
Inductive Synt quat ional
Nachum Dershowitz Eli Pinchover

Department of Computer Science Department of Mathematics
University of Illinois and Computer Science

Urbana, IL 61801, U.S.A. Bar-Ilan University
nachum@cs.uiuc.edu Ramat-Gan 52100, Israel

Abstract
An equational approach to the synthesis of functional
and logic programs is taken. Typically, a target pro-
gram contains equations that are only true in the stan-
dard model of the given domain rules. To synthesize
such programs, induction is necessary. We propose
heuristics for generalizing from a sequence of deductive
consequences. These are combined with rewrite-based
methods of inductive proof to derive provably correct
programs.

a survey of rewriting, see (Dershowitz & Jouannaud
1990); for completion and its applications, see (Der-
showitz 1989).

Consider the following toy system S for addition and
doubling (d) of natural numbers in unary notation:

x+0 + x
x + S(Y) + s(x+y)

d(x) + x+x

Introduction
Various approaches to the automated synthesis of com-
puter programs have been taken; see (Barr & Feigen-
baum 1981-1982, Chap. X). In particular, deductive
methods have been used to derive executable pro-
grams from formal specifications; early examples of
such an approach include (Burst all & Darlington 1977;
Manna & Waldinger 1979). Inductive, example-based
methods have also been applied to this task; a survey
of this approach is (Smith 1980); more recent work in-
cludes (Shapiro 1983). In this paper, we employ both
deductive and inductive methods of inferring provably
correct programs. This work differs from most others
in combining syllogistic and heuristic approaches and
in using mathematical induction to formally verify hy-
potheses drawn by inductive inference. It is similar in
spirit to some methods used in automated deduction,
notably (Boyer & Moore 1977).

Such a pattern-directed program is used to compute
by replacing instances of a left-hand side pattern (the
x and y are variables) with the corresponding instance
of the right-hand side. The term d(s(0)) + s(O), repre-
senting the expression 2* l+ 1, may be rewritten by one
application of one rule to (s(0) + s(0)) + s(O), since the
third rule matches the subterm d(s(O)), with x = s(0).
It could alternatively be reduced to s(d(s(0)) + 0), ap-
plying the second rule to the whole term, with x =
d(s(0)) and y = 0. C on t inuing in any manner (we treat
rewrite systems as nondeterministic programs), eventu-
ally results in the irreducible term s(s(s(O))), standing
for the numeral 3. We say that s(s(s(0))) is a normal
form of the input term d(s(0)) + s(0).

Consider now the following recursive program R,
which does not use addition for doubling:

In (Dershowitz 1982; Dershowitz 1985a), it was pro-
posed that equations be used both as specification lan-
guage and as target programming language within a
synthesis system. In the equational paradigm, pro-
grams are expressed as sets of directed equations, called
rewrite systems, and are executed using two mecha-
nisms: rewriting (reduction) for the functional aspect
and narrowing (a restricted form of paramodulation)
for the “logic” aspect. As inference engine, these pa-
pers suggested using the completion procedure (Knuth
& Bendix 1970). This completion-based approach to
synthesis has since been pursued in (Kodratoff & Pi-
card 1983; Perdix 1986; Reddy 1989) and has been
compared to the fold/unfold method of (Burstall &
Darlington 1977) in (Fronhofer & Furbach 1986). For

x+0 --j 2
x + S(Y) + s(x +d

d(0) --j. 0
d(sW ---) +wm

System R enjoys four important properties, two intrin-
sic and. two vis-a-vis its specification S: (1) R is ter-
minating, i.e. for no input term is an infinite sequence
of rewrites possible; (2) R is ground confluent, i.e. any
variable-free term has at most one normal form; (3) R
is correct with respect to S, in the sense that terms are
only rewritten to terms that are “equal” according to
5’; (4) R is complete with respect to S, in the sense that
any two variable-free terms that are equal according to
S are also equal according to R. In general, we demand
that all synthesized programs meet these requirements.

Section 2 describes the synthesis of deductive con-
sequences of a specification like S. As we will see,
deduction alone may produce an infinite program for

' 234 AUTOMATED RJZASON~VG

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

S. This leads, in Section 3, to the use of rewriting-
based induction techniques to derive the finite program
R from a finite subset of the deductive consequences
of S. Rewriting-based inductive proofs, called “proofs
by consistency” or “inductionless induction”, were pi-
oneered by (Musser 1980). It is the use of heuristics
for generalizing from a sequence of deductive conse-
quences and then establishing the correctness of the
conjectured program by formal inductive techniques
that distinguishes this work from previous deductive
approaches to program synthesis. A similar approach
has independently been taken in (Jantke 1989b).

