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Abstract 
The mating paradigm for automated theorem provers 
was proposed by Andrews to avoid some of the short- 
comings in resolution. It facilitates automated deduc- 
tion in higher-order and non-classical logics. More- 
over, there are procedures which translate back and 
forth between refutations by the mating method and 
proofs in a natural deduction system. 
We describe a search procedure, called path-focused 
duplication, for finding refutations by the mating 
method. This procedure, which is a complete strategy 
for the mating method, addresses two crucial issues 
(inadequately handled in current implementations) that 
arise in the search for refutations: when and how to 
expand the search space. It focuses on a particular path 
that seems to cause an impasse in the search and ex- 
pands the search space relative to this path in a way that 
allows the search to immediately resolve the impasse. 
The search space grows and shrinks dynamically to re- 
spond to the requirements that have arisen or have been 
met in the search process, thus avoiding an explosion 
in the size of the search space. We have implemented 
a prototype of this procedure and have been able to 
easily solve many problems that an earlier program 
found difficult. 

Introduction 
Much research in theorem proving has focused on im- 
proving the efficiency of procedures based on Robin- 
son’s resolution principle [Robinson, 19651. The mating 
paradigm for automated theorem provers was proposed by 
Andrews 1198 11 (and a similar approach called the connec- 
tion method was suggested by Bibel D9821) to avoid con- 
verting a well-formed formula (wff) to clause form, which 
introduces redundancy and impedes analysis of the logical 
structure of the wff. As remarked by Stickel [19861, so- 
lutions to really hard problems will always require human 
assistance in specifying strategies and determining where 
to search for a solution; the mating method provides an at- 
tractive framework for this interaction because it retains the 
logical structure of the wff, and thus it is easier to see what 
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the search is trying to achieve. According to Bibelll9881, 
the connection method has another advantage: it is compu- 
tationally as adequate as resolution and has the potential 
to do significantly better than resolution. 

The mating paradigm facilitates automated deductions 
in higher-order logic [Andrews, 19891 and non-classical 
logics [Wallen, 19901. Refutations generated by the mat- 
ing method are the underlying component of the proof 
presentation procedures in [Andrews, 1980; Miller, 1987; 
Rfenning, 1987; Pfenning and Nesmith, 19901. These pro- 
cedures translate back and forth between refutations by the 
mating method and proofs in a natural deduction system; 
the two systems can thus serve as cooperating processes, 
possibly in a semi-interactive environment, with each one 
of them trying to exploit the advantages of the other. 

In this paper we focus on two crucial issues that arise 
in the search for refutations by the mating method: when 
and how to expand the search space. The procedure path- 

focused duplication, which is described later, addresses 
these issues. It focuses on a particular path that seems to 
cause an impasse in the search and expands the search space 
relative to this path; this transforms a global problem-how 
to expand the search space so that the search can succeed 
in finding a refutation -to a more specific local problem- 
which quantifier should we duplicate so that a particular 
impasse can be resolved. 

As discussed in [Andrews, 19811, we cannot specify 
a bound on the size of the search space without sac- 
rificing completeness, and each expansion increases the 
complexity of the search. (Bibel and his colleagues 
[Bibel et al., 19831 do provide bounds for some spe- 
cial cases, but they also note that such bounds do not 
exist in general, since first-order logic is undecidable.) 
Search procedures for the mating method [Andrews, 1981; 
Bibel, 19821 have been based on the level-saturation ap- 
proach Khang and Lee, 19731: exhaustively search for a 
refutation in a given wff before generating the expanded wff 
at the next level. These levels introduce artificial constraints 
in the search. The search procedures thus suffer from prob- 
lems similar to the ones that arise in the depth-first approach, 
for example, the Horizon Effect [Berliner, 19731. Since 
these problems are caused by the level-saturation approach, 
we rectify them by incorporating the expansion of the wff 
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intrinsically into the search process. Path-focused dupli- 
cation achieves this objective by eagerly duplicating an 
expansion node whenever the search seems to have reached 
an impasse. This could result in extremely large wffs, but 
we avoid this explosion in the search space by localizing 
the duplication to the impasse that caused it. Localization 
is achieved by a dynamically growing and shrinking wff 
which responds to the requirements that have arisen or have 
been met in the search process. 

Just as model elimination [Loveland, 19781 and set of 
support [Was et al., 19651 are complete strategies for reso- 
lution, path-focused duplication is a complete strategy for 
the mating method. Path-focused duplication facilitates 
the introduction of many features (such as not looking for 
refutations in which wffs occur more than once without 
sacrificing completeness) which are mentioned in [Stickel, 
19821 into the mating method. 

The Mating Method 
We start with a brief review of the mating method [Andrews, 
1981; Bibel, 19821. As is customary in theorem proving, 
we will remove existential quantifiers by Skolemization. 
The wff can contain any connectives, but we will transform 
them to disjunctions and conjunctions during translation to 
jforms (defined below). Since the same literal (an atomic 
wff or the negation of an atomic wff) can occur at several 
places in the wff, we will assign a unique label to each 
occurrence of a literal in the jform. A wff W is rectified iff 
no variable occurs both bound and free in W and distinct 
quantifier-occurrences of W bind distinct variables. In this 
paper we will deal only with the wffs that are rectified. 
This restriction is not a drawback of our procedures; we 
consider the problem of how to implicitly rectify a wff to 
be an important implementation detail, which is adequately 
addressed in [Issar, 19901. l@l&$ . . . @l, is the result 
of concatenating the lists 11 , 12 , . . . ,I,. [n] denotes the set 
{i 11 5 i < n} of positive integers. 

A ,$ori(junctive form) is a representation as an and/or 
tree for a wff of first-order logic and is defined by the 
following BNF expression: 

n 
#arm = Literal 1 Qifonn, 1 AgOfWli 1 <Vxlx;? . . .x,> germ 

i=l i=l 
We will refer to jforms of the form <Vxlx2 . . . x,> jform as 
expansion nodes and refer to x1 , x2, . . . ,x,, as the expansion 
variables at this node. The expansion variables in any 
jform J are the expansion variables that occur at expansion 
nodes in J. The terminology expansion nodes and expansion 
variables was introduced by Miller [1987]. We will refer 
to expansion nodes by the expansion variables at that node. 
For example, Vuv refers to the expansion node < Vuv > 
-Quv V Quu in Figure 1. Jforms are displayed as two- 
dimensional diagrams called vpforms (vertical path forms). 
In a vpform the disjunctions are displayed horizontally and 
the conjunctions are displayed vertically. 

If x is an expansion variable in a jform J, then Jb Ix] is the 
result of replacing all occurrences of x by y in J. Let M be 
an expansion node in J, {Xi 1 i E [n]} be the set of expansion 
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variables in the subtree with root node M, {yi 1 i E [n]} be 
a set of new variables that do not occur in J, and M’ be the 
result of replacing xi by yi in M for each i E [n]; then M’ is 
a copy of M. Consider the jform J’ that is obtained from J 
by replacing M with the jform A MM’. We say that J’ is 
obtained by a duplication from J; this duplication is almost 
the same as quantifier duplication in [Andrews, 19811. We 
also say that we duplicated M in J and denote J’ by J + M’. 
J* is an amplijication of a jform J iff there exists a sequence 
J = J1, J2 , . . . , Jm-1, J,,, = s* of jforms such that Ji+l is 
obtained by a duplication from Ji for each i E [m - 11. 

We next illustrate these definitions with a few examples: 

Example 1 l[ [ Rab A VxVy[Rxy > [Ryx A Q~]] 
A VuVv[Quv > Quu]] 

r> [Qaa A Qbbll 
The jform J1 , which is displayed as a vpform, in Fig- 
ure 1 represents this wff. The labels in this jform refer 
to the literals that are under them. Vx’y’ is a copy of 
the expansion node by. J2 is an amplification of J1. 

Example 2 -[[Pa V Pb V PC] > ElxPx] 
The jform J3 in Figure 2 represents this wff. J4 is an 
amplification of J3. 
The set Paths(J) of paths through a jform J is defined 

inductively as follows: 

1. 

2. 
3. 

4. 

J = Literal. Then Paths(J) def ( <J > }. 

J = ~~zI#ormi. Then Paths(J) def uzl Paths(iformi). 
J = all ~OmZi. 

