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Abstract 
Automating proofs by induction is important in many 
computer science and artificial intelligence applications, 
in particular in program verification and specification 
systems. We present a new method to prove (and dis- 
prove) automatically inductive properties. Given a set 
of axioms, a well-suited induction scheme is constructed 
automatically. We call such a scheme a test-set. Then, 
for proving a property, we just instantiate it with terms 
from the test-set and apply pure algebraic simplifica- 
tion to the result. This method avoids completion and 
explicit induction. However it retains their positive fea- 
tures, namely the completeness of the former and t,he 
robustness of the latter. 

1 Introduction 
Inductive reasoning consists in performing inferences 
in domains where there exists a natural well-founded 
relation on the objects. It is fundamental when prov- 
ing properties of numbers, data-structures or programs 
axiomatized by a set of conditional axioms. As op- 
posed to deductive theorems, inductive theorems are 
usually valid only in some particular models of the ax- 
ioms, for instance Herbrand models or the initial model, 
which fits nicely the semantics of data-type specifica- 
tions, logic and functional programming. 

As everybody knows from his experience, it might be 
difficult, not only to find an appropriate well-founded 
relation to support inductive inferences, but also to 
guess suitable induction hypothesis. Two main ap- 
proaches have been proposed to overcome these diffi- 
culties. The first applies explicit induction arguments 
on the structure of terms [1,3,2,4,14]. The second one 
involves a proof by consistency: this is the induction- 
less induction method [10,5,6]. However, both meth- 
ods have many limitations either on the theorems to 
be proved or on the underlying theory. For instance, 
explicit induction techniques is unable to provide us 
automatically with induction schemes, and cannot help 
to disprove false conjectures. On the other hand, the 
inductionless induction technique often fails where ex- 
plicit induction succeeds. Moreover, there does not ex- 
ist any realistic inductionless induction procedure for 
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conditional theories. 
In this paper, we present an alternative proof system 

for automatizing inductive reasoning in theories defined 
by condiCona1 axioms. We show how to prove (and 
disprove) equations and more generally clauses in the 
initial model and Herbrand models respectively. Our 
method combines the full power of explicit induction 
and inductionless induction. It is refutationally com- 
plete in the following sense : any positive clause which 
is not valid in the initial model will be disproved in 
finite time, provided that no negative literals are in- 
troduced by the procedure. This method relies on the 
notion of test-set (which, in essence, is a finite descrip- 
tion of the initial model) and applies only pure algebraic 
simplification. The key-idea of the simplification strat- 
egy is to use axioms, previously proved conjectures, and 
instances of the conjecture itself as soon as they are 
smaller than the currently examined proposition with 
respect to a well-founded relation. This last point cap- 
tures the notion of Induction Hypothesis in the proof 
by induction paradigm. The refut’ational aspect of our 
procedure requires a convergence property of the ax- 
iomatization and, also, suit,able test-sets. The conver- 
gence can be obtained either by a Knuth-Bendix like 
procedure [9] or semantic techniques specific to hierar- 
chical axiomat,izations(see [12] and section 5.2 of this 
paper). On the other side, building a test-set requires 
itself some theorem proving. Whereas the computation 
of test-sets is generally undecidable, in the last section. 
we propose a method to obtain test-sets in conditional 
theories over a free set of constructors. Our met.hod can 
also be viewed as a real automatization of explicit 
induction: indeed the test-set computation yields auto- 
matically induction schemes which are well-adapted to 
the axioms. In addition, we show how the method ap- 
plies to proofs of propertirc of some recursive programs 
and element(ary arithmetic. 

2 Overview of our approach: an 
example 

Before discussing the technical details of the method we 
propose for mechanizing proofs of inductive theorems, 
we first describe our inference system on a simple exam- 
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ple, namely positive integers with cut-off and gcd func- 
tions and the less predicate. The arrow 4 just indicates 
how to apply a (conditional) equation for simplification: 

(1) x- 0-a: 
(2) o-x -+ 0 
(3) s(2) - s(y) + 5 - y 

(4) (0 < s(x)) ---) tt 

(5) (2 < 0) + ff 
(6) x < y = tt j s(x) < s(y) 4 tt 

(7) x < Y = ff *44 < S(Y) + ff 
(8) x < y = tt * gcd(x, y) --+ gcd(y - 5, y> 

(9) 5 < Y = ff * SCd(X, Y) + wd(x - Y, 4 
(10) gcd(x,O) -+ x 
(11) gcd(O,x) -+ x 

Consider the conjectures: 
(12) x - x = 0 
(13) x < x = ff 
(14) x < S(Z) = tt 
(15)zcy=ttvx<y=ff 
(16)x<y=ffVy<z=ff V x<z=tt 
(17) gcd(s, z) = x 
(18) gcd(c Y) = Wd(Y, 4 
(19) x < s(x) = ff 
(20) 2 < y = ff v y < x = tt 

Except the two last ones all these propositions are valid 
in the standard arithmetic:note that 13,15 and 16 state 
that < is a total ordering on integers, and 18 is the com- 
mutativity of gtd. This suggests to prove them by in- 
duction. With our method the first step consists in com- 
puting a test-set (see def. 4.1). By using techniques of 
section 6,we get the test-set (0, S(X), tt, ff). The next 
step consists in replacing variables of the conjecture by 
the elements of the test-set and checking these instances 
by using pure simplification. The simplification strut- 
egy may use axioms, previously proved conjectures, and 
instances of the conjecture itself as soon as they are 
sm.aller (w.r.t. a noetherian relation which contains th,e 

rewriting relation) than the currently examined propo- 
sition. This last point captures the notion of Induction 
Hypothesis in the proof by induction paradigm (see th. 
4.1~. 2). For the equation 12, two instances need to be 
checked: 0 - 0 = 0 and s(z) - s(z) = 0. The first one 
reduces immediately to a trivial identity. For the sec- 
ond one consider the reduction (notice the use of 12 as 
an induction hypothesis): s(z) -s(x) -Q x - x -+x2 0 For 
13, the only non-trivial instance is s(z) < s(z) = ff. 
However, s(z) < s(z) -‘Is,7 f f. For the last deriva- 
tion, we have used an induction hypothesis to satisfy 
the condition of 7 (cf th. 4.1). For 14, the same argu- 
ment can be employed. For 15, there are four instances 
by terms from the test-set. The only non-trivial case 
is ~(3) < s(y) = tt v s(z) < s(y) = ff . By using case 
rewriting (cