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Abstract 

Consider the problem of exploring a large state- 
space for a goal state. Although many such 

states may exist, G.nding any one state satisfy- 
ing the requirements is sufficient. All methods 
known until now for conducting such search in 
parallel fail to provide consistent linear speedups 
over sequential execution. The speedups vary 

between sublinear to superlinear and from run 
to run. Further, adding processors may some- 
times lead to a slow-down rather than speedup, 

giving rise to speedup anomalies. We present 
prioritizing strategies which yield consistent lin- 
ear speedups and requires substantially smaller 
memory over other methods. The performance 
of these strategies is demonstrated on a multi- 
processor. 

1 Introduction 

Consider the problem of searching for a solution in 
a large state space, starting from a given initial state. 
The state space is usually structured as a tree, with op- 
erators that can transform one state ‘node’ to another 
forming arcs between different states’. In a large class 
of such problems, the computations tend to be unpre- 
dictably structured and have multiple solutions. The 
desired solution is usually specified by certain prop- 
erties, and any state satisfying these properties is an 
acceptable solution. Sometimes one is interested in op- 
timal solution(s) based on certain cost criteria. How- 
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‘When it is possible to go from one state to another via two 
distinct sequences of operators, the state-space is a graph rather 
than tree. However, we will confine ourselves to state-space trees 
in this paper. 

ever, many times, one is interested in just any solu- 
tion. We focus on parallel exploration of search spaces 
in the latter context. This is an important problem: 
search is a major computational paradigm in Arti- 
ficial Intelligence. For AI to achieve its long term, 
ambitious ‘objectives, it seems clear that it must use 
parallel processing techniques [Halstead 19861. Sec- 
ondly, many ‘real-life’ applications such as Planning 
(plan construction), Symbolic Integration, VLSI Test 
Generation, Theorem Proving, etc. require finding an 
adequate solution rather than an optimal one. 

A parallel scheme must be able to consistently gen- 
erate a solution faster than the best sequential scheme, 
and preferably close to P times faster, where P is the 
number of processors used. Also, speedups must in- 
crease monotonically with the addition of processors. 
Another important performance criteria is the amount 
of memory required to conduct a search, which may 
vary from a linear to an exponential function of the 
depth of the tree. With parallel processing, it may 
also increase proportionately to P. 

2 Search Techniques 

A sequential depth-first search begins by expanding 
the root of a pure OR tree and can be efficiently im- 
plemented using a last-in-first-out (1;IFO) stack of ac- 
tive nodes. The advantage of the sequential stack 
based depth-first search over other search techniques 
is its linear storage requirement O(BD) whereas for 
best-first and breadth-first searches, it is exponential 
O(BD) [Pearl 19851 f or a tree with branching factor B 
and depth fi. A parallel stack based search algorithm 
is an extension of the serial algorithm that uses either 
a shared global stack or multiple stacks. 

In the shared stuck model, all processors share a 
global stack. Processors pick up nodes from the shared 
stack and expand them and push the descendents 
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back onto the stack. In Kumar and Rao’s multiple 
stack model [Kumar & Rao 19871, a processor is ini- 
tially given the root node. A stack splitting scheme 
is used to distribute work. Processors search dis- 
joint parts of the search space using their local stack 
in a depth-first manner. They report speedups in 
[Kumar & Rao 19871 that range from 3.46 to 16.27 us- 
ing 9 processors for the first optimal solution to a 15- 
Puzzle problem using Iterative Deepening A* (IDA*) 
[Korf 19881 algorithm ’ on a shared memory multi- 
processor. The inconsistency in the speedups is due to 
the anomalies that exist in parallel stack based search. 
The reason for speedup anomalies is that the parallel 
search may expand fewer or more nodes than a serial 
search. 