Deductive Synthesis
The programs we consider in this paper are all in
the form of systems of rewrite rules. Rewrite rules
are given to the Prolog system as assertions, like
rule(add(X,O),X) for the rule x + 0 + 2. A
simple Prolog interpreter of rewrite programs finds
normal forms of input terms. (For things to work
right, we take it for granted that “occur-checks”
are performed whenever necessary, as can be done
in PTTP (Stickel 1986).) With asserted rules cor-
responding to the program S given earlier, Pro-
log solves goals like rewrite(add(d(s(0)) ,s(O)) ,Z>,
meaning, “What are the terms Z to which the in-
put term add(d(s(0)) ,s(O)) rewrites?” The fi-
nal answer in this case is the normal form Z =
s (s (s (0)) > . Moreover, Prolog can solve goals like
rewrite(add(d(Y) ,s(O)) ,s(s(s(O))>), in which a
free (“logic”) variable occurs in the term being rewrit-
ten, to obtain a solution s(s(0)) as a value of Y that
makes add(d(Y) ,s(O)) rewrite to s(s(s(0))).

The same program S may be used for subtraction
or halving, much like Horn-clause programs may be
used to solve for free variables. Instead of using just
pattern-matching to locate a potential rewrite, unifi-
cation is used to make the rewrite possible. To solve
the goal equation d(z) + s(0) = s(s(s(0))) for z, one
looks for a (nonvariable) subterm of the goal that uni-
fies with a left-hand side of S. (Variables in goals and
rules are always treated as disjoint.) After applying
the most general unifying substitution to the goal, the
enabled step is made. This two-step (unify-rewrite)
process is called narrowing. The use of narrowing as
operational semantics for programming with equations
was first suggested in (Dershowitz 1984) and is com-
pared with other approaches in (Reddy 1986).

In our case, the subterm d(z) is an instance of the
left-hand side of the third rule, and the goal is rewrit-
ten to (z + z) + s(0). (Rewriting is a special case
of narrowing in which unification is “one-way” and
no substitutions need be made in the goal.) Rewrit-
ing twice more, with the second rule followed by the
first, gives s(z + z) = s(s(s(0))). Letting z = 0 al-
lows the first rule to fire, narrowing the goal to the
irreducible, un-narrowable, and unsatisfiable subgoal
s(0) = s(s(s(0))). H ence, alternative narrowings must

be explored. In this case, we can let z = s(u), instead,
yielding the subgoal s(s(s(u) + u)) = s(s(s(0))). Let-
ting u = 0, now, gives s(s(s(0))) = s(s(s(O))), the two
sides of which are identical. Thus, the solution discov-
ered by narrowing is z = s(u) = s(0).

The basic deductive mechanism we employ in syn-
thesis is completion (Knuth & Bendix 1970). Critical
pairs are equations that are deductive consequences of
pairs of rules, formed by unifying one (renamed) left-
hand side with a nonvariable subterm of the same or
another left-hand-side. The idea in completion is to
make new rules out of critical pairs that do not sim-
plify to identity. To generate critical pairs, we use a
Prolog predicate subst (S ,L, R,T) which holds if T is
the result of applying rule (L s R) once at a nonvariable
subterm of S. The goal solving capabilities of PROLOG
allow us to solve for a minimal,instance of S that makes
the rule applicable, yielding-after unification-a crit-
ical pair eq(S , T) . A terminating system is confluent (a
stronger property than ground confluence) if for each
critical pair s = t, both s and t reduce to the same
term 21. Some other methods for establishing ground
confluence (an undecidable property even of terminat-
ing systems) are available; see, for example, (Kiichlin
1989).

Completion was programmed as a predicate
kb(Ei , EO) that applies the basic inference rules de-
scribed in (Bachmair et al. 1986) to EO to generate a
sequence of sets of equations EO, El, etc. One infer-
ence rule generates new critical pairs; another reduces
them to normal form; a third deletes trivial ones; two
inference rules orient critical pairs into uni-directional
rewrite rules. Rules are oriented according to a given
well-founded ordering on terms, so that applying the
rule to any term reduces the term in the ordering, en-
suring thereby that the system of generated rules is al-
ways terminating (an undecidable property). Comple-
tion typically includes additional mechanisms for sim-
plifying rules that have already been generated. (Our
implementation does not, and therefore leads to vari-
ants of the rules that might be obtained with a full-
fledged system like REVE (Lescanne 1983) .)

