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Abstract 
An equational approach to the synthesis of functional 
and logic programs is taken. Typically, a target pro- 
gram contains equations that are only true in the stan- 
dard model of the given domain rules. To synthesize 
such programs, induction is necessary. We propose 
heuristics for generalizing from a sequence of deductive 
consequences. These are combined with rewrite-based 
methods of inductive proof to derive provably correct 
programs. 

a survey of rewriting, see (Dershowitz & Jouannaud 
1990); for completion and its applications, see (Der- 
showitz 1989). 

Consider the following toy system S for addition and 
doubling (d) of natural numbers in unary notation: 

x+0 + x 
x + S(Y) + s(x+y) 

d(x) + x+x 

Introduction 
Various approaches to the automated synthesis of com- 
puter programs have been taken; see (Barr & Feigen- 
baum 1981-1982, Chap. X). In particular, deductive 
methods have been used to derive executable pro- 
grams from formal specifications; early examples of 
such an approach include (Burst all & Darlington 1977; 
Manna & Waldinger 1979). Inductive, example-based 
methods have also been applied to this task; a survey 
of this approach is (Smith 1980); more recent work in- 
cludes (Shapiro 1983). In this paper, we employ both 
deductive and inductive methods of inferring provably 
correct programs. This work differs from most others 
in combining syllogistic and heuristic approaches and 
in using mathematical induction to formally verify hy- 
potheses drawn by inductive inference. It is similar in 
spirit to some methods used in automated deduction, 
notably (Boyer & Moore 1977). 

Such a pattern-directed program is used to compute 
by replacing instances of a left-hand side pattern (the 
x and y are variables) with the corresponding instance 
of the right-hand side. The term d(s(0)) + s(O), repre- 
senting the expression 2* l+ 1, may be rewritten by one 
application of one rule to (s(0) + s(0)) + s(O), since the 
third rule matches the subterm d(s(O)), with x = s(0). 
It could alternatively be reduced to s(d(s(0)) + 0), ap- 
plying the second rule to the whole term, with x = 
d(s(0)) and y = 0. C on t inuing in any manner (we treat 
rewrite systems as nondeterministic programs), eventu- 
ally results in the irreducible term s(s(s(O))), standing 
for the numeral 3. We say that s(s(s(0))) is a normal 
form of the input term d(s(0)) + s(0). 

Consider now the following recursive program R, 
which does not use addition for doubling: 

In (Dershowitz 1982; Dershowitz 1985a), it was pro- 
posed that equations be used both as specification lan- 
guage and as target programming language within a 
synthesis system. In the equational paradigm, pro- 
grams are expressed as sets of directed equations, called 
rewrite systems, and are executed using two mecha- 
nisms: rewriting (reduction) for the functional aspect 
and narrowing (a restricted form of paramodulation) 
for the “logic” aspect. As inference engine, these pa- 
pers suggested using the completion procedure (Knuth 
& Bendix 1970). This completion-based approach to 
synthesis has since been pursued in (Kodratoff & Pi- 
card 1983; Perdix 1986; Reddy 1989) and has been 
compared to the fold/unfold method of (Burstall & 
Darlington 1977) in (Fronhofer & Furbach 1986). For 

x+0 --j 2 
x + S(Y) + s(x +d 

d(0) --j. 0 
d(sW ---) +wm 

System R enjoys four important properties, two intrin- 
sic and. two vis-a-vis its specification S: (1) R is ter- 
minating, i.e. for no input term is an infinite sequence 
of rewrites possible; (2) R is ground confluent, i.e. any 
variable-free term has at most one normal form; (3) R 
is correct with respect to S, in the sense that terms are 
only rewritten to terms that are “equal” according to 
5’; (4) R is complete with respect to S, in the sense that 
any two variable-free terms that are equal according to 
S are also equal according to R. In general, we demand 
that all synthesized programs meet these requirements. 

Section 2 describes the synthesis of deductive con- 
sequences of a specification like S. As we will see, 
deduction alone may produce an infinite program for 
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S. This leads, in Section 3, to the use of rewriting- 
based induction techniques to derive the finite program 
R from a finite subset of the deductive consequences 
of S. Rewriting-based inductive proofs, called “proofs 
by consistency” or “inductionless induction”, were pi- 
oneered by (Musser 1980). It is the use of heuristics 
for generalizing from a sequence of deductive conse- 
quences and then establishing the correctness of the 
conjectured program by formal inductive techniques 
that distinguishes this work from previous deductive 
approaches to program synthesis. A similar approach 
has independently been taken in (Jantke 1989b). 

Deductive Synthesis 
The programs we consider in this paper are all in 
the form of systems of rewrite rules. Rewrite rules 
are given to the Prolog system as assertions, like 
rule(add(X,O),X) for the rule x + 0 + 2. A 
simple Prolog interpreter of rewrite programs finds 
normal forms of input terms. (For things to work 
right, we take it for granted that “occur-checks” 
are performed whenever necessary, as can be done 
in PTTP (Stickel 1986).) With asserted rules cor- 
responding to the program S given earlier, Pro- 
log solves goals like rewrite(add(d(s(0)) ,s(O)) ,Z>, 
meaning, “What are the terms Z to which the in- 
put term add(d(s(0)) ,s(O)) rewrites?” The fi- 
nal answer in this case is the normal form Z = 
s (s (s (0) ) > . Moreover, Prolog can solve goals like 
rewrite(add(d(Y) ,s(O)) ,s(s(s(O))>), in which a 
free (“logic”) variable occurs in the term being rewrit- 
ten, to obtain a solution s(s(0)) as a value of Y that 
makes add(d(Y) ,s(O)) rewrite to s(s(s(0))). 

The same program S may be used for subtraction 
or halving, much like Horn-clause programs may be 
used to solve for free variables. Instead of using just 
pattern-matching to locate a potential rewrite, unifi- 
cation is used to make the rewrite possible. To solve 
the goal equation d(z) + s(0) = s(s(s(0))) for z, one 
looks for a (nonvariable) subterm of the goal that uni- 
fies with a left-hand side of S. (Variables in goals and 
rules are always treated as disjoint.) After applying 
the most general unifying substitution to the goal, the 
enabled step is made. This two-step (unify-rewrite) 
process is called narrowing. The use of narrowing as 
operational semantics for programming with equations 
was first suggested in (Dershowitz 1984) and is com- 
pared with other approaches in (Reddy 1986). 

In our case, the subterm d(z) is an instance of the 
left-hand side of the third rule, and the goal is rewrit- 
ten to (z + z) + s(0). (Rewriting is a special case 
of narrowing in which unification is “one-way” and 
no substitutions need be made in the goal.) Rewrit- 
ing twice more, with the second rule followed by the 
first, gives s(z + z) = s(s(s(0))). Letting z = 0 al- 
lows the first rule to fire, narrowing the goal to the 
irreducible, un-narrowable, and unsatisfiable subgoal 
s(0) = s(s(s(0))). H ence, alternative narrowings must 

be explored. In this case, we can let z = s(u), instead, 
yielding the subgoal s(s(s(u) + u)) = s(s(s(0))). Let- 
ting u = 0, now, gives s(s(s(0))) = s(s(s(O))), the two 
sides of which are identical. Thus, the solution discov- 
ered by narrowing is z = s(u) = s(0). 

The basic deductive mechanism we employ in syn- 
thesis is completion (Knuth & Bendix 1970). Critical 
pairs are equations that are deductive consequences of 
pairs of rules, formed by unifying one (renamed) left- 
hand side with a nonvariable subterm of the same or 
another left-hand-side. The idea in completion is to 
make new rules out of critical pairs that do not sim- 
plify to identity. To generate critical pairs, we use a 
Prolog predicate subst (S ,L, R,T) which holds if T is 
the result of applying rule (L s R) once at a nonvariable 
subterm of S. The goal solving capabilities of PROLOG 
allow us to solve for a minimal,instance of S that makes 
the rule applicable, yielding-after unification-a crit- 
ical pair eq(S , T) . A terminating system is confluent (a 
stronger property than ground confluence) if for each 
critical pair s = t, both s and t reduce to the same 
term 21. Some other methods for establishing ground 
confluence (an undecidable property even of terminat- 
ing systems) are available; see, for example, (Kiichlin 
1989). 

Completion was programmed as a predicate 
kb(Ei , EO) that applies the basic inference rules de- 
scribed in (Bachmair et al. 1986) to EO to generate a 
sequence of sets of equations EO, El, etc. One infer- 
ence rule generates new critical pairs; another reduces 
them to normal form; a third deletes trivial ones; two 
inference rules orient critical pairs into uni-directional 
rewrite rules. Rules are oriented according to a given 
well-founded ordering on terms, so that applying the 
rule to any term reduces the term in the ordering, en- 
suring thereby that the system of generated rules is al- 
ways terminating (an undecidable property). Comple- 
tion typically includes additional mechanisms for sim- 
plifying rules that have already been generated. (Our 
implementation does not, and therefore leads to vari- 
ants of the rules that might be obtained with a full- 
fledged system like REVE (Lescanne 1983) .) 

