
Path-Focused Duplication:
rocedure for

Sunil Issar
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890
si@cs.cmu.edu

Abstract
The mating paradigm for automated theorem provers
was proposed by Andrews to avoid some of the short-
comings in resolution. It facilitates automated deduc-
tion in higher-order and non-classical logics. More-
over, there are procedures which translate back and
forth between refutations by the mating method and
proofs in a natural deduction system.
We describe a search procedure, called path-focused
duplication, for finding refutations by the mating
method. This procedure, which is a complete strategy
for the mating method, addresses two crucial issues
(inadequately handled in current implementations) that
arise in the search for refutations: when and how to
expand the search space. It focuses on a particular path
that seems to cause an impasse in the search and ex-
pands the search space relative to this path in a way that
allows the search to immediately resolve the impasse.
The search space grows and shrinks dynamically to re-
spond to the requirements that have arisen or have been
met in the search process, thus avoiding an explosion
in the size of the search space. We have implemented
a prototype of this procedure and have been able to
easily solve many problems that an earlier program
found difficult.

Introduction
Much research in theorem proving has focused on im-
proving the efficiency of procedures based on Robin-
son’s resolution principle [Robinson, 19651. The mating
paradigm for automated theorem provers was proposed by
Andrews 1198 11 (and a similar approach called the connec-
tion method was suggested by Bibel D9821) to avoid con-
verting a well-formed formula (wff) to clause form, which
introduces redundancy and impedes analysis of the logical
structure of the wff. As remarked by Stickel [19861, so-
lutions to really hard problems will always require human
assistance in specifying strategies and determining where
to search for a solution; the mating method provides an at-
tractive framework for this interaction because it retains the
logical structure of the wff, and thus it is easier to see what

This work was supported by NSF grant CCR-8702699.

the search is trying to achieve. According to Bibelll9881,
the connection method has another advantage: it is compu-
tationally as adequate as resolution and has the potential
to do significantly better than resolution.

The mating paradigm facilitates automated deductions
in higher-order logic [Andrews, 19891 and non-classical
logics [Wallen, 19901. Refutations generated by the mat-
ing method are the underlying component of the proof
presentation procedures in [Andrews, 1980; Miller, 1987;
Rfenning, 1987; Pfenning and Nesmith, 19901. These pro-
cedures translate back and forth between refutations by the
mating method and proofs in a natural deduction system;
the two systems can thus serve as cooperating processes,
possibly in a semi-interactive environment, with each one
of them trying to exploit the advantages of the other.

In this paper we focus on two crucial issues that arise
in the search for refutations by the mating method: when
and how to expand the search space. The procedure path-

focused duplication, which is described later, addresses
these issues. It focuses on a particular path that seems to
cause an impasse in the search and expands the search space
relative to this path; this transforms a global problem-how
to expand the search space so that the search can succeed
in finding a refutation -to a more specific local problem-
which quantifier should we duplicate so that a particular
impasse can be resolved.

As discussed in [Andrews, 19811, we cannot specify
a bound on the size of the search space without sac-
rificing completeness, and each expansion increases the
complexity of the search. (Bibel and his colleagues
[Bibel et al., 19831 do provide bounds for some spe-
cial cases, but they also note that such bounds do not
exist in general, since first-order logic is undecidable.)
Search procedures for the mating method [Andrews, 1981;
Bibel, 19821 have been based on the level-saturation ap-
proach Khang and Lee, 19731: exhaustively search for a
refutation in a given wff before generating the expanded wff
at the next level. These levels introduce artificial constraints
in the search. The search procedures thus suffer from prob-
lems similar to the ones that arise in the depth-first approach,
for example, the Horizon Effect [Berliner, 19731. Since
these problems are caused by the level-saturation approach,
we rectify them by incorporating the expansion of the wff

WAR 221

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

intrinsically into the search process. Path-focused dupli-
cation achieves this objective by eagerly duplicating an
expansion node whenever the search seems to have reached
an impasse. This could result in extremely large wffs, but
we avoid this explosion in the search space by localizing
the duplication to the impasse that caused it. Localization
is achieved by a dynamically growing and shrinking wff
which responds to the requirements that have arisen or have
been met in the search process.