Then Paths(J) def {P1@P2@ . . . @Pn IPi E Paths(Ji)). 
J =<Vxl . . .x,> #arm. 
Then Paths(J) def (Cr> @P I P E Pathsworm)}. 
A path through a jform J is an element of the set Paths(J). 

We will sometimes consider a path to be an ordered set. A 
partialpath through a jform Jis a subset of a path through J. 
Our paths differ slightly from the paths in [Andrews, 19811 
in that we add expansion nodes to the paths. We could as in 
[Pfenning, 19871 consider a path to be an element of the set 
of solution graphs [Nilsson, 19801 in J, but we are mainly 
interested in literals and expansion nodes, and thus restrict 
the paths to contain only these elements. To continue with 
our examples: 
1. <Lo,v~,Ll,vuv,L5,L6>isapaththroughJ1. 
2. For i E {8,9, lo}, let Pi =<Li,VX, Lll>. Then Paths(J3) 

= {p8,p9,plo). 
3. Paths(J4) = {P@ 4x1, L :1, Vx2, Lf,> 1 P E Paths(J3)). 

A substitution p is more general or less specijed than a 
substitution +, denoted by p 5 $, iff there is a substitu- 
tion 4 such that 4p = $. The relation 5 is transitive. A 
substitution p is a uni$er of a set 24 of pairs of literals iff 
(tl , t2) E 24 a ptl = pt2. We will say that 22 is unifiable iff 
it has a unifier. p is the (essentially unique) most general 
unifier of 24 iff p is a unifier of 24 and p 5 Q for any unifier 
cuofU. 

A connection in a jform J is any unordered pair (L,M) 
of literals in J which are both on some path in J and have 
the property that the set ((1L,M)} is unifiable. For ex- 



J1 = 

\ 

vxl 

vx'y' = 

Lo 
Rab 

Jxy 

[ 

Ll 

+w v 

1 

Li #q ” RY'X' 
-Rx’ y’ [ II G 

Qx’Y’ 

J2 = 

Lo 
Rab 

hv 
L4 h 

1Quv ’ Quu I 
vu23 

Li L$ 
-Qu2$ ’ Qu2u2 

L6 v L7 
VQaa y&b6 1 

vx’ Lb [ I 1Px’ 
if2 G [ I YPx? 

Figure 1: Vpforms for Example 1 Figure 2: Vpforms for Example 2 

ample, (Ls, L7) is a connection in J1 . For any connection 
C = (L,M), a~ denotes the most general unifier of the set 
((lL,M)). A connection (L,M) in a jform J spans a path 
P through J iff both L and M are on P. 

Foraset M ofconnect.ions,&I def ((lL,M) I (L,M) E 
M). A mating M for a jform J is a set of connections 
in J such that the set UM is unifiable. For example, 
Ml = {(LO,L1),(L3,Lq),(L5,L6)} is a mating for J1 and 
{(Lll , Lg)} is a mating for J3. For any mating M, CM is 
the most gene& unifier of the set UM. 

A mating M for a jform J spans a path P through J 
iff there is a connection in M which spans P. A mat- 
ing M for a jform J is an extension of a mating L for J 
iff L 2 M. A mating M for a jform J is p-acceptable 
(path-acceptable) iff M spans all the paths through J. For 
exw?le9 (&I I, L8h (L: 1, ~591, (Lfl, ho)} is a p-accep~ble 
mating for J4. A refutation for a jform J is an ordered 
pair (p , M) such that M is a p-acceptable mating for the 
amplification J* of J. The mating method for automated 
theorem provers is a method for finding refutations for a 
jform J. Andrews [19811 shows that the mating method is 
sound and complete: 
Theorem I Completeness and Soundness of the Mating 
Method Agorm J is unsatisfiable iff there is a p-acceptable 
mating for some amplification 9* of J. 

Path-Focused Duplication 
The task of finding a refutation in the mating method can on 
the basis of the definition of a refutation be naturally split 
in two separate subtasks: 

J3 = 

J4 = 

Ls L9 LlO 
Pa ’ Pb ’ PC 1 vx 

Lll [ I TPX 

L8 v Ls v LlO 
Pa Pb PC I vx 

1. Search for a p-acceptable mating for J: enumerate all 
possible matings for J until either a p-acceptable mating 
is found or all possible matings have been considered. 