For our purposes, the most useful ordering is the 
dexicogruphic path ordering (Kamin & Levy 1980); see 
(Dershowitz 1987). This ordering >lpO is based on a 
given partial ordering, called a precedence, + between 
function symbols. In the induced ordering >lpO, a term 
is always greater than each of its subterms, terms with 
the same leading function symbol are compared lexico- 
graphically (from left-to-right, say), and a term with 
more significant leading symbol needs only be greater 
than the immediate subterms of a term with less sig- 
nificant leading symbol. 

Consider the following specification S: 

x+0 + x 
x + S(Y) - 4x + Y) 
s(x) + Y - 4x+ Y) 

x+x - 44 
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in handy. Furthermore, we need not be concerned with 
the potential completion has of generating an infinite 
number of irrelevant equations, since-for the purposes 
of synthesis-completion may be arrested as soon as 
enough rules R have been generated for completeness. 

We choose a precedence that ensures that specification 
symbols (+) are greater than the synthesized functions 
(d), which in turn are greater than the primitive op- 
erations (s,O). The query kb( Cl , Cl ) produces the fol- 
lowing equations and rules R: 

d(0) - 0 

TlxN 
= s(s(x) + x) 

GN 
= s(s(x + x)) 
- 444x))) 

The first rule, for instance, is the result of orienting 
the two normal forms of 0 + 0 (in the only direction 
possible). The latter term is obtained by unifying the 
left-hand sides of the specification and first rule for ad- 
dition. For more details of completion-based synthesis, 
see (Dershowitz 1985b). 

We need to show that the two generated rules form 
a correct and complete system for doubling. To de- 
fine correctness, we need to make precise what was 
meant earlier by “equal according to S.” There are 
two notions of equality that are relevant: (a) deductive 
equality, meaning provable by substitution of equals 
for equals; and (b) inductive equality, meaning that all 
variable-free instances of the equation are deductively 
equal. To symbolize that every equation in R is a de- 
ductive equality with respect to S, we write S I- R; to 
symbolize that they are inductive equalities, we write 
Znd(S) + R. For example, S I- x+y = y+x is not true, 
though for every variable-free instance it is; for exam- 
ple, S I- s(s(0)) + s(0) = s(0) + s(s(0)). The weaker 
notion, inductive equality, suffices in programming con- 
texts, so we will say that R is correct with respect to 
specification S if Znd(S) + R. When completion is 
used, correctness is guaranteed in the stronger, deduc- 
tive sense. 

Completeness is similar to correctness, but with the 
roles of R and S reversed. Actually, we split S into 
A U D, where A contains domain information and D 
expresses properties of the defined functions in terms of 
domain entities. Then, we require only that Znd(AU R) 
b D. In the doubling example, A would consist of the 
three rules for addition and D would be the equation 
x + x = d(x). The two generated rules for d are com- 
plete, since both sides of any ground instance of D 
(happen to) reduce (under A U R) to domain values 
constructed from s and 0. Since R is correct (that is, 
it follows from A U D), and D is a conservative exten- 
sion of A (hence does not equate unequal constructor 
terms), the two reduced sides of D must be equal in A. 
So, we have A U R I- t + t = d(t) for all ground terms 
t. For a discussion of correctness of synthesized rewrite 
programs, see (Reddy 1989). 

In (Reddy 1989) it is pointed out that full comple- For the second step, we generate most specific gener- 
tion is unnecessary and a weaker inference engine suf- alizations of pairs of equations, by replacing conflicting 
fices; in other words, only a subset of the critical pairs subterms by a new variable; see (Plotkin 1970). We 
need to be generated for synthesis of ground confluent implemented a predicate msg(S ,T,U, M) that gives the 
programs. On the other hand, the additional equa- least general term U (i.e. the glb of S and T in the sub- 
tions generated by full completion occasionally come sumption lattice) such that S and T are both instances 

Ordinary completion will fail if it reaches a point 
where all critical pairs have been generated, and all 
equations are nontrivial, in normal form, and un- 
orientable. Unfailing extensions of completion have 
been designed and perform better; see, for example, 
(Bachmair et al. 1989). 