Just as model elimination [Loveland, 19781 and set of
support [Was et al., 19651 are complete strategies for reso-
lution, path-focused duplication is a complete strategy for
the mating method. Path-focused duplication facilitates
the introduction of many features (such as not looking for
refutations in which wffs occur more than once without
sacrificing completeness) which are mentioned in [Stickel,
19821 into the mating method.

The Mating Method
We start with a brief review of the mating method [Andrews,
1981; Bibel, 19821. As is customary in theorem proving,
we will remove existential quantifiers by Skolemization.
The wff can contain any connectives, but we will transform
them to disjunctions and conjunctions during translation to
jforms (defined below). Since the same literal (an atomic
wff or the negation of an atomic wff) can occur at several
places in the wff, we will assign a unique label to each
occurrence of a literal in the jform. A wff W is rectified iff
no variable occurs both bound and free in W and distinct
quantifier-occurrences of W bind distinct variables. In this
paper we will deal only with the wffs that are rectified.
This restriction is not a drawback of our procedures; we
consider the problem of how to implicitly rectify a wff to
be an important implementation detail, which is adequately
addressed in [Issar, 19901. l@l&$. . . @l, is the result
of concatenating the lists 11 , 12 , . . . ,I,. [n] denotes the set
{i 11 5 i < n} of positive integers.

A ,$ori(junctive form) is a representation as an and/or
tree for a wff of first-order logic and is defined by the
following BNF expression:

n
#arm = Literal 1 Qifonn, 1 AgOfWli 1 <Vxlx;? . . .x,> germ

i=l i=l
We will refer to jforms of the form <Vxlx2 . . . x,> jform as
expansion nodes and refer to x1 , x2, . . . ,x,, as the expansion
variables at this node. The expansion variables in any
jform J are the expansion variables that occur at expansion
nodes in J. The terminology expansion nodes and expansion
variables was introduced by Miller [1987]. We will refer
to expansion nodes by the expansion variables at that node.
For example, Vuv refers to the expansion node < Vuv >
-Quv V Quu in Figure 1. Jforms are displayed as two-
dimensional diagrams called vpforms (vertical path forms).
In a vpform the disjunctions are displayed horizontally and
the conjunctions are displayed vertically.

If x is an expansion variable in a jform J, then Jb Ix] is the
result of replacing all occurrences of x by y in J. Let M be
an expansion node in J, {Xi 1 i E [n]} be the set of expansion

222 AUTOMATED REASONING

variables in the subtree with root node M, {yi 1 i E [n]} be
a set of new variables that do not occur in J, and M’ be the
result of replacing xi by yi in M for each i E [n]; then M’ is
a copy of M. Consider the jform J’ that is obtained from J
by replacing M with the jform A MM’. We say that J’ is
obtained by a duplication from J; this duplication is almost
the same as quantifier duplication in [Andrews, 19811. We
also say that we duplicated M in J and denote J’ by J + M’.
J* is an amplijication of a jform J iff there exists a sequence
J = J1, J2 , . . . , Jm-1, J,,, = s* of jforms such that Ji+l is
obtained by a duplication from Ji for each i E [m - 11.

We next illustrate these definitions with a few examples:

Example 1 l[[Rab A VxVy[Rxy > [Ryx A Q~]]
A VuVv[Quv > Quu]]

r> [Qaa A Qbbll
The jform J1 , which is displayed as a vpform, in Fig-
ure 1 represents this wff. The labels in this jform refer
to the literals that are under them. Vx’y’ is a copy of
the expansion node by. J2 is an amplification of J1.

Example 2 -[[Pa V Pb V PC] > ElxPx]
The jform J3 in Figure 2 represents this wff. J4 is an
amplification of J3.
The set Paths(J) of paths through a jform J is defined

inductively as follows:

1.

2.
3.

4.

J = Literal. Then Paths(J) def (<J > }.