For our purposes, the most useful ordering is the
dexicogruphic path ordering (Kamin & Levy 1980); see
(Dershowitz 1987). This ordering >lpO is based on a
given partial ordering, called a precedence, + between
function symbols. In the induced ordering >lpO, a term
is always greater than each of its subterms, terms with
the same leading function symbol are compared lexico-
graphically (from left-to-right, say), and a term with
more significant leading symbol needs only be greater
than the immediate subterms of a term with less sig-
nificant leading symbol.

Consider the following specification S:

x+0 + x
x + S(Y) - 4x + Y)
s(x) + Y - 4x+ Y)

x+x - 44

DERSHOWITZ AND PINCHOVER 235

in handy. Furthermore, we need not be concerned with
the potential completion has of generating an infinite
number of irrelevant equations, since-for the purposes
of synthesis-completion may be arrested as soon as
enough rules R have been generated for completeness.

We choose a precedence that ensures that specification
symbols (+) are greater than the synthesized functions
(d), which in turn are greater than the primitive op-
erations (s,O). The query kb(Cl , Cl) produces the fol-
lowing equations and rules R:

d(0) - 0

TlxN
= s(s(x) + x)

GN
= s(s(x + x))
- 444x)))

The first rule, for instance, is the result of orienting
the two normal forms of 0 + 0 (in the only direction
possible). The latter term is obtained by unifying the
left-hand sides of the specification and first rule for ad-
dition. For more details of completion-based synthesis,
see (Dershowitz 1985b).

We need to show that the two generated rules form
a correct and complete system for doubling. To de-
fine correctness, we need to make precise what was
meant earlier by “equal according to S.” There are
two notions of equality that are relevant: (a) deductive
equality, meaning provable by substitution of equals
for equals; and (b) inductive equality, meaning that all
variable-free instances of the equation are deductively
equal. To symbolize that every equation in R is a de-
ductive equality with respect to S, we write S I- R; to
symbolize that they are inductive equalities, we write
Znd(S) + R. For example, S I- x+y = y+x is not true,
though for every variable-free instance it is; for exam-
ple, S I- s(s(0)) + s(0) = s(0) + s(s(0)). The weaker
notion, inductive equality, suffices in programming con-
texts, so we will say that R is correct with respect to
specification S if Znd(S) + R. When completion is
used, correctness is guaranteed in the stronger, deduc-
tive sense.

Completeness is similar to correctness, but with the
roles of R and S reversed. Actually, we split S into
A U D, where A contains domain information and D
expresses properties of the defined functions in terms of
domain entities. Then, we require only that Znd(AU R)
b D. In the doubling example, A would consist of the
three rules for addition and D would be the equation
x + x = d(x). The two generated rules for d are com-
plete, since both sides of any ground instance of D
(happen to) reduce (under A U R) to domain values
constructed from s and 0. Since R is correct (that is,
it follows from A U D), and D is a conservative exten-
sion of A (hence does not equate unequal constructor
terms), the two reduced sides of D must be equal in A.
So, we have A U R I- t + t = d(t) for all ground terms
t. For a discussion of correctness of synthesized rewrite
programs, see (Reddy 1989).

In (Reddy 1989) it is pointed out that full comple- For the second step, we generate most specific gener-
tion is unnecessary and a weaker inference engine suf- alizations of pairs of equations, by replacing conflicting
fices; in other words, only a subset of the critical pairs subterms by a new variable; see (Plotkin 1970). We
need to be generated for synthesis of ground confluent implemented a predicate msg(S ,T,U, M) that gives the
programs. On the other hand, the additional equa- least general term U (i.e. the glb of S and T in the sub-
tions generated by full completion occasionally come sumption lattice) such that S and T are both instances

Ordinary completion will fail if it reaches a point
where all critical pairs have been generated, and all
equations are nontrivial, in normal form, and un-
orientable. Unfailing extensions of completion have
been designed and perform better; see, for example,
(Bachmair et al. 1989).

Regardless of which version of completion is em-
ployed, it may generate an infinite number of relevant
program rules. What to do in such a case, is the subject
of the next section.