2. Replace J by some amplification of J: duplicate some 
expansion node(s) in J. We consider this duplication to 
be a global duplication because it affects the entire search 
as described below. 
This separation is the basis for the search procedures in 

[Andrews, 1981; Bibel, 19821 and leads to deficiencies, 
some of which are outlined by Stickel [19821. Such a 
search process also violates a basic principle that should be 
followed by the search strategies; according to Palay [ 19801: 

If an action needs to be taken sometime in the search 
then do it immediately. If that action were postponed, 
unnecessary work may be performed. By taking the 
action immediately, certain information may be ob- 
tained that alters the current assumptions of the search, 
making explorations of other nodes unnecessary. 
Path-focused duplication is an abstract procedure for 

finding refutations by the mating method, which incorpo- 
rates amplifications (step 2 above) within the search process 
(step 1 above) itself. The above mentioned principle is the 
basis for this procedure: if a mating cannot be extended 
to span a path P in the existing search space (we say that 
the search seems to have reached an impasse), but some 
progress can be made by duplicating an expansion node, 

‘then duplicate immediately instead of postponing this ac- 
tion. We consider the path P to be the cause for this du- 
plication. The search space grows and shrinks dynamically 
to respond to the changing requirements in the search: it 
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grows to allow an impasse to be resolved and shrinks so 
that the amplification does not affect the entire search. 

Let us look at the drawbacks of global duplication. The 
objective of the mating procedures is to span all the paths 
in the tree (jform). This can be done by independent 
processes-one for each path-which must maintain the 
compatibility of the substitutions for the shared variables. 
Each duplication increases the number of elements on some 
paths and in most cases the number of paths in the tree. 
For example, duplicating either of the expansion nodes Vxy 
or VW in Ji doubles the number of paths in the resulting 
jform and each path has more literals. The global duplica- 
tions thus seem to require greater overall effort, especially 
if there is a refutation in a smaller tree, which we did not 
find because we have not exhaustively searched all smaller 
trees. We address the resulting dilemma-should we or 
should we not go for global duplication- by localizing the 
duplication to the path that caused this duplication: it is as 
if each independent process amplifies its own copy of the 
tree, and the other processes are intentionally oblivious to 
these changes. We illustrate localization with an example: 

Example 3 Consider the jform J1 in Example 1. The 
mating M 1 cannot be extended to span the path Q =< 
LO, Vxy, L2, L3, VW, Ls , L7 >. We will then duplicate 
one of the expansion nodes, say Vxy. The node Vx’y’ 
which is a copy of Vxy is displayed in the lower left 
corner of Figure 1. Because we localize the duplication 
to Q, we will proceed as if the path Q has been replaced 
by the following two paths: 

~0,v~,L2,L3,vx1y1,L~,vuv,L5,L7> 

~0,~~,L2,L3,~~1y1,L;:,L~,~~v,L5,L7> 
There are 7 other paths in Ji that could also be extended 
like Q, but we will not extend them. There are 16 
paths in Jr + Vx’ y’ ; the effect of localization is that the 
search space will have only 9 paths after duplicating 
the expansion node Vxy. 
The behavior of the search is partially determined by the 

number and size of the paths in the search space. Dupli- 
cation causes an explosion in their number. Path-focused 
duplication attempts to directly control the number and size 
of the paths in the search space without restricting quantifier 
duplication; this is where the strength of the procedure lies. 

We next describe path-focused duplication, which is a 
procedure for finding refutations in a jform J. We use the 
state-space representation for this description. A state is a 
pair (Open, M) where Open is the set of partial paths not 
spanned by the mating and M is the mating that is being 
generated. The objective of the search is to find a sequence 
of operations that starts from the initial state and leads to 
the goal state. 