J = ~~zI#ormi. Then Paths(J) def uzl Paths(iformi).
J = all ~OmZi.

Then Paths(J) def {P1@P2@ . . . @Pn IPi E Paths(Ji)).
J =<Vxl . . .x,> #arm.
Then Paths(J) def (Cr> @P I P E Pathsworm)}.
A path through a jform J is an element of the set Paths(J).

We will sometimes consider a path to be an ordered set. A
partialpath through a jform Jis a subset of a path through J.
Our paths differ slightly from the paths in [Andrews, 19811
in that we add expansion nodes to the paths. We could as in
[Pfenning, 19871 consider a path to be an element of the set
of solution graphs [Nilsson, 19801 in J, but we are mainly
interested in literals and expansion nodes, and thus restrict
the paths to contain only these elements. To continue with
our examples:
1. <Lo,v~,Ll,vuv,L5,L6>isapaththroughJ1.
2. For i E {8,9, lo}, let Pi =<Li,VX, Lll>. Then Paths(J3)

= {p8,p9,plo).
3. Paths(J4) = {P@ 4x1, L :1, Vx2, Lf,> 1 P E Paths(J3)).

A substitution p is more general or less specijed than a
substitution +, denoted by p 5 $, iff there is a substitu-
tion 4 such that 4p = $. The relation 5 is transitive. A
substitution p is a uni$er of a set 24 of pairs of literals iff
(tl , t2) E 24 a ptl = pt2. We will say that 22 is unifiable iff
it has a unifier. p is the (essentially unique) most general
unifier of 24 iff p is a unifier of 24 and p 5 Q for any unifier
cuofU.

A connection in a jform J is any unordered pair (L,M)
of literals in J which are both on some path in J and have
the property that the set ((1L,M)} is unifiable. For ex-

J1 =

\

vxl

vx'y' =

Lo
Rab

Jxy

[

Ll

+w v

1

Li #q ” RY'X'
-Rx’ y’ [II G

Qx’Y’

J2 =

Lo
Rab

hv
L4 h

1Quv ’ Quu I
vu23

Li L$
-Qu2$ ’ Qu2u2

L6 v L7
VQaa y&b6 1

vx’ Lb [I 1Px’
if2 G [I YPx?

Figure 1: Vpforms for Example 1 Figure 2: Vpforms for Example 2

ample, (Ls, L7) is a connection in J1 . For any connection
C = (L,M), a~ denotes the most general unifier of the set
((lL,M)). A connection (L,M) in a jform J spans a path
P through J iff both L and M are on P.

Foraset M ofconnect.ions,&I def ((lL,M) I (L,M) E
M). A mating M for a jform J is a set of connections
in J such that the set UM is unifiable. For example,
Ml = {(LO,L1),(L3,Lq),(L5,L6)} is a mating for J1 and
{(Lll , Lg)} is a mating for J3. For any mating M, CM is
the most gene& unifier of the set UM.

A mating M for a jform J spans a path P through J
iff there is a connection in M which spans P. A mat-
ing M for a jform J is an extension of a mating L for J
iff L 2 M. A mating M for a jform J is p-acceptable
(path-acceptable) iff M spans all the paths through J. For
exw?le9 (&I I, L8h (L: 1, ~591, (Lfl, ho)} is a p-accep~ble
mating for J4. A refutation for a jform J is an ordered
pair (p , M) such that M is a p-acceptable mating for the
amplification J* of J. The mating method for automated
theorem provers is a method for finding refutations for a
jform J. Andrews [19811 shows that the mating method is
sound and complete:
Theorem I Completeness and Soundness of the Mating
Method Agorm J is unsatisfiable iff there is a p-acceptable
mating for some amplification 9* of J.

Path-Focused Duplication
The task of finding a refutation in the mating method can on
the basis of the definition of a refutation be naturally split
in two separate subtasks:

J3 =

J4 =

Ls L9 LlO
Pa ’ Pb ’ PC 1 vx

Lll [I TPX

L8 v Ls v LlO
Pa Pb PC I vx

1. Search for a p-acceptable mating for J: enumerate all
possible matings for J until either a p-acceptable mating
is found or all possible matings have been considered.