Inductive Synthesis
In (Dershowitz 1985b) and (Reddy 1989), it was argued
that-with an appropriate ordering-completion will
always generate a program from a given specification.
The catch is that the “guaranteed” program may be
of infinite length. Indeed, running completion without
the third addition rule, s(x) + y + s(x + y), instead of
the desired program, generates an infinite set of rules:

There is, of course, little one can do with the resultant
infinite table lookup: (d(s”(0)) --+ ~~~(0) : i > 0).
What is needed is some way of guessing the more gen-
eral rule d(s(x)) + s(s(d(x))).

We use two processes to generate hypotheses. The
first involves generating critical pairs between right-
hand sides of rules; the second is a syntactic form of
generalization, a la (Boyer & Moore 1977). The intu-
ition is that once we are dissatisfied with the rules, we
look for equations between terms containing the defined
function symbol, in the hope of discovering a pattern.

For the first step, we generate critical pairs between
inverted rules of the current partial program. That is,
we use a precedence + + s, 0 > d, so that patterns
involving d are brought to the fore. Given the above
rules for d, we get the following equations

d(s(O)) = s(s(d(O)))
d(s(s(O))) = s(s(d(s(O))))

236 AUTOMATEDREASONING

of U; M is the list of conflicts between S and T used to
construct U, which is needed to ensure that the same
conflicts result in the same new variable. (This process
is called “anti-unification” nowadays.)

From the above two equations, msg generates the hy-
pothesis d(s(as)) = s(s(d(x))). G iven a hypothesized
rule (such as this equation oriented from left to right),
we must apply the inductive proof method to prove
that it is consistent with the domain rules and specifi-
cation. Once proved, it can be used to reduce (away)
special cases already generated.

To prove correctness in the inductive sense, we make
use of the following fact: Znd(S) k R if and only if
Z&(S) b dp(R), where dp(R) is the set of all equa-
tions obtained by using S to narrow the left side of a
rule in R. In proving dp(R), the hypothesis R may
be taken for granted. This process may be repeated
for each of the equations in dp(R) until only deduc-
tive consequences of S remain. In a manner similar to
generation of critical pairs, we implemented a predi-
cate dp(D,E) that generates equations E obtained by
narrowing D. Thus, to prove an equation eq(S,T) we
first reduce its two sides to normal form, then con-
sider it proved if it has been shown already, if the two
sides are identical, or if it can be oriented into a rule
and each equation E such that dp(eq(S , T) , E) is itself
provable. This is the essence of the improved proof-by-
consistency method in (F’ribourg 1989). Refinements
of this method include (Bachmair 1988) and (Reddy
1990).

Returning to our example, the hypothesis d(s(z)) -+
s(s(d(z))) is narrowed by d(x) --) x + 2, giving
S(X) + S(X) = s(s(Ca(z))). Note that the rule for d
is used for verification in the opposite direction of its
use for synthesis. This is so that the specification it-
self is (ground) confluent. The above equation sim-
plifies to s(s(z) + Z) = s(s(a: + x)), using the rule
2 + s(y) + s(z + y), but no further (in the absence of
s(z) + y + s(z + y)). Were this equation provable by
deductive means, we would be finished; it isn’t, so the
inductive proof method continues in the same manner,
generating an infinite sequence of oriented hypotheses:

SMX) + 4 + s(s(x + x))
SMSMY)) + YN + S(S(S(S(Y) + Y)N

Clearly, we need to substitute the (missing) lemma
s(z) + y + S(Z + y) for these instances. We employ the
same generalization methods as for synthesis (cf. (Jan-
tke 1989a; Lange 1989)). An additional helpful tech-
nique is cancellation, as used in deduction, for example,
by (Stickel 1984). In particular (Huet & Hullot 1982),
we can take advantage of “constructors,” replacing hy-
potheses of the from c(sr , . . . , sn) = c(tl, . . . , tn) with
n hypotheses si = ti, when there are no rules for c in
S. In the above case, we are free to strip off matching

outer s’s from the generated hypotheses:

s(z) +x + s(z+z)
SMYN + Y + MY) + Y)

Using the same msg procedure as before leads to the
more general hypothesis S(X) + y = s(z: + y), exactly
what we were looking for.

With this added as a rule to S, the recursive program

d(0) + 0
dW > + ww)>

for d is finally proved correct. The first rule is a de-
ductive consequence of S; the second is an inductive
consequence. (Actually, the synthesis procedure would
already have suggested the missing equation from the
:zluly)ce of rules d(sz (0)) -+ Sag, leading to the same

.
Having succeeded in producing a program for dou-

bling, a recursive program for halving can be generated
from the implicit definition

The following sequence of rules is produced:

These rules suggest at least two hypotheses, namely:

The former generalizes the equations

NO) = ww
wsm = w+(0))))

but is disproved, since (taking x = s(0)) it implies that
s(O) = 0. The second hypothesis is obtained by looking
at different pairs of rules (first and third, second and
fourth, etc.) and generalizes the equations

It is proved immediately by
rect and complete program

induction, yielding the cor-

h(O) + 0
woN + 0 w+m + s(G9)

When a program R contains symbols not appear-
ing in its specification S, such as symbols for auxiliary
functions, we need to replace inductive truth with the

DERSHOWITZ AND PINCHOVER 237

notion of “conservative extension.” That is, we require
that there exist no terms s and t in the vocabulary of
S such that S y s = t, but R U S I- s = t. One heuris-
tic for introducing auxiliary functions is simply to look
for nontrivial subterms that appear (some number of
times) in program rules.

For example, suppose we have all three rules for ad-
dition, and wish to manufacture a program q(x) for
squaring from the following rules for multiplication:

x*0 * 0
x * S(Y) + (x *y) +x
44 *Y + (x * Y) +Y

x*x + q(x)

Suppose, further, that we do not wish to allow addi-
tion in the synthesized program, so we order the sym-
bols * > + t Q > s, 0. Completion will generate the
following rules (among others) :

a(O) + 0
em + 4 + 4 + aW>)

4s(4(aMYN + Y) + Y)>) + d+(Y)))

Noting the repeating left-hand side pattern (y + 2)
suggests the introduction of an ancillary function:

is an indirect program for k, requiring narrowing to
first solve the goal y = d(x) (or y = s(d(x))) for a
given number y before rewriting k(y) to f(y) (or g(y)).
Thus, the first rule applies to even y and the second in
the odd case. An alternative
rewriting would be

program, requiring only

d@(Y)) = Y I k(Y) + f(Y)
4WY)N = Y I k(Y) + g(Y)

where the first part is a conditional “guard,” which
when satisfied for a particular number y allows k(Y)
to be rewritten. In general, conditional rewrite sys-
tems and conditional narrowing provide a better com-
bination of functional and logic programming; see,
for instance, (Dershowitz & Plaisted 1988). Condi-
tional synthesis, however, would necessitate more pow-
erful deductive and inductive methods for handling
conditional equations, such as have been investigated
in (Ganzinger 1987; Kounalis & Rusinowitch 1990).
More elaborate generalization methods would also be
required, perhaps along the lines of (Kirchner 1989;
Lange 1989). This is an area for further research.

@++)+z ---f P(V)
Synthesizing p in the same manner as we synthesized
d, gives

P(O) + 32
P(X, S(Y)) + 44P(X, YN

Interpolating p in the precedence after 4 (since it is
alright for q to be defined in terms of p) turns all the
above rules for q into just:

q(O) + 0
a(+4 ---) s(P(q(4 4)

Together,
program.

the rules for p and q constitute the desired

Discussion
We have shown how-in the equational framework-
both deductive and inductive methods may be applied
to the task of program synthesis. We have witnessed
the need for heuristics that suggest inductive theorems
for incorporation in a developing program, as well as
for forming the lemmas needed in the inductive proofs.
We have been pleasantly surprised by the success of
just these few, simple heuristics.

Not all target programs fall under the purview of the
automated techniques we have discussed. For example,
suppose the specification is

W(x)) + f@(x))
kW(xN) + 9W(4N

where f and g are primitive operations, and we are
given all the facts we have derived about d and h. This