1. Initial State: 
(a) Open = Paths(J). 
(b) M=0. 
2. Goal State: Open = 8. 
3. Operations. There are two operations which trans- 

form the states: 

(a) Extension. Select a connection C on 
Open such that &/MU {cl is unifiable. 

some PE 

i. M c- M U {C} 
ii. Open t- Open - (P) 

(b) Duplication. Select an expansion node E on some 
P E Open. Let Et be a copy of E. This can be a 
new copy or a copy that was used earlier. 
Open t- Open- {P)U{P@Q 1 Q E Paths(E 

We illustrate path-focused duplication with an example: 
Example 4 Consider the jform J1 in Example 1 (dis- 
played in Figure 1). We specify a partial control strat- 
egy: use first-in-first-out (FIFO) to select elements 
from Open, and always make a new copy of the expan- 
sion node that is selected in the duplication operation. 
Figure 3 shows how path-focused duplication found 
a refutation for Jl. Each row in Figure 3 shows the 
elements in Open after the operation had been applied 
and also lists either the connection that was added to 
M or the copy of the expansion node that was used. 
If the path selected in a row was already spanned by 
a connection added in an earlier row, then no opera- 
tion is shown. We would get the jform J2 (displayed 
in Figure 1) if the duplications implicit in step 8 and 
step 10 were explicitly generated. The mating M con- 
sists of the connections listed in the column marked 
Connection. (J2, M) is a refutation for the jform J1. 
Thereare8pathsinJt: <LO,v&&vuv,L4,L6>, 
~O,~~,Ll,~~~,L4,L7>r<Lg,~~,Ll,~~v,L5,L6~, 

~o,&Y,h,~wkL7>r 
<Lg,v~,L2,L3,vuv,Lq,L6>, 

40, vq,L2,L3, v~v,L4,L7>, 
<LO,v~,L2,L3,vuV,L5,L6>, 

40, vv,L2&3, vuv,‘% ,L7>- 
For i E [8], let Pi be the ith element in this sequence. 
Further, let Psi = P& <v+‘,L;>, P82 = P&$ < 
vdy’,L;,L:>, p821 = Ps2 @ <vU2~, L;> and Ps22 = 
Ps2 @ <Vu2$, Lz >. All the Pi’s are partial paths in 
J2. 

Operation Node Connection Open 
0. (Pi 11 5 i < 8) 
1. Extension Cl 9 Lo) {Pij2<is8} 
2. {Pi13<iL8} 
3. {Pi14si<8} 
4. (Pi15siz8) 
5. Extension (L4, L3) {Pij6<i<8} 
6. {Pil7<i<8} 
7. Extension (L6,LS) {pd 
8. Duplication Vx’ y’ {PSl > p82) 

9. Extension (L: 9 L2) {pd 
10. Duplication Vu23 (p821, p822) 
11. Extension (q, L:) (p822) 

12. Extension 0% L7) 0 

Figure 3: A Refutation for the Jform J1 in Example 1 

224 AUTOMATED REASONING 



It is proved in [Issar, 19901 that path-focused duplication 
is a complete and sound procedure for finding refutations: 
Theorem 2 Consider anytiorm J. 
Soundness Theorem: If there is a sequence of operations 
that starts from the initial state and leads to the goal state, 
then M is a p-acceptable mating for some amplijcation of 
J. 
Completeness Theorem: If J is unsatisBable, then there 
is a sequence of operations that starts from the initial state 
and leads to the goal state. 

Let us look at some advantages of path-focused duplica- 
tion: 
1. The number of paths considered by path-focused duplica- 

tion is in most cases significantly smaller than the number 
of paths in the search space. For example, there are 32 
paths in J2, but path-focused duplication found a refuta- 
tion by considering only 12 paths. Moreover, 10 of the 
12 paths (all except Ps21 and Ps22) were proper subsets 
of paths in J2. 

2. Since the effect of any duplication is local to a path, 
path-focused duplication can afford to be adventurous 
and separately try all possible duplications that might 
solve an impasse. 

3. We can easily incorporate the set of support strategy [Was 
et al., 19651 into path-focused duplication: we assume 
that the jform is of the form l\Li Ci, we can identify one 
of the Ci’S to be the goal, and the remaining Ci’S to be the 
axioms; initialize Open to be the set of paths through the 
goal, and extend the duplication operation so that it can 
select the elements in the set of axioms also, in addition to 
selecting the expansion nodes. The details are provided 
in [Issar, 19901. 