Regardless of which version of completion is em- 
ployed, it may generate an infinite number of relevant 
program rules. What to do in such a case, is the subject 
of the next section. 

Inductive Synthesis 
In (Dershowitz 1985b) and (Reddy 1989), it was argued 
that-with an appropriate ordering-completion will 
always generate a program from a given specification. 
The catch is that the “guaranteed” program may be 
of infinite length. Indeed, running completion without 
the third addition rule, s(x) + y + s(x + y), instead of 
the desired program, generates an infinite set of rules: 

There is, of course, little one can do with the resultant 
infinite table lookup: (d(s”(0)) --+ ~~~(0) : i > 0). 
What is needed is some way of guessing the more gen- 
eral rule d(s(x)) + s(s(d(x))). 

We use two processes to generate hypotheses. The 
first involves generating critical pairs between right- 
hand sides of rules; the second is a syntactic form of 
generalization, a la (Boyer & Moore 1977). The intu- 
ition is that once we are dissatisfied with the rules, we 
look for equations between terms containing the defined 
function symbol, in the hope of discovering a pattern. 

For the first step, we generate critical pairs between 
inverted rules of the current partial program. That is, 
we use a precedence + + s, 0 > d, so that patterns 
involving d are brought to the fore. Given the above 
rules for d, we get the following equations 

d(s(O)) = s(s(d(O))) 
d(s(s(O))) = s(s(d(s(O)))) 
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of U; M is the list of conflicts between S and T used to 
construct U, which is needed to ensure that the same 
conflicts result in the same new variable. (This process 
is called “anti-unification” nowadays.) 

From the above two equations, msg generates the hy- 
pothesis d(s(as)) = s(s(d(x))). G iven a hypothesized 
rule (such as this equation oriented from left to right), 
we must apply the inductive proof method to prove 
that it is consistent with the domain rules and specifi- 
cation. Once proved, it can be used to reduce (away) 
special cases already generated. 

To prove correctness in the inductive sense, we make 
use of the following fact: Znd(S) k R if and only if 
Z&(S) b dp(R), where dp(R) is the set of all equa- 
tions obtained by using S to narrow the left side of a 
rule in R. In proving dp(R), the hypothesis R may 
be taken for granted. This process may be repeated 
for each of the equations in dp(R) until only deduc- 
tive consequences of S remain. In a manner similar to 
generation of critical pairs, we implemented a predi- 
cate dp(D,E) that generates equations E obtained by 
narrowing D. Thus, to prove an equation eq(S,T) we 
first reduce its two sides to normal form, then con- 
sider it proved if it has been shown already, if the two 
sides are identical, or if it can be oriented into a rule 
and each equation E such that dp( eq(S , T) , E) is itself 
provable. This is the essence of the improved proof-by- 
consistency method in (F’ribourg 1989). Refinements 
of this method include (Bachmair 1988) and (Reddy 
1990). 

Returning to our example, the hypothesis d(s(z)) -+ 
s(s( d(z))) is narrowed by d(x) --) x + 2, giving 
S(X) + S(X) = s(s(Ca(z))). Note that the rule for d 
is used for verification in the opposite direction of its 
use for synthesis. This is so that the specification it- 
self is (ground) confluent. The above equation sim- 
plifies to s(s(z) + Z) = s( s(a: + x)), using the rule 
2 + s(y) + s(z + y), but no further (in the absence of 
s(z) + y + s(z + y)). Were this equation provable by 
deductive means, we would be finished; it isn’t, so the 
inductive proof method continues in the same manner, 
generating an infinite sequence of oriented hypotheses: 

SMX) + 4 + s(s(x + x)) 
SMSMY)) + YN + S(S(S(S(Y) + Y)N 

Clearly, we need to substitute the (missing) lemma 
s(z) + y + S(Z + y) for these instances. We employ the 
same generalization methods as for synthesis (cf. (Jan- 
tke 1989a; Lange 1989)). An additional helpful tech- 
nique is cancellation, as used in deduction, for example, 
by (Stickel 1984). In particular (Huet & Hullot 1982), 
we can take advantage of “constructors,” replacing hy- 
potheses of the from c(sr , . . . , sn) = c(tl, . . . , tn) with 
n hypotheses si = ti, when there are no rules for c in 
S. In the above case, we are free to strip off matching 

outer s’s from the generated hypotheses: 

s(z) +x + s(z+z) 
SMYN + Y + MY) + Y) 

Using the same msg procedure as before leads to the 
more general hypothesis S(X) + y = s(z: + y), exactly 
what we were looking for. 