2. Replace J by some amplification of J: duplicate some
expansion node(s) in J. We consider this duplication to
be a global duplication because it affects the entire search
as described below.
This separation is the basis for the search procedures in

[Andrews, 1981; Bibel, 19821 and leads to deficiencies,
some of which are outlined by Stickel [19821. Such a
search process also violates a basic principle that should be
followed by the search strategies; according to Palay [19801:

If an action needs to be taken sometime in the search
then do it immediately. If that action were postponed,
unnecessary work may be performed. By taking the
action immediately, certain information may be ob-
tained that alters the current assumptions of the search,
making explorations of other nodes unnecessary.
Path-focused duplication is an abstract procedure for

finding refutations by the mating method, which incorpo-
rates amplifications (step 2 above) within the search process
(step 1 above) itself. The above mentioned principle is the
basis for this procedure: if a mating cannot be extended
to span a path P in the existing search space (we say that
the search seems to have reached an impasse), but some
progress can be made by duplicating an expansion node,

‘then duplicate immediately instead of postponing this ac-
tion. We consider the path P to be the cause for this du-
plication. The search space grows and shrinks dynamically
to respond to the changing requirements in the search: it

ISSAR 223

grows to allow an impasse to be resolved and shrinks so
that the amplification does not affect the entire search.

Let us look at the drawbacks of global duplication. The
objective of the mating procedures is to span all the paths
in the tree (jform). This can be done by independent
processes-one for each path-which must maintain the
compatibility of the substitutions for the shared variables.
Each duplication increases the number of elements on some
paths and in most cases the number of paths in the tree.
For example, duplicating either of the expansion nodes Vxy
or VW in Ji doubles the number of paths in the resulting
jform and each path has more literals. The global duplica-
tions thus seem to require greater overall effort, especially
if there is a refutation in a smaller tree, which we did not
find because we have not exhaustively searched all smaller
trees. We address the resulting dilemma-should we or
should we not go for global duplication- by localizing the
duplication to the path that caused this duplication: it is as
if each independent process amplifies its own copy of the
tree, and the other processes are intentionally oblivious to
these changes. We illustrate localization with an example:

Example 3 Consider the jform J1 in Example 1. The
mating M 1 cannot be extended to span the path Q =<
LO, Vxy, L2, L3, VW, Ls , L7 >. We will then duplicate
one of the expansion nodes, say Vxy. The node Vx’y’
which is a copy of Vxy is displayed in the lower left
corner of Figure 1. Because we localize the duplication
to Q, we will proceed as if the path Q has been replaced
by the following two paths:

~0,v~,L2,L3,vx1y1,L~,vuv,L5,L7>

~0,~~,L2,L3,~~1y1,L;:,L~,~~v,L5,L7>
There are 7 other paths in Ji that could also be extended
like Q, but we will not extend them. There are 16
paths in Jr + Vx’ y’ ; the effect of localization is that the
search space will have only 9 paths after duplicating
the expansion node Vxy.
The behavior of the search is partially determined by the

number and size of the paths in the search space. Dupli-
cation causes an explosion in their number. Path-focused
duplication attempts to directly control the number and size
of the paths in the search space without restricting quantifier
duplication; this is where the strength of the procedure lies.

We next describe path-focused duplication, which is a
procedure for finding refutations in a jform J. We use the
state-space representation for this description. A state is a
pair (Open, M) where Open is the set of partial paths not
spanned by the mating and M is the mating that is being
generated. The objective of the search is to find a sequence
of operations that starts from the initial state and leads to
the goal state.