In a multiple stack model, since processors search 
disjoint parts of the search space asynchronously, 
anomalies are possible because a processor may find 
a solution by searching a smaller or larger search 
space than the space searched with a sequential search. 
In a shared stack model as all processors run asyn- 
chronously, the set of nodes that are picked up for 
execution and put back on the stack may be very 
different from run to run as well as from the one 
processor case. This randomness in the selection of 
nodes is exactly the reason for anomalies reported 
in [Lai & Sahni 19841. Therefore, both uccelerution 
anomalies (speedup greater than number of processors 
P) and deceleration unomuZies (decrease in speedup 
with increase in P) are possible. Also, there is no 
guarantee that the work performed by the addition of 
a processor will contribute in finding the first solution 
and such work may generate more futile work for other 
processors. 

To determine the worst case memory required for 
the multiple stack model, consider a search tree of 
uniform branching factor B and depth D. The mem- 
ory needed for the search will be proportionate to the 
worst case sum of the individual stack lengths of all 
the P processors in the system. Initially a processor 
picks up the root node and expands into its B descen- 
dents that are put on its local stack. Idle processors 
will try to get untried nodes from this processor. A 
breadth-first search will ensue until each processor is 
assigned to one active node which occurs at a depth of 
pogB Pl when there are P active nodes in the system. 
Each processor now conducts a depth-first search of 
subtree of depth (D - pogB PI). The maximum stack 
length for the system is given by: 

Stuck Length,,,t Ease = P * D * (B - 1) 

2Each iteration of the IDA* algorithm is essentially a depth- 
first search of the cost bounded search space such that the first 
solution found is also one of the optimal solutions. 
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Figure 1: Or Tree with Bit Vector Priorities. 

Assuming a constant node size, the memory needed 
for parallel search is roughly proportional to the prod- 
uct of P, B, and D. 

For a shared stack model, a breadth-first search may 
continue until a depth of /logB P] is reached. From 
this point onwards P processors may pick P nodes at 
level i from the stack and put P * B newly created 
nodes at level i + 1 back on the stack, an increase of 
P * (B - 1) nodes at each successive iteration. The 
worst case stack length for a shared stack model is 
given by an expression identical to the one above. 

A Priority Based Search 

We associate priorities with work in a parallel search 
and show how this would eliminate the anomalies and 
achieve linear speedups to a first solution. In a pure 
search, any of the alternatives at a choice point may 
lead to a solution. The alternatives may be ordered left 
to right, either using any local (value ordering) heuris- 
tic if available or using the default order. In a sequen- 
tial depth-first search, a subtree under a node on the 
left is explored completely before expanding a node on 
the right. Thus, it gives higher priority to nodes (al- 
ternatives) on the left than the nodes on the right. In 
the context of first solution, the work to the right of 
the solution path does not contribute to the solution 
and therefore constitutes wasted work. To obtain con- 
sistent speedups with parallel search, we try to focus 
the search effort towards first solution by giving pri- 
orities to the alternatives at a choice point, with left- 
most alternative having the highest priority (Work on 
other alternatives or speculative work can only speed 
up the solution to the problem if work under left sub- 
trees fails to find a solution; otherwise, it constitutes 
wasted work.). Also, to mimic sequential order of node 
expansions, we must assign priorities such that every 
descendent of a leftward node has higher priority than 
all the descendents of rightward nodes. 

A priority bit vector (also referred to as priority vec- 
tor) is a sequence of bits of any arbitrary length. Prior- 
ities are dynamically assigned to the nodes when they 
are created. A node with a priority vector PI is de- 
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0 First Alternative 

0 Remaining Alterna. 

Figure 2: Binary Decomposition of a Search Tree. 

Work Done to reach 

First Solution 

Figure 3: ‘Broom Stick’ sweep of a search tree. 

fined to be at a higher priority than another node with 
priority Pz if PI is lexicographically smaller than P2. 

Consider the OR tree in Figure 1. Let the root of 
this subtree R, have a priority p represented as a bit 
vector. The root node of the entire search space is as- 
signed a null (priority bit vector of length 0) priority 
at the start of the search process. The m (m=4) chil- 
dren of the node R representing the m alternatives are 
assigned priority bit vectors by extending the parent’s 
priority based on their rank. The rank of an nth child 
among its m siblings is represented as an encoding of 
n as a pogml bit binary number. The priority vec- 
tor of a child node is obtained by appending its rank 
to its parent’s priority. Priorities assigned this way 
have the prefix property: no two children of a node 
have priority such that one is a prefix of the other 
(The idea of associating a similar sequence using path 
numbers with nodes of an OR trees has appeared in 
[Li & Wah 19861). 