With this added as a rule to S, the recursive program 

d(0) + 0 
dW > + ww)> 

for d is finally proved correct. The first rule is a de- 
ductive consequence of S; the second is an inductive 
consequence. (Actually, the synthesis procedure would 
already have suggested the missing equation from the 
:zluly)ce of rules d( sz (0)) -+ Sag, leading to the same 

. 
Having succeeded in producing a program for dou- 

bling, a recursive program for halving can be generated 
from the implicit definition 

The following sequence of rules is produced: 

These rules suggest at least two hypotheses, namely: 

The former generalizes the equations 

NO) = ww 
wsm = w+(0)))) 

but is disproved, since (taking x = s(0)) it implies that 
s(O) = 0. The second hypothesis is obtained by looking 
at different pairs of rules (first and third, second and 
fourth, etc.) and generalizes the equations 

It is proved immediately by 
rect and complete program 

induction, yielding the cor- 

h(O) + 0 
woN + 0 w+m + s(G9) 

When a program R contains symbols not appear- 
ing in its specification S, such as symbols for auxiliary 
functions, we need to replace inductive truth with the 
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notion of “conservative extension.” That is, we require 
that there exist no terms s and t in the vocabulary of 
S such that S y s = t, but R U S I- s = t. One heuris- 
tic for introducing auxiliary functions is simply to look 
for nontrivial subterms that appear (some number of 
times) in program rules. 

For example, suppose we have all three rules for ad- 
dition, and wish to manufacture a program q(x) for 
squaring from the following rules for multiplication: 

x*0 * 0 
x * S(Y) + (x *y) +x 
44 *Y + (x * Y) +Y 

x*x + q(x) 

Suppose, further, that we do not wish to allow addi- 
tion in the synthesized program, so we order the sym- 
bols * > + t Q > s, 0. Completion will generate the 
following rules (among others) : 

a(O) + 0 
em + 4 + 4 + aW>) 

4s(4(aMYN + Y) + Y)>) + d+(Y))) 

Noting the repeating left-hand side pattern (y + 2) 
suggests the introduction of an ancillary function: 

is an indirect program for k, requiring narrowing to 
first solve the goal y = d(x) (or y = s(d(x))) for a 
given number y before rewriting k(y) to f(y) (or g(y)). 
Thus, the first rule applies to even y and the second in 
the odd case. An alternative 
rewriting would be 

program, requiring only 

d@(Y)) = Y I k(Y) + f(Y) 
4WY)N = Y I k(Y) + g(Y) 

where the first part is a conditional “guard,” which 
when satisfied for a particular number y allows k(Y) 
to be rewritten. In general, conditional rewrite sys- 
tems and conditional narrowing provide a better com- 
bination of functional and logic programming; see, 
for instance, (Dershowitz & Plaisted 1988). Condi- 
tional synthesis, however, would necessitate more pow- 
erful deductive and inductive methods for handling 
conditional equations, such as have been investigated 
in (Ganzinger 1987; Kounalis & Rusinowitch 1990). 
More elaborate generalization methods would also be 
required, perhaps along the lines of (Kirchner 1989; 
Lange 1989). This is an area for further research. 

@++)+z ---f P(V) 
Synthesizing p in the same manner as we synthesized 
d, gives 

P(O) + 32 
P(X, S(Y)) + 44P(X, YN 

Interpolating p in the precedence after 4 (since it is 
alright for q to be defined in terms of p) turns all the 
above rules for q into just: 

q(O) + 0 
a(+4 ---) s(P(q(4 4) 

Together, 
program. 

the rules for p and q constitute the desired 

Discussion 
We have shown how-in the equational framework- 
both deductive and inductive methods may be applied 
to the task of program synthesis. We have witnessed 
the need for heuristics that suggest inductive theorems 
for incorporation in a developing program, as well as 
for forming the lemmas needed in the inductive proofs. 
We have been pleasantly surprised by the success of 
just these few, simple heuristics. 

Not all target programs fall under the purview of the 
automated techniques we have discussed. For example, 
suppose the specification is 

W(x)) + f@(x)) 
kW(xN) + 9W(4N 

where f and g are primitive operations, and we are 
given all the facts we have derived about d and h. This 
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