1. Initial State:
(a) Open = Paths(J).
(b) M=0.
2. Goal State: Open = 8.
3. Operations. There are two operations which trans-

form the states:

(a) Extension. Select a connection C on
Open such that &/MU {cl is unifiable.

some PE

i. M c- M U {C}
ii. Open t- Open - (P)

(b) Duplication. Select an expansion node E on some
P E Open. Let Et be a copy of E. This can be a
new copy or a copy that was used earlier.
Open t- Open- {P)U{P@Q 1 Q E Paths(E

We illustrate path-focused duplication with an example:
Example 4 Consider the jform J1 in Example 1 (dis-
played in Figure 1). We specify a partial control strat-
egy: use first-in-first-out (FIFO) to select elements
from Open, and always make a new copy of the expan-
sion node that is selected in the duplication operation.
Figure 3 shows how path-focused duplication found
a refutation for Jl. Each row in Figure 3 shows the
elements in Open after the operation had been applied
and also lists either the connection that was added to
M or the copy of the expansion node that was used.
If the path selected in a row was already spanned by
a connection added in an earlier row, then no opera-
tion is shown. We would get the jform J2 (displayed
in Figure 1) if the duplications implicit in step 8 and
step 10 were explicitly generated. The mating M con-
sists of the connections listed in the column marked
Connection. (J2, M) is a refutation for the jform J1.
Thereare8pathsinJt: <LO,v&&vuv,L4,L6>,
~O,~~,Ll,~~~,L4,L7>r<Lg,~~,Ll,~~v,L5,L6~,

~o,&Y,h,~wkL7>r
<Lg,v~,L2,L3,vuv,Lq,L6>,

40, vq,L2,L3, v~v,L4,L7>,
<LO,v~,L2,L3,vuV,L5,L6>,

40, vv,L2&3, vuv,‘% ,L7>-
For i E [8], let Pi be the ith element in this sequence.
Further, let Psi = P& <v+‘,L;>, P82 = P&$ <
vdy’,L;,L:>, p821 = Ps2 @ <vU2~, L;> and Ps22 =
Ps2 @ <Vu2$, Lz >. All the Pi’s are partial paths in
J2.

Operation Node Connection Open
0. (Pi 11 5 i < 8)
1. Extension Cl 9 Lo) {Pij2<is8}
2. {Pi13<iL8}
3. {Pi14si<8}
4. (Pi15siz8)
5. Extension (L4, L3) {Pij6<i<8}
6. {Pil7<i<8}
7. Extension (L6,LS) {pd
8. Duplication Vx’ y’ {PSl > p82)

9. Extension (L: 9 L2) {pd
10. Duplication Vu23 (p821, p822)
11. Extension (q, L:) (p822)

12. Extension 0% L7) 0

Figure 3: A Refutation for the Jform J1 in Example 1

224 AUTOMATED REASONING

It is proved in [Issar, 19901 that path-focused duplication
is a complete and sound procedure for finding refutations:
Theorem 2 Consider anytiorm J.
Soundness Theorem: If there is a sequence of operations
that starts from the initial state and leads to the goal state,
then M is a p-acceptable mating for some amplijcation of
J.
Completeness Theorem: If J is unsatisBable, then there
is a sequence of operations that starts from the initial state
and leads to the goal state.

Let us look at some advantages of path-focused duplica-
tion:
1. The number of paths considered by path-focused duplica-

tion is in most cases significantly smaller than the number
of paths in the search space. For example, there are 32
paths in J2, but path-focused duplication found a refuta-
tion by considering only 12 paths. Moreover, 10 of the
12 paths (all except Ps21 and Ps22) were proper subsets
of paths in J2.

2. Since the effect of any duplication is local to a path,
path-focused duplication can afford to be adventurous
and separately try all possible duplications that might
solve an impasse.

3. We can easily incorporate the set of support strategy [Was
et al., 19651 into path-focused duplication: we assume
that the jform is of the form l\Li Ci, we can identify one
of the Ci’S to be the goal, and the remaining Ci’S to be the
axioms; initialize Open to be the set of paths through the
goal, and extend the duplication operation so that it can
select the elements in the set of axioms also, in addition to
selecting the expansion nodes. The details are provided
in [Issar, 19901.