+a:
References

Bachmair, L. Proof by consistency in equational theories.
In Proceedings of the Third Symposium on Logic in Com-
puter Science, pp. 228-233, Edinburgh, Scotland, July 1988.
Bachmair, L., Dershowitz, N., and Hsiang, J. Orderings
for equational proofs. In Proceedings of the Symposium on
Logic in Computer Science, pp. 346-357, Cambridge, MA,
June 1986.
Bachmair, L., Dershowitz, N., and PI&ted, D. A. Com-
pletion without failure. In Ait-Kaci, H. and Nivat, M.,
eds., Resoirution of Equations in Algebraic Structures, vol. 2:
Rewriting Techniques, chap. 1, pp. l-30, Academic Press,
New York, 1989.
Barr, A. and Feigenbaum, E. A., eds. The Handbook of Ar-
tificial Intelligence. William Kaufmann, 1981-1982. Three
volumes.
Boyer, R. S. and Moore, J. S. A lemma driven automatic
theorem prover for recursive function theory. In Proceedings
of the Fifth International Joint Conference on Artificial In-
telligence, pp. 511-519, Cambridge, MA, 1977.
BurstaIl, R. M. and Darlington, J. A transformation system
for developing recursive programs. J. of the Association for
Computing Machinery, 24(1):44-67, January 1977.
Dershowitz, N. Applications of the Knuth-Bendix com-
pletion procedure. In Proceedings of the Seminaire
d ‘Informatique Theorique, pp. 95-l 11, Paris, France, De-
cember 1982.
Dershowitz, N. Equations as programming language. In
Proceedings of the Fourth Jerusalem Conference on Infor-
mation Technology, pp. 114-124, IEEE Computer Society,
Jerusalem, Israel, May 1984.
Dershowitz, N. Computing with rewrite systems. Informa-
tion and Control, 64(2/3):1 22-157, May/June 1985.
Dershowitz, N. Synthesis by completion. In Proceedings
of the Ninth International Joint Conference on Artificial
Intelligence, pp. 208-214, Los Angeles, CA, August 1985.

238 AUTOMATEDREASONING

Dershowitz, N. Termination of rewriting. J. of Symbolic
Computation, 3(1&2):69-115, February/April 1987. Corri-
gendum: 4, 3 (December 1987), 409-410.
Dershowitz, N. Completion and its applications. In Ait-
Kaci, H. and Nivat, M., eds., Resolution of Equations in
AZgebraic Structures, vol. 2: Rewriting Techniques, chap. 2,
pp. 31-86, Academic Press, New York, 1989.
Dershowitz, N. and Jouannaud, J. Rewrite systems. In
van Leeuwen, J., ed., Handbook of Theoretical Computer
Science B: Formal Methods and Semantics, chap. 6, North-
Holland, Amsterdam, 1990. In press; available as Rapport
478, LRI, Univ. Paris-Sud, France.
Dershowitz, N. and Plaisted, D. A. Equational program-
ming. In Hayes, J. E., Michie, D., and Richards, J.,
eds., Machine IntelIigence 11: The logic and acquisition of
knowledge, chap. 2, pp. 21-56, Oxford Press, Oxford, 1988.
Fribourg, L. A strong restriction of the inductive comple-
tion procedure. J. Symbolic Computation, 8(3):253-276,
1989.
Fronhijfer, B. and Furbach, U. Knuth-Bendix completion
versus fold/unfold: A comparative study in program syn-
thesis. In Rollinger, C. and Horn, W., eds., Proceedings
of the Tenth German Workshop on Artificial Intelligence,
pp. 289-300, 1986.
Ganzinger, H. A completion procedure for conditional
equations. In Kaplan, S. and Jouannaud, J., eds., Pro-
ceedings of the First International Workshop on Condi-
tional Term Rewriting Systems, pp. 62-83, Orsay, France,
July 1987. Vol. 308 of Lecture Notes in Computer Science,
Springer, Berlin (1988).
Huet, G. and Hullot, J. Proofs by induction in equational
theories with constructors. J. of Computer and System Sci-
ences, 25:239-266, 1982.

Jantke, K. P. Algorithmic learning from incomplete in-
formation: Principles and problems. In Dassow, J. and
Kelemen, J., eds., Machines, Languages, and Complexity
(Selected C on rz u ions t ‘b t of the 5th International Meeting
of Young Computer Scientists, Smolenice, Czechoslovakia,
November 1988), pp. 188-207, 1989. Vol. 381 of Lecture
Notes in Computer Science, Springer, Berlin.
Jantke, K. P. Inductive program synthesis by problem prov-
ing and term rewriting. Technical Report, Humbolt Univ.
Berlin, Berlin, 1989.
Kamin, S. and Levy, J. J. Two generalizations of the recur-
sive path ordering. Unpublished note, Department of Com-
puter Science, University of Illinois, Urbana, IL, February
1980.
Kirchner, H. Schematization of infinite sets of rewrite rules
generated by divergent completion processes. Theoretical
Computer Science, 67(2,3):303-332, October 1989.