4. Path-focused duplication does not lose any advantages 
that might be associated with the procedures based on 
the level-saturation approach, since it can simulate the 
level-saturation procedures. The level-saturation ap- 
proach specifies the copies of the expansion nodes that 
can be used before the search begins. If we restrict the 
duphcation operation to select only these copies, then the 
two procedures are almost identical. 

Status and Future Work 
We have implemented a first-order theorem prover (without 
equality) based on path-focused duplication. Some of the 
key features in the control structure are as follows: 
e Use the depth-first iterative deepening strategy to control 

the number of copies of an expansion node. 
e Always try the extension operation before the duplication 

operation. 
e Always make a new copy of the expansion node that is 

selected in the duplication operation. 
e If a mating cannot be extended to a p-acceptable mating 

within the assigned depth, then backtrack to the last state 
where an alternate connection can be added. 
We have tested our prover on some problems that are 

available in the theorem-proving literature. This program 
is written in CMU Common Lisp, and all experiments were 

Figure 4: Path-Focused Duplication 

Figure 5: Path-Focused Duplication vs Level-Saturation 

performed on an IBM-RT with 12 megabytes memory. Al- 
though an earlier program for the mating method that was 
based on the level-saturation approach could not solve most 
of the benchmark problems from [Chang and Lee, 19731, 
our program found all of them easy. We could also easily 
solve the Iirst 46 problems-most of the remaining prob- 
lems are based on equality-in D?elletier, 19861. The table 
in Figure 4 presents the results for some problems: the first 
two problems were taken from [Andrews, 19861, the next 
three problems were taken from [Andrews, 19811, the sixth 
problem was taken from [Pelletier, 19861, and the last two 
problems were taken from [S tickel, 19861. 

The table in Figure 5 compares the performance of our 
implementation with that of an earlier program’ which was 
based on the level-saturation approach. (X2 11 Sa is obtained 
by minimizing the scope of the quantifiers in X21 15.) We 
use two measures for this comparison: 
e Time. Run time for finding a refutation. 
e Space. Number of bytes that were consed by the program 

as reported by Lisp. 
We can get a higher-order theorem prover as in [Andrews, 

1981; Pfenning, 19871, which is capable of handling equal- 
ity also, by replacing the &t-order unification algorithm 
that is used in this implementation with Huet’s higher-order 
unification algorithm [Huet, 19751. The implementation 
mentioned in this section is a prototype whose only ob- 
jective is to demonstrate the effectiveness of path-focused 
duplication. There are many strategies described in [Issar, 
19901 which can improve the performance of this program, 

‘A P rocedure based on the level-saturation approach is im- 
plemented in TPS [Andrews et al., 19881. We use this pro- 
gram for gathering data about the performance of level-saturation 
procedures. 
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but which have not been implemented yet. Some strate- 
gies, which are independent of the control structure, are as 
follows: 
o A connection graph [Kowalski, 1975; Andrews, 19811 

can be used to aid the extension operation in finding a 
connection on a path and the duplication operation in 
selecting an expansion node. 

o We allow the duplication operation to select any expan- 
sion node on a path. Some of these nodes may be in- 
appropriate because they do not have any role in the 
impasse that necessitated the duplication; we can restrict 
the duplication operation to disregard such nodes. 

o The same combination of duplications may arise several 
times on a path. We illustrate this with an example: sup- 
pose there are three expansion nodes 1,2, and 3 on a path; 
the duplication operation may try various permutations 
of these nodes, for example, (1,2, 3), (1,3,2), and (3, 
1,2). We can restrict the duplication operation to avoid 
this redundancy. We have to be careful, though, because 
the duplication operation is not commutative, and such a 
restriction can affect the efficiency of the search. 
There are other strategies that affect the control structure. 

An example of such a strategy is to use heuristic information 
as suggested by Stickel [19861 to perform early cutoffs 
within a depth and to increment the depth. 

Some of the strategies in IIssar, 19901 have been imple- 
mented in a propositional theorem prover; the performance 
of this prover compares favorably with the performance 
of the resolution provers. We thus have reason to believe 
that these strategies will improve the performance of our 
first-order prover too. 
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