4. Path-focused duplication does not lose any advantages
that might be associated with the procedures based on
the level-saturation approach, since it can simulate the
level-saturation procedures. The level-saturation ap-
proach specifies the copies of the expansion nodes that
can be used before the search begins. If we restrict the
duphcation operation to select only these copies, then the
two procedures are almost identical.

Status and Future Work
We have implemented a first-order theorem prover (without
equality) based on path-focused duplication. Some of the
key features in the control structure are as follows:
e Use the depth-first iterative deepening strategy to control

the number of copies of an expansion node.
e Always try the extension operation before the duplication

operation.
e Always make a new copy of the expansion node that is

selected in the duplication operation.
e If a mating cannot be extended to a p-acceptable mating

within the assigned depth, then backtrack to the last state
where an alternate connection can be added.
We have tested our prover on some problems that are

available in the theorem-proving literature. This program
is written in CMU Common Lisp, and all experiments were

Figure 4: Path-Focused Duplication

Figure 5: Path-Focused Duplication vs Level-Saturation

performed on an IBM-RT with 12 megabytes memory. Al-
though an earlier program for the mating method that was
based on the level-saturation approach could not solve most
of the benchmark problems from [Chang and Lee, 19731,
our program found all of them easy. We could also easily
solve the Iirst 46 problems-most of the remaining prob-
lems are based on equality-in D?elletier, 19861. The table
in Figure 4 presents the results for some problems: the first
two problems were taken from [Andrews, 19861, the next
three problems were taken from [Andrews, 19811, the sixth
problem was taken from [Pelletier, 19861, and the last two
problems were taken from [S tickel, 19861.

The table in Figure 5 compares the performance of our
implementation with that of an earlier program’ which was
based on the level-saturation approach. (X2 11 Sa is obtained
by minimizing the scope of the quantifiers in X21 15.) We
use two measures for this comparison:
e Time. Run time for finding a refutation.
e Space. Number of bytes that were consed by the program

as reported by Lisp.
We can get a higher-order theorem prover as in [Andrews,

1981; Pfenning, 19871, which is capable of handling equal-
ity also, by replacing the &t-order unification algorithm
that is used in this implementation with Huet’s higher-order
unification algorithm [Huet, 19751. The implementation
mentioned in this section is a prototype whose only ob-
jective is to demonstrate the effectiveness of path-focused
duplication. There are many strategies described in [Issar,
19901 which can improve the performance of this program,

‘A P rocedure based on the level-saturation approach is im-
plemented in TPS [Andrews et al., 19881. We use this pro-
gram for gathering data about the performance of level-saturation
procedures.

158~~ 225

but which have not been implemented yet. Some strate-
gies, which are independent of the control structure, are as
follows:
o A connection graph [Kowalski, 1975; Andrews, 19811

can be used to aid the extension operation in finding a
connection on a path and the duplication operation in
selecting an expansion node.

o We allow the duplication operation to select any expan-
sion node on a path. Some of these nodes may be in-
appropriate because they do not have any role in the
impasse that necessitated the duplication; we can restrict
the duplication operation to disregard such nodes.

o The same combination of duplications may arise several
times on a path. We illustrate this with an example: sup-
pose there are three expansion nodes 1,2, and 3 on a path;
the duplication operation may try various permutations
of these nodes, for example, (1,2, 3), (1,3,2), and (3,
1,2). We can restrict the duplication operation to avoid
this redundancy. We have to be careful, though, because
the duplication operation is not commutative, and such a
restriction can affect the efficiency of the search.
There are other strategies that affect the control structure.

An example of such a strategy is to use heuristic information
as suggested by Stickel [19861 to perform early cutoffs
within a depth and to increment the depth.

Some of the strategies in IIssar, 19901 have been imple-
mented in a propositional theorem prover; the performance
of this prover compares favorably with the performance
of the resolution provers. We thus have reason to believe
that these strategies will improve the performance of our
first-order prover too.

Acknowledgements
First and foremost I acknowledge Professor Peter Andrews,
my thesis advisor. His comments on many earlier drafts
and suggestions regarding terminology helped to improve
the clarity of this paper. I would also like to thank Frank
Pr’enning and Dan Nesmith for many discussions and for
their enthusiasm about my work.

