently suggested that the most 
effective way to search a tree of the sort we have been 
examining is to interleave n parallel searches for the 
first n children of the root node, and have shown that 
this technique reduces expected search time if the dis- 

tribution of the goal nodes is nonuniform along the 
fringe of the tree. 

This approach works for exactly the same reason as 
iterative broadening - the cost of making a mistake 
is minimized. Iterative broadening can be expected to 
lead to still further improvements, since parallel search 
cannot address difficulties arising from mistakes made 
below the first level of the search tree or from damage 
done if the first n children are all failing nodes. 

6 Conclusion 
Iterative broadening leads to computational speedups 
on search problems containing in excess of 40,000 nodes 
if either s > 1.5 (so that a successful node has, on aver- 
age, at least 1.5 successful children) or there is heuris- 
tic informat ion available indicating conditions under 
which a node is likely to lead to a solution. In the 
large depth limit, speedups can be expected whenever 
there are at least ebj2 solutions to the problem in ques- 
tion. Since the size of the fringe grows ex 

P 
onentially 

with the difficulty of the problem (and eb 2 doesn’t), 
we can expect this condition to be satisfied for almost 
all problems that admit multiple solutions. 

The speedups gained by our approach are often sev- 
eral orders of magnitude; this easily outweighs the cost, 
which appears to be at most a factor of 2. These the- 
oretical results are confirmed by experimentation on 
both randomly generated small problems and the large 
toy problem of crossword puzzle generation. 
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