
Consistent Linear S eedups to a First Solution in
Parallel State-Space Search*

Vikram A. Saletore and L. V. Kal6
Department of Computer Science,

1304 West Springfield Avenue,
University Of Illinois at Urbana-Champaign,

Urbana, Illinois 61801, USA
email: saletore@cs.uiuc.edu and kale@cs.uiuc.edu

Abstract

Consider the problem of exploring a large state-
space for a goal state. Although many such

states may exist, G.nding any one state satisfy-
ing the requirements is sufficient. All methods
known until now for conducting such search in
parallel fail to provide consistent linear speedups
over sequential execution. The speedups vary

between sublinear to superlinear and from run
to run. Further, adding processors may some-
times lead to a slow-down rather than speedup,

giving rise to speedup anomalies. We present
prioritizing strategies which yield consistent lin-
ear speedups and requires substantially smaller
memory over other methods. The performance
of these strategies is demonstrated on a multi-
processor.

1 Introduction

Consider the problem of searching for a solution in
a large state space, starting from a given initial state.
The state space is usually structured as a tree, with op-
erators that can transform one state ‘node’ to another
forming arcs between different states’. In a large class
of such problems, the computations tend to be unpre-
dictably structured and have multiple solutions. The
desired solution is usually specified by certain prop-
erties, and any state satisfying these properties is an
acceptable solution. Sometimes one is interested in op-
timal solution(s) based on certain cost criteria. How-

“This research has been supported in part by the National
Science Foundation under grant number CCR-89-00988.

‘When it is possible to go from one state to another via two
distinct sequences of operators, the state-space is a graph rather
than tree. However, we will confine ourselves to state-space trees
in this paper.

ever, many times, one is interested in just any solu-
tion. We focus on parallel exploration of search spaces
in the latter context. This is an important problem:
search is a major computational paradigm in Arti-
ficial Intelligence. For AI to achieve its long term,
ambitious ‘objectives, it seems clear that it must use
parallel processing techniques [Halstead 19861. Sec-
ondly, many ‘real-life’ applications such as Planning
(plan construction), Symbolic Integration, VLSI Test
Generation, Theorem Proving, etc. require finding an
adequate solution rather than an optimal one.

A parallel scheme must be able to consistently gen-
erate a solution faster than the best sequential scheme,
and preferably close to P times faster, where P is the
number of processors used. Also, speedups must in-
crease monotonically with the addition of processors.
Another important performance criteria is the amount
of memory required to conduct a search, which may
vary from a linear to an exponential function of the
depth of the tree. With parallel processing, it may
also increase proportionately to P.

2 Search Techniques

A sequential depth-first search begins by expanding
the root of a pure OR tree and can be efficiently im-
plemented using a last-in-first-out (1;IFO) stack of ac-
tive nodes. The advantage of the sequential stack
based depth-first search over other search techniques
is its linear storage requirement O(BD) whereas for
best-first and breadth-first searches, it is exponential
O(BD) [Pearl 19851 f or a tree with branching factor B
and depth fi. A parallel stack based search algorithm
is an extension of the serial algorithm that uses either
a shared global stack or multiple stacks.

In the shared stuck model, all processors share a
global stack. Processors pick up nodes from the shared
stack and expand them and push the descendents

SALETOREANDKALB 227

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

back onto the stack. In Kumar and Rao’s multiple
stack model [Kumar & Rao 19871, a processor is ini-
tially given the root node. A stack splitting scheme
is used to distribute work. Processors search dis-
joint parts of the search space using their local stack
in a depth-first manner. They report speedups in
[Kumar & Rao 19871 that range from 3.46 to 16.27 us-
ing 9 processors for the first optimal solution to a 15-
Puzzle problem using Iterative Deepening A* (IDA*)
[Korf 19881 algorithm ’ on a shared memory multi-
processor. The inconsistency in the speedups is due to
the anomalies that exist in parallel stack based search.
The reason for speedup anomalies is that the parallel
search may expand fewer or more nodes than a serial
search.

In a multiple stack model, since processors search
disjoint parts of the search space asynchronously,
anomalies are possible because a processor may find
a solution by searching a smaller or larger search
space than the space searched with a sequential search.
In a shared stack model as all processors run asyn-
chronously, the set of nodes that are picked up for
execution and put back on the stack may be very
different from run to run as well as from the one
processor case. This randomness in the selection of
nodes is exactly the reason for anomalies reported
in [Lai & Sahni 19841. Therefore, both uccelerution
anomalies (speedup greater than number of processors
P) and deceleration unomuZies (decrease in speedup
with increase in P) are possible. Also, there is no
guarantee that the work performed by the addition of
a processor will contribute in finding the first solution
and such work may generate more futile work for other
processors.

To determine the worst case memory required for
the multiple stack model, consider a search tree of
uniform branching factor B and depth D. The mem-
ory needed for the search will be proportionate to the
worst case sum of the individual stack lengths of all
the P processors in the system. Initially a processor
picks up the root node and expands into its B descen-
dents that are put on its local stack. Idle processors
will try to get untried nodes from this processor. A
breadth-first search will ensue until each processor is
assigned to one active node which occurs at a depth of
pogB Pl when there are P active nodes in the system.
Each processor now conducts a depth-first search of
subtree of depth (D - pogB PI). The maximum stack
length for the system is given by:

Stuck Length,,,t Ease = P * D * (B - 1)

2Each iteration of the IDA* algorithm is essentially a depth-
first search of the cost bounded search space such that the first
solution found is also one of the optimal solutions.

~pooolo
pooooo p00001

Figure 1: Or Tree with Bit Vector Priorities.

Assuming a constant node size, the memory needed
for parallel search is roughly proportional to the prod-
uct of P, B, and D.

For a shared stack model, a breadth-first search may
continue until a depth of /logB P] is reached. From
this point onwards P processors may pick P nodes at
level i from the stack and put P * B newly created
nodes at level i + 1 back on the stack, an increase of
P * (B - 1) nodes at each successive iteration. The
worst case stack length for a shared stack model is
given by an expression identical to the one above.

A Priority Based Search

We associate priorities with work in a parallel search
and show how this would eliminate the anomalies and
achieve linear speedups to a first solution. In a pure
search, any of the alternatives at a choice point may
lead to a solution. The alternatives may be ordered left
to right, either using any local (value ordering) heuris-
tic if available or using the default order. In a sequen-
tial depth-first search, a subtree under a node on the
left is explored completely before expanding a node on
the right. Thus, it gives higher priority to nodes (al-
ternatives) on the left than the nodes on the right. In
the context of first solution, the work to the right of
the solution path does not contribute to the solution
and therefore constitutes wasted work. To obtain con-
sistent speedups with parallel search, we try to focus
the search effort towards first solution by giving pri-
orities to the alternatives at a choice point, with left-
most alternative having the highest priority (Work on
other alternatives or speculative work can only speed
up the solution to the problem if work under left sub-
trees fails to find a solution; otherwise, it constitutes
wasted work.). Also, to mimic sequential order of node
expansions, we must assign priorities such that every
descendent of a leftward node has higher priority than
all the descendents of rightward nodes.

A priority bit vector (also referred to as priority vec-
tor) is a sequence of bits of any arbitrary length. Prior-
ities are dynamically assigned to the nodes when they
are created. A node with a priority vector PI is de-

228 AUTOMATEDREASONING

0 First Alternative

0 Remaining Alterna.

Figure 2: Binary Decomposition of a Search Tree.

Work Done to reach

First Solution

Figure 3: ‘Broom Stick’ sweep of a search tree.

fined to be at a higher priority than another node with
priority Pz if PI is lexicographically smaller than P2.

Consider the OR tree in Figure 1. Let the root of
this subtree R, have a priority p represented as a bit
vector. The root node of the entire search space is as-
signed a null (priority bit vector of length 0) priority
at the start of the search process. The m (m=4) chil-
dren of the node R representing the m alternatives are
assigned priority bit vectors by extending the parent’s
priority based on their rank. The rank of an nth child
among its m siblings is represented as an encoding of
n as a pogml bit binary number. The priority vec-
tor of a child node is obtained by appending its rank
to its parent’s priority. Priorities assigned this way
have the prefix property: no two children of a node
have priority such that one is a prefix of the other
(The idea of associating a similar sequence using path
numbers with nodes of an OR trees has appeared in
[Li & Wah 19861).

Assigning bit vector priorities this way achieves two
goals. (a) The relative priority (rank) of the sibling
nodes preserves the left to right order of the sibling
nodes. (b) Appending the priority of the child to the
priority inherited from its parent ensures every descen-
dent of a high priority node gets higher priority than
all the descendents of low priority nodes. This reflects
the policy that until there is no prospect of a solu-
tion from the left subtree beneath a node, the system
should not spend its resources on the right subtrees,
unless there are idle processors. I.e. if for a time pe-
riod, if the work available in the left subtree is not
sufficient to keep all the processors busy, the idle pro-
cessors may expand the right subtrees. But as soon as
high priority nodes become available in the left sub-
tree, the processors must focus their efforts in that left
subtree. For example, if two processors search the tree
in Figure 1 then nodes A and B are picked up for ex-
ecution once node R is expanded. When nodes A and
B are expanded the processors explore nodes E and F
(of higher priority) in the next cycle.

With priorities some acceleration anomalies are pre-
served because it is possible that when there is not
enough work in the left subtree, processors that are
exploring the right subtrees may find a solution faster.

Also, since processing effort is always focussed left-
ward, the parallel search behaviour is similar to that of
sequential search. This results in a decrease in wasted
work and elimination of deceleration anomalies. As
the wasted work is decreased to an insignificant pro-
portion (see Section 3.2) this prioritizing strategy pro-
duces monotonic, almost linear, speedups.

The use of priorities to nodes requires the need for an
efficient priority queue management, which can other-
wise become a bottleneck if a large number of pro-
cessors are used. We use grain size control to de-
crease the number of accesses to a shared queue and
to spread the overhead of parallelisation. In terms
of processing time the avera e

Total Sequential Execution 4
grain size is defined

ime
as Total Number of Messages Procerred’ The ideal grain
size for a shared memory system depends on the actual
overhead involved in fetching nodes from the queue,
creating parallel tasks and depositing new nodes back
into the queue. Granularity control is used to de-
termine when to stop breaking down a computation
into parallel computations at a frontier node, treat-
ing it as a leaf node and executing it sequentially. A
simple technique to control grain size, in state-space
search, is to decide a cut-off depth beneath which the
region is explored sequentially. Other techniques that
attempt to gauge the size (granularity) of subtrees be-
neath a node are also possible. We found that such
simple techniques were sufficient to prevent the prior-
ity queue from being a sequential bottleneck (see Sec-
tion 4). With a large number of processors one may
increase the grain size to maintain the frequency of
access to the shared queue.

To retain similar speedup properties the grain size
and the number of granules must both increase propor-
tionally with the number of processors P, therefore,
the overall problem size will have to increase with P2.
This can be alleviated somewhat by using concurrent
heap access techniques. More important, as absolute
adherence to priorities is not essential, techniques such
as multiple heaps are also possible.

3.1 Binary Decomposition

The worst case stack length for prioritized search with
a shared queue is given by the same expression as that

SALETOREANDKAL~ 229

for a parallel stack based search -namely P * D * (B -
1). This is because there cannot be more than P *
B available nodes at any level in the tree, and like
the single-stack, this upper bound can be realised by
having the P processors pick up the leftmost P nodes
at each level, in lock-step.

A depth-first sequential algorithm selects the cur-
rent left most unexplored node at each level of the
search space, backtracking to the choice point for re-
maining alternatives if no solution is found from the
current alternative. In a parallel processing context,
one can mimic this behaviour by generating the first
descendent node say A in the usual manner, and
lumping the work for generating remaining descendent
nodes (2,3, .., b) ’ t in o a single lumped-node B (see Fig-
ure 2). When this lumped-node is picked up for ex-
pansion, it generates the next sibling node E and a
lumped-node F that lumps work for generating the
rest of the sibling nodes (3,4, .., b). Thus, the lumped-
node represents the remaining available parallelism in
the subproblem in a form that is extractable when-
ever needed. This binary decomposition technique re-
duces an arbitrarily large branching factor to 2. (We
have increased the depth of the tree towards right
by this, but if the solution is much closer to the left
in the search tree, as is frequently the case, this ef-
fect is small. Other techniques can be used to limit
the depth with binary decomposition). Another ad-
vantage is that since the descendents of a node are
not produced until needed, the wasted work is fur-
ther reduced. (The lumped nodes are analogous to
the choice-points used in OR-parallel Prolog systems
e.g. [Hausman et al. 19871.).

Although we have reduced the parallelism in the ini-
tial stages of the search but once the number of nodes
become greater than the number of processors, the
available parallelism is more than sufficient to keep
all processors busy.

3.2 Delayed Release

Although associating priorities eliminates anomalies,
the memory requirement is still proportionate to P as
given by the expression earlier. In both, stack and pri-
ority based models the increase in the memory usage
with number of processors occurs because of the avail-
ability of large number untried alternatives at each
level of the search. This immediate availability of par-
allelism at shallower levels in the search space is the
major cause for increased memory usage. Notice that
in the worst case all P processors pick nodes at level I,
produce B *P (or 2 *P for binary decomposition) chil-
dren at level I+ 1, and proceed to pick P nodes at level
I + 1. To avoid the worst case, processors must skip

intermediate levels. To achieve this, the parallelism in
the problem available at shallower levels of the search
space should be delayed and nodes at deeper levels
of the search space should be made available to pro-
cessors first. This bottom-first strategy gives rise to a
search behaviour shown in Figure 3 termed the Broom
Stick sweep. The set of searched nodes is represented
in figure by a long narrow stick and the parallelism (ac-
tive nodes) exploited at the bottom of the tree gives
rise to the broom effect.

We achieve this broom stick behaviour by a tech-
nique called Delayed Release. The search begins at
the root in the usual manner. When a node is ex-
panded, all its children except the leftmost child are
put in a list accessible only from the leftmost child.
This list is local to the leftmost node and the nodes
in the list are not available to other processors at the
time they are generated. Also, the local list inherited
by a node (parent node) is appended to the local list
of its leftmost child. Therefore, each processor effec-
tively creates only one child when a node is expanded,
which is inserted into the shared priority queue. The
search continues this way until a leaf node is encoun-
tered when all the nodes kept in the list are released
as active nodes and made available to be picked up
by other processors, subject to priorities, as before.
This has the effect of delaying the availability of shal-
lower nodes and making available the higher prior-
ity nodes to other processors from the bottom of the
search space.

Figure 4 shows the state of a search tree using de-
layed release technique. When node R is expanded,
only one super-node consisting of the linked list
[Ll, RI] is produced. When this super-node is picked
up, only the first node on the list, Lr, is expanded,
and one super-node [L2, R2, RI] is released. Eventu-
ally, when the super-node [A, B, Rg, R+ Rs, R2, Rx] is
picked up for expansion, it is discovered that node A
is a leaf, and so all the nodes in the list are released as
individual nodes. Processors in the system now pick
the highest priority nodes and explore the search space
in a similar fashion. (Note that this delayed the ex-
pansion of the shallower, low priority node RI .) With
the current state of the search tree depicted, nodes A,
B, C, D, E, R2, and RI form the set of frontier nodes.
The bit vector priorities ensure that the leftmost P
nodes are picked up for execution. The delayed release
technique achieves the following three objectives. (a)
Most significantly, since processors are forced to skip
node expansions at intermediate levels and focus on
the nodes deeper in the tree, the wasted work is elimi-
nated almost completely thus yielding linear speedups.
(b) The memory required by the search algorithm is
reduced considerably, as supported by empirical data.

230 AUTOMATEDREASONING

poooooo p000001

Figure 4: Tree expansion using delayed release technique and bit vector priorities.

20
0

0

16 e

; 12

e

:

E 8

4 9

Binary Decomp. (BD) (Priorithed)
BD Delay. Release (Prioritiee
BD Delay. Partial Rel. (Pri

/
Seq. Exe. Time 201 Sets.

J Sequent Symmetry

0 I I I I
0 4 8 12 16 20

Number of Processors
Figure 5: 126-Queens: First Solution Speedups.

(c) Since the number of active nodes in the priority
queue at any time is reduced the overhead of managing
the queue is reduced.

In the above strategy when a processor picks up a
leaf node it releases all the nodes created and stored
thus far in the local list of the leaf node. If the number
of nodes released is larger than P, then the nodes in
excess of P released constitute excess parallelism that
can not be exploited at the time of release. In the
delayed partial release technique, when a leaf node is
encountered, the processor releases a maximum of P
highest priority nodes and a single node that comprises
the remaining nodes. If an idle processor cannot find
other high priority nodes it expands the node compris-
ing the excess nodes and proceeds in the usual manner.
This technique does not result in a reduction in mem-
ory space, since memory space is still needed to store
the m-released excess nodes in a list. However, since
now there are even fewer entries in the queue than the
delayed release strategy, the overhead of managing and

restoring the priority queue is further reduced.

4 Multiprocessor Perfor

We implemented the above search techniques for par-
allel search on Sequent Symmetry shared memory mul-
tiprocessor with up to 20 processors and studied their
performance. The parallel search strategies were im-
plemented using the Chare-Kernel [Kale 19901, a ma-
chine independent parallel programming system that
currently runs on several multiprocessors. We present
performance data on a few state-space search prob-
lems. Speedup performance is obtained by comparing
to the best sequential program for the problem.

Nodes Expanded on Sequent Symmetry
PEs 1 (seq) 4 8 16 18

BD 35248 35574 36164 36795 36944
BD-DR 35248 35306 35601 36229 36507
BD-DPR 35248 35357 35644 36219 36448

BD: Binary Decomposition (BD)

BD-DR: BD Delayed Release
BD-DPR: BD Delayed Partial Release

Table I: 126-Queens: Number of Nodes Expanded.

In the N-Queens problem the goal is to place N
non-attacking Queens on a NXN chess-board. This
problem has a large number of solutions where any one
solution may be acceptable. We obtained performance
data for the 126-Queens (N=126) problem. N was
chosen to be large to show that such a large problem
can be solved within a reasonable amount of memory
usage and time. Binary decomposition technique of
Section 3.1 was used since a complete decomposition
at every level resulted in memory overflow.

The speedup plots in Figure 5 show that with bit
vector priorities the wasted work is reduced result-
ing in linear, clearly monotonic speedups. The perfor-

SALETOREANDKALI? 23 1

2400

M
a X 2000

2 1600
e
U
e 1200
L

ii
g

800

il 400 equent Symmetry

0 4 8 12 16 20

Number of Processors
Figure 6: 126-Queens: Maximum Queue Lengths.

mance data is obtained from a single run of the 126-
Queens problem and is highly consistent over different
runs. The multiple stack strategy yields speedups that
varies from run to run, as documented by Kumar et
al. in [Kumar & Rao 19871. The speedups with the
shared stack also varied wildly between highly super-
linear (few seconds) to extreme sublinear (aborted af-
ter few hours) and so are not reported here. Table
I shows the total number of nodes expanded for the
three schemes using bit vector priorities. It shows that
(a) with priorities, the work with P processors is not
significantly more than with 1 processor (e.g. an in-
crease of 3.57% node expansions over sequential search
with P = 18 using delayed release technique.) and (b)
the wasted work is reduced with delayed release tech-
niques. The plots in Figure 6 show that for a LIFO
stack the maximum queue length (thus, the memory
usage) increase proportionately to the number of pro-
cessors P. This dependence on P is eliminated with
the delayed release technique. With delayed partial
release technique, the queue length decreases further
(the memory usage remains unchanged for reasons ex-
plained in Section 3).

In a Knights-Tour problem, the knight must visit
each position on a NXN chess board once and return
to its starting position. Many solutions exist for the
knights-tour problem. Speedups obtained were highly
consistent from run to run, and increase linearly, as
shown in Figure 7.

In the Magic Square problem the goal is to place
integers from 1 to N2 on a NXN square board such
that the sum of the integers along any row, column or
diagonal is identical. Figure 8 gives the speedups to
first solution to the problem with N = 6. The speedups
improve with delayed release strategies. Again, the
data reflects performance from a single run and is very
consistent over different runs.

20

16

4

a Full Decompositio
o Binary Decomp. (
o BD Delay. Release
D BD Delay. Partial

Seq. Exe. Time 108 Sets.

Sequent Symmetry

-I
0 4 8 12 16 20

Number of Processors

Figure 7: 8X8 Knights-Tour: 1st Solution Speedups

5 iscussion
We demonstrated the effectiveness of priority based
parallel search techniques to eliminate anomalies and
obtain consistent linear speedups to first solution in
state-space searches. To the best of our knowledge, no
other method proposed to date consistently achieves
monotonically increasing speedups for a first solution.
Our techniques also reduce the memory usage and it
does not increase with the number of processors. It
may be argued that this is unimportant as the amount
of memory available grows linearly with the number of
processors. However, this argument misses the point:
on a P processor system our scheme requires a small
fraction of the memory required by a stack based
scheme. With 18 processors, l.Z&Queens required 0.4
MBytes of memory compared to 1.8 MBytes with a
shared stack. With a large number of processors and
large problems, our scheme will be able to solve prob-
lems that the stack based scheme cannot solve due to
a memory overflow.

An advantage of our scheme is that it adheres to
local value-ordering heuristic, which are very impor-
tant for first solution searches. Nowever, even when
good ordering heuristic is not available, our scheme is
still valuable, because of its consistent and monotonic
speedups.

Recently, Rao and Kumar have derived an inter-
esting result in [Rao & Kumar 1988] concerning the
multiple-stack model for parallel search, where the so-
lution density are highly non-uniform across the search
space. Although the speedups are anomalous, they
show that on the overage (i.e. averaged over several
runs), the speedups tend to be larger than P, com-
pared with the standard backtracking search, where P
is the number of processors. In such types of search
spaces our result is still valuable for the following rea-

232 AUTOMATEDREASONING

16

e

4

12

Number of Processors
Figure 8: 6X6 Magic Squares: 1st Solution Speedups.

sons. First, the prioritizing scheme we presented en-
sures speedups close to P in all runs, and for varying
values of P (assuming, of course, that there is enough
work available in the part of the search tree to the left
of the solution). Second, their results also show that
the ‘superlinearity’ of speedup is not further enhanced
beyond a few processors. Therefore, in a system with
many processors we can exploit the non-linear solution
densities better by setting the priorities of the top few
nodes in the search tree to be null (i.e. empty bit vec-
tors). This retains the advantage of exploring different
regions of the search-space, hoping to exploit the non-
uniform solution densities (probabilities) while still fo-
cusing the processors within these regions for more
consistent speedups.

The use of priorities effectively decouple the par-
allel search algorithm from the scheduling strategy
[Kale & Saletore 19891. (In contrast, schemes such as
[Lusk et al. 19881 for OR-parallel execution of Pro-
log use an explicit tree representation shared by all
processors). This decoupling has several advantages.
Scheduling strategies can be chosen independently of
the search algorithm itself and synchronisation is much
simpler. Most important, the prioritisation strategies
can be extended to distributed memory machines such
as the Intel iPSC/2 and BBN Butterfly, by provid-
ing a priority-balancing strategy in conjunction with
the load balancing scheme. We are developing such a
strategy.

We have extended these techniques for for Parallel
IDA* in [Kale & Saletore 19891. The extensions were
needed because IDA* involves a series of increasing
depth-first searches. Problem reduction based prob-
lem solving and Logic Programming are related areas
in which, frequently, one is looking for one solution
while many solutions may exist. However, this is sub-
stantially more complex situation than the pure state-

space (OR-tree) search, if AND-parallelism is also to
be exploited. The techniques developed in this paper
can be incorporated beneficially in such schemes with
appropriate modifications.

Acknowledgements

We would like to thank anonymous referees for im-
proving the quality of the paper. We also thank Ross
Overbeek at Argonne National Lab. for providing ac-
cess to the Sequent Symmetry multiprocessor.

[Halstead 19861 Walstead R. 1986. Parallel Symbolic
Computing, IEEE Computer.

[Hausman et al. 19871 Hausman B., Ciepielewski A.
and Haridi S. 1987. OR-Parallel Prolog Made Effi-
cient on Shared Memory Multiprocessors, Proceed-
ings of the Symposium on Logic Programming.

[Kale 19901 Kale L.V. 1990. The Chare-Kernel Paral-
lel Programming Language and System, Proceed-
ings of the International Conference on Parallel
Processing. Forthcoming.

[Kale & Saletore 19891 Kale L.V. and Saletore V. A.
1989. Parallel State-Space Search for a First So-
lution with Consistent Linear Speedups, Technical
Report UIUCDCS-R-89-1549, Dept. of Comp. SC.,
Univ. of Illinois at Urbana-Champaign.

[Korf 19881 Korf R. E. 1988. Optimal Path-Finding
Algorithms, Search in Artificial Intelligence, 223-
276. Kanal L.K., Kumar V. eds.

[Kumar & Rao 19871 Kumar V. and Rao V. N. 1987.
Parallel Depth First Search, International Journal
of Parallel Programming. 479-519.

[Lai & Sahni 19841 L ai T.H. and Sahni S. 1984.
Anomalies in Parallel Branch-and-Bound Algo-
rithms, Communications of the ACM. 594-602.

[Li & Wah 19861 Li G.J. and Wah B.W. 1986. How
Good are Parallel and Ordered Depth-First
Searches, Proceedings of the International Confer-
ence on Parallel Processing.

[Lusk et al. 19881 Lusk E., Warren D.H.D, Haridi S.
et. al 1988. The Aurora OR-parallel Prolog System,
Fifth Generation Computer Systems. 819-830.

[Pearl 19851 Pearl J. 1985. Heuristics: Intelligent
Search Strategies for Computer Problem Solving,
Addison- Wesley, Inc.

[Rao & Kumar 19881 Rao V.N. and Kumar V. 1988.
Superlinear Speedup in State-Space Search, Pro-
ceedings of the Foundation of Software Technology
and Theoretical Computer Science.

SALETORE ANDKALI? 233