References
Andrews, Peter B.; Issar, Sunil; Nesmith, Daniel; and
‘Pfenning, Frank 1988. The TPS theorem proving system.
In 9th International Conference on Automated Deduction,
Lecture Notes in Computer Science 3 10. Springer-Verlag.
760-761.
Andrews, Peter B. 1980. Transforming matings into natu-
ral deduction proofs. In 5th Conference on Automated De-
duction, Lecture Notes in Computer Science 87. Springer-
Verlag. 28 l-292.
Andrews, Peter B. 1981. Theorem proving via general
matings. Journal of ACM 28: 193-214.
Andrews, Peter B. 1986. An Introduction to Mathematical
Logic and Type Theory: To Truth Through Proof. Aca-
demic Press.
Andrews, Peter B. 1989. On connections and higher-order
logic. Journal of Automated Reasoning 5:257-29 1.

Berliner, Hans 1973. Some necessary conditions for a mas-
ter chess program. In Third International Joint Conference
on Artificial Intelligence. 77-85.
Bibel, Wolfgang; Eder, Elmar; and Fronhoefer, Bertram
1983. Towards an advanced implementation of the con-
nection method. In Eighth International Joint Conference
on Artificial Intelligence. 920-922.
Bibel, Wolfgang 1982. Automated Theorem Proving.
Vieweg, Braunschweig.
Bibel, W. 1988. On the comparative complexity of resolu-
tion and the connection method. Technical Report BRC-
88-6, University of British Columbia, Vancouver.
Chang, C. and Lee, R.C. 1973. Symbolic Logic and Me-
chanical Theorem Proving. Academic Press.
Huet, Gerard P. 1975. A unification algorithm for typed
X-calculus. Theoretical Computer Science 1127-57.
Issar, Sunil 1990. Search strategies for general matings.
Technical Report Forthcoming, Carnegie Mellon Univer-
sity, Pittsburgh.
Kowalski, Robert 1975. A proof procedure using connec-
tion graphs. Journal of ACM 22:572-595.
Loveland, Donald W. 1978. Automated Theorem Proving:
A Logical Basis. North Holland.
Miller, Dale A. 1987. A compact representation of proofs.
Studia Logica 46(4):347-370.
Nilsson, Nils J. 1980. Principles of Arti@ial Intelligence.
Tioga Publishing Company.
Palay, Andrew J. 1980. An experimental analysis of the
B* tree searching algorithm. Technical Report CMU-CS-
80-106, Carnegie Mellon University, Pittsburgh.
Pelletier, Francis Jeffry 1986. Seventy five problems for
testing automatic theorem provers. Journal of Automated
Reasoning 2: 191-216.
Pfenning, Frank and Nesmith, Dan 1990. Presenting in-
tuitive deductions via symmetric simplification. In 10th
International Conference on Automated Deduction. To ap-
pear.
Pfenning, Frank 1987. Proof Transformations in Higher-
Order Logic. Ph.D. Dissertation, Carnegie Mellon Uni-
versity.
Robinson, J. A. 1965. A machine-oriented logic based on
the resolution principle. Journal of ACM 12:234 1.
Stickel, Mark E. 1982. A nonclausal connection-graph
resolution theorem-provingprogram. In AAAI-82 National
Conference on ArtiJicial Intelligence. 229-233.
Stickel, Mark E. 1986. A PROLOG technology theo-
rem prover: implementation by an extended PROLOG
compiler. In 8th International Conference on Auto-
matedDeduction, Lecture Notes in Computer Science 230.
Springer-Verlag. 573-587.
Wallen, Lincoln A. 1990. Automated Proof Search in
Non-Classical Logics: EfBcient Matrix Proof Methodsfor
Modal and In tuitionistic Logics. The MIT Press.
Wos, Lawrence; Robinson, George A.; and Carson,
Daniel F. 1965. Efficiency and completeness of the set
of support strategy in theorem proving. Journal of ACM
12:536-541.

226 AUTOMATEDREASONING