Assigning bit vector priorities this way achieves two 
goals. (a) The relative priority (rank) of the sibling 
nodes preserves the left to right order of the sibling 
nodes. (b) Appending the priority of the child to the 
priority inherited from its parent ensures every descen- 
dent of a high priority node gets higher priority than 
all the descendents of low priority nodes. This reflects 
the policy that until there is no prospect of a solu- 
tion from the left subtree beneath a node, the system 
should not spend its resources on the right subtrees, 
unless there are idle processors. I.e. if for a time pe- 
riod, if the work available in the left subtree is not 
sufficient to keep all the processors busy, the idle pro- 
cessors may expand the right subtrees. But as soon as 
high priority nodes become available in the left sub- 
tree, the processors must focus their efforts in that left 
subtree. For example, if two processors search the tree 
in Figure 1 then nodes A and B are picked up for ex- 
ecution once node R is expanded. When nodes A and 
B are expanded the processors explore nodes E and F 
(of higher priority) in the next cycle. 

With priorities some acceleration anomalies are pre- 
served because it is possible that when there is not 
enough work in the left subtree, processors that are 
exploring the right subtrees may find a solution faster. 

Also, since processing effort is always focussed left- 
ward, the parallel search behaviour is similar to that of 
sequential search. This results in a decrease in wasted 
work and elimination of deceleration anomalies. As 
the wasted work is decreased to an insignificant pro- 
portion (see Section 3.2) this prioritizing strategy pro- 
duces monotonic, almost linear, speedups. 

The use of priorities to nodes requires the need for an 
efficient priority queue management, which can other- 
wise become a bottleneck if a large number of pro- 
cessors are used. We use grain size control to de- 
crease the number of accesses to a shared queue and 
to spread the overhead of parallelisation. In terms 
of processing time the avera e 

Total Sequential Execution 4 
grain size is defined 

ime 
as Total Number of Messages Procerred’ The ideal grain 
size for a shared memory system depends on the actual 
overhead involved in fetching nodes from the queue, 
creating parallel tasks and depositing new nodes back 
into the queue. Granularity control is used to de- 
termine when to stop breaking down a computation 
into parallel computations at a frontier node, treat- 
ing it as a leaf node and executing it sequentially. A 
simple technique to control grain size, in state-space 
search, is to decide a cut-off depth beneath which the 
region is explored sequentially. Other techniques that 
attempt to gauge the size (granularity) of subtrees be- 
neath a node are also possible. We found that such 
simple techniques were sufficient to prevent the prior- 
ity queue from being a sequential bottleneck (see Sec- 
tion 4). With a large number of processors one may 
increase the grain size to maintain the frequency of 
access to the shared queue. 

To retain similar speedup properties the grain size 
and the number of granules must both increase propor- 
tionally with the number of processors P, therefore, 
the overall problem size will have to increase with P2. 
This can be alleviated somewhat by using concurrent 
heap access techniques. More important, as absolute 
adherence to priorities is not essential, techniques such 
as multiple heaps are also possible. 

3.1 Binary Decomposition 

The worst case stack length for prioritized search with 
a shared queue is given by the same expression as that 
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for a parallel stack based search -namely P * D * (B - 
1). This is because there cannot be more than P * 
B available nodes at any level in the tree, and like 
the single-stack, this upper bound can be realised by 
having the P processors pick up the leftmost P nodes 
at each level, in lock-step. 

A depth-first sequential algorithm selects the cur- 
rent left most unexplored node at each level of the 
search space, backtracking to the choice point for re- 
maining alternatives if no solution is found from the 
current alternative. In a parallel processing context, 
one can mimic this behaviour by generating the first 
descendent node say A in the usual manner, and 
lumping the work for generating remaining descendent 
nodes (2,3, .., b) ’ t in o a single lumped-node B (see Fig- 
ure 2). When this lumped-node is picked up for ex- 
pansion, it generates the next sibling node E and a 
lumped-node F that lumps work for generating the 
rest of the sibling nodes (3,4, .., b). Thus, the lumped- 
node represents the remaining available parallelism in 
the subproblem in a form that is extractable when- 
ever needed. This binary decomposition technique re- 
duces an arbitrarily large branching factor to 2. (We 
have increased the depth of the tree towards right 
by this, but if the solution is much closer to the left 
in the search tree, as is frequently the case, this ef- 
fect is small. Other techniques can be used to limit 
the depth with binary decomposition). Another ad- 
vantage is that since the descendents of a node are 
not produced until needed, the wasted work is fur- 
ther reduced. (The lumped nodes are analogous to 
the choice-points used in OR-parallel Prolog systems 
e.g. [Hausman et al. 19871.). 

Although we have reduced the parallelism in the ini- 
tial stages of the search but once the number of nodes 
become greater than the number of processors, the 
available parallelism is more than sufficient to keep 
all processors busy. 

3.2 Delayed Release 

Although associating priorities eliminates anomalies, 
the memory requirement is still proportionate to P as 
given by the expression earlier. In both, stack and pri- 
ority based models the increase in the memory usage 
with number of processors occurs because of the avail- 
ability of large number untried alternatives at each 
level of the search. This immediate availability of par- 
allelism at shallower levels in the search space is the 
major cause for increased memory usage. Notice that 
in the worst case all P processors pick nodes at level I, 
produce B *P (or 2 *P for binary decomposition) chil- 
dren at level I+ 1, and proceed to pick P nodes at level 
I + 1. To avoid the worst case, processors must skip 

intermediate levels. To achieve this, the parallelism in 
the problem available at shallower levels of the search 
space should be delayed and nodes at deeper levels 
of the search space should be made available to pro- 
cessors first. This bottom-first strategy gives rise to a 
search behaviour shown in Figure 3 termed the Broom 
Stick sweep. The set of searched nodes is represented 
in figure by a long narrow stick and the parallelism (ac- 
tive nodes) exploited at the bottom of the tree gives 
rise to the broom effect. 

We achieve this broom stick behaviour by a tech- 
nique called Delayed Release. The search begins at 
the root in the usual manner. When a node is ex- 
panded, all its children except the leftmost child are 
put in a list accessible only from the leftmost child. 
This list is local to the leftmost node and the nodes 
in the list are not available to other processors at the 
time they are generated. Also, the local list inherited 
by a node (parent node) is appended to the local list 
of its leftmost child. Therefore, each processor effec- 
tively creates only one child when a node is expanded, 
which is inserted into the shared priority queue. The 
search continues this way until a leaf node is encoun- 
tered when all the nodes kept in the list are released 
as active nodes and made available to be picked up 
by other processors, subject to priorities, as before. 
This has the effect of delaying the availability of shal- 
lower nodes and making available the higher prior- 
ity nodes to other processors from the bottom of the 
search space. 

Figure 4 shows the state of a search tree using de- 
layed release technique. When node R is expanded, 
only one super-node consisting of the linked list 
[Ll, RI] is produced. When this super-node is picked 
up, only the first node on the list, Lr, is expanded, 
and one super-node [L2, R2, RI] is released. Eventu- 
ally, when the super-node [A, B, Rg, R+ Rs, R2, Rx] is 
picked up for expansion, it is discovered that node A 
is a leaf, and so all the nodes in the list are released as 
individual nodes. Processors in the system now pick 
the highest priority nodes and explore the search space 
in a similar fashion. (Note that this delayed the ex- 
pansion of the shallower, low priority node RI .) With 
the current state of the search tree depicted, nodes A, 
B, C, D, E, R2, and RI form the set of frontier nodes. 
The bit vector priorities ensure that the leftmost P 
nodes are picked up for execution. The delayed release 
technique achieves the following three objectives. (a) 
Most significantly, since processors are forced to skip 
node expansions at intermediate levels and focus on 
the nodes deeper in the tree, the wasted work is elimi- 
nated almost completely thus yielding linear speedups. 
(b) The memory required by the search algorithm is 
reduced considerably, as supported by empirical data. 
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Figure 4: Tree expansion using delayed release technique and bit vector priorities. 
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(c) Since the number of active nodes in the priority 
queue at any time is reduced the overhead of managing 
the queue is reduced. 

In the above strategy when a processor picks up a 
leaf node it releases all the nodes created and stored 
thus far in the local list of the leaf node. If the number 
of nodes released is larger than P, then the nodes in 
excess of P released constitute excess parallelism that 
can not be exploited at the time of release. In the 
delayed partial release technique, when a leaf node is 
encountered, the processor releases a maximum of P 
highest priority nodes and a single node that comprises 
the remaining nodes. If an idle processor cannot find 
other high priority nodes it expands the node compris- 
ing the excess nodes and proceeds in the usual manner. 
This technique does not result in a reduction in mem- 
ory space, since memory space is still needed to store 
the m-released excess nodes in a list. However, since 
now there are even fewer entries in the queue than the 
delayed release strategy, the overhead of managing and 

restoring the priority queue is further reduced. 

4 Multiprocessor Perfor 

We implemented the above search techniques for par- 
allel search on Sequent Symmetry shared memory mul- 
tiprocessor with up to 20 processors and studied their 
performance. The parallel search strategies were im- 
plemented using the Chare-Kernel [Kale 19901, a ma- 
chine independent parallel programming system that 
currently runs on several multiprocessors. We present 
performance data on a few state-space search prob- 
lems. Speedup performance is obtained by comparing 
to the best sequential program for the problem. 

Nodes Expanded on Sequent Symmetry 
PEs 1 (seq) 4 8 16 18 

BD 35248 35574 36164 36795 36944 
BD-DR 35248 35306 35601 36229 36507 
BD-DPR 35248 35357 35644 36219 36448 

BD: Binary Decomposition (BD) 

BD-DR: BD Delayed Release 
BD-DPR: BD Delayed Partial Release 

Table I: 126-Queens: Number of Nodes Expanded. 

In the N-Queens problem the goal is to place N 
non-attacking Queens on a NXN chess-board. This 
problem has a large number of solutions where any one 
solution may be acceptable. We obtained performance 
data for the 126-Queens (N=126) problem. N was 
chosen to be large to show that such a large problem 
can be solved within a reasonable amount of memory 
usage and time. Binary decomposition technique of 
Section 3.1 was used since a complete decomposition 
at every level resulted in memory overflow. 

The speedup plots in Figure 5 show that with bit 
vector priorities the wasted work is reduced result- 
ing in linear, clearly monotonic speedups. The perfor- 
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mance data is obtained from a single run of the 126- 
Queens problem and is highly consistent over different 
runs. The multiple stack strategy yields speedups that 
varies from run to run, as documented by Kumar et 
al. in [Kumar & Rao 19871. The speedups with the 
shared stack also varied wildly between highly super- 
linear (few seconds) to extreme sublinear (aborted af- 
ter few hours) and so are not reported here. Table 
I shows the total number of nodes expanded for the 
three schemes using bit vector priorities. It shows that 
(a) with priorities, the work with P processors is not 
significantly more than with 1 processor (e.g. an in- 
crease of 3.57% node expansions over sequential search 
with P = 18 using delayed release technique.) and (b) 
the wasted work is reduced with delayed release tech- 
niques. The plots in Figure 6 show that for a LIFO 
stack the maximum queue length (thus, the memory 
usage) increase proportionately to the number of pro- 
cessors P. This dependence on P is eliminated with 
the delayed release technique. With delayed partial 
release technique, the queue length decreases further 
(the memory usage remains unchanged for reasons ex- 
plained in Section 3). 