Knuth, D. E. and Bendix, P. B. Simple word problems in
universal algebras. In Leech, J., ed., Computational Prob-
lems in Abstract Algebra, pp. 263-297, Pergamon Press, Ox-
ford, U. K., 1970. Reprinted in Automation of Reasoning
2, Springer, Berlin, pp. 342-376 (1983).
Kodratoff, Y. and Picard, M. Completion de systemes
de rekcriture et synthese de programmes B partir deleurs
specifications. Bigre, 35, October 1983.
Kounalis, E. and Rusinowitch, M. Inductive reasoning in
conditional theories. In Okada, M., ed., Proceedings of the
Second InternationaI Workshop on Conditional and Typed

Rewriting Systems, Montreal, Canada, June 1990. Lecture
Notes in Computer Science, Springer, Berlin; to appear.
Kiichlin, W. Inductive completion by ground proof trans-
formation. In Ait-Kaci, H. and Nivat, M., eds., Resolu-
tion of Equations in Algebraic Structures, vol. 2: Rewriting
Techniques, pp. 211-244, Academic Press, New York, 1989.
Lange, S. Towards a set of inference rules for solving di-
vergence in Knuth-Bendix completion. In Jantke, K. P.,
ed., Proceedings of the International Workshop on Analog-
ical and Inductive Inference, pp. 304-316, October 1989.
Vol. 397 of Lecture Notes in Computer Science, Springer,
Berlin.
Lescanne, P. Computer experiments with the reve term
rewriting system generator. In Proceedings of the Tenth
ACM Symposium on Principles of Programming Languages,
pp. 99-108, Austin, TX, January 1983.
Manna, Z. and Waldinger, R. J. Synthesis: Dreams + pro-
grams. IEEE Transactions on Software Engineering, SE-
5(4):294-328, July 1979.
Musser, D. R. On proving inductive properties of abstract
data types. In Proceedings of the Seventh ACM Symposium
on Principles of Programming Languages, pp. 154-162, Las
Vegas, NV, 1980.
Perdix, H. Program synthesis from specifications. In Jor-
rand, P. and Sgurev, V., eds., AIMSA, pp. 13-21, North-
Holland, 1986.
Plotkin, G. Lattice theoretic properties of subsumption.
Technical Report MIP-R-77, University of Edinburgh, Ed-
inburgh, Scotland, 1970.
Reddy, U. S. On the relationship between logic and func-
tional languages. In DeGroot, D. and Lindstrom, G., eds.,
Logic Programming: Functions, Relations, and Equations,
pp. 3-36, Prentice-Hall, Englewood Cliffs, NJ, 1986.
Reddy, U. S. Rewriting techniques for program synthe-
sis. In Dershowitz, N., ed., Proceedings of the Third Inter-
national Conference on Rewriting Techniques and Applica-
tions, pp. 388-403, Chapel Hill, NC, April 1989. Vol. 355
of Lecture Notes in Computer Science, Springer, Berlin.
Reddy, U. S. Term rewriting induction. In Stickel, M.,
ed., Proceedings of the Ninth International Conference on
Automated Deduction, Kaiserslautern, West Germany, July
1990. Lecture Notes in Computer Science, Springer, Berlin;
to appear.
Shapiro, E. Y. Algorithmic Program Debugging. MIT Press,
Cambridge, MA, 1983.
Smith, D. R. A survey of synthesis of Lisp programs from
examples. In International Workshop on Program Con-
struction, Bonas, France, September 1980.
Stickel, M. E. A case study of theorem proving by the
Knuth Bendix method discovering that z3 = x implies ring
commutativity. In Shostak, R. E., ed., Proceedings of the
Seventh International Conference on Automated Deduction,
pp. 248-259, Napa, CA, May 1984. Vol. 170 of Lecture
Notes in Computer Science, Springer, Berlin.
Stickel, M. E. A Prolog technology theorem prover: Imple-
mentation by an extended Prolog compiler. In Siekmann,
J. H., ed., Proceedings of the Eighth International Confer-
ence on Automated Deduction, pp. 573-587, Oxford, Eng-
land, July 1986. Vol. 230 of Lecture Notes in Computer
Science, Springer, Berlin.

DERSHOWITZ AND PINCHOVER 239