In a Knights-Tour problem, the knight must visit 
each position on a NXN chess board once and return 
to its starting position. Many solutions exist for the 
knights-tour problem. Speedups obtained were highly 
consistent from run to run, and increase linearly, as 
shown in Figure 7. 

In the Magic Square problem the goal is to place 
integers from 1 to N2 on a NXN square board such 
that the sum of the integers along any row, column or 
diagonal is identical. Figure 8 gives the speedups to 
first solution to the problem with N = 6. The speedups 
improve with delayed release strategies. Again, the 
data reflects performance from a single run and is very 
consistent over different runs. 
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Figure 7: 8X8 Knights-Tour: 1st Solution Speedups 

5 iscussion 
We demonstrated the effectiveness of priority based 
parallel search techniques to eliminate anomalies and 
obtain consistent linear speedups to first solution in 
state-space searches. To the best of our knowledge, no 
other method proposed to date consistently achieves 
monotonically increasing speedups for a first solution. 
Our techniques also reduce the memory usage and it 
does not increase with the number of processors. It 
may be argued that this is unimportant as the amount 
of memory available grows linearly with the number of 
processors. However, this argument misses the point: 
on a P processor system our scheme requires a small 
fraction of the memory required by a stack based 
scheme. With 18 processors, l.Z&Queens required 0.4 
MBytes of memory compared to 1.8 MBytes with a 
shared stack. With a large number of processors and 
large problems, our scheme will be able to solve prob- 
lems that the stack based scheme cannot solve due to 
a memory overflow. 

An advantage of our scheme is that it adheres to 
local value-ordering heuristic, which are very impor- 
tant for first solution searches. Nowever, even when 
good ordering heuristic is not available, our scheme is 
still valuable, because of its consistent and monotonic 
speedups. 

Recently, Rao and Kumar have derived an inter- 
esting result in [Rao & Kumar 1988] concerning the 
multiple-stack model for parallel search, where the so- 
lution density are highly non-uniform across the search 
space. Although the speedups are anomalous, they 
show that on the overage (i.e. averaged over several 
runs), the speedups tend to be larger than P, com- 
pared with the standard backtracking search, where P 
is the number of processors. In such types of search 
spaces our result is still valuable for the following rea- 
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sons. First, the prioritizing scheme we presented en- 
sures speedups close to P in all runs, and for varying 
values of P (assuming, of course, that there is enough 
work available in the part of the search tree to the left 
of the solution). Second, their results also show that 
the ‘superlinearity’ of speedup is not further enhanced 
beyond a few processors. Therefore, in a system with 
many processors we can exploit the non-linear solution 
densities better by setting the priorities of the top few 
nodes in the search tree to be null (i.e. empty bit vec- 
tors). This retains the advantage of exploring different 
regions of the search-space, hoping to exploit the non- 
uniform solution densities (probabilities) while still fo- 
cusing the processors within these regions for more 
consistent speedups. 

The use of priorities effectively decouple the par- 
allel search algorithm from the scheduling strategy 
[Kale & Saletore 19891. (In contrast, schemes such as 
[Lusk et al. 19881 for OR-parallel execution of Pro- 
log use an explicit tree representation shared by all 
processors). This decoupling has several advantages. 
Scheduling strategies can be chosen independently of 
the search algorithm itself and synchronisation is much 
simpler. Most important, the prioritisation strategies 
can be extended to distributed memory machines such 
as the Intel iPSC/2 and BBN Butterfly, by provid- 
ing a priority-balancing strategy in conjunction with 
the load balancing scheme. We are developing such a 
strategy. 

We have extended these techniques for for Parallel 
IDA* in [Kale & Saletore 19891. The extensions were 
needed because IDA* involves a series of increasing 
depth-first searches. Problem reduction based prob- 
lem solving and Logic Programming are related areas 
in which, frequently, one is looking for one solution 
while many solutions may exist. However, this is sub- 
stantially more complex situation than the pure state- 

space (OR-tree) search, if AND-parallelism is also to 
be exploited. The techniques developed in this paper 
can be incorporated beneficially in such schemes with 
appropriate modifications. 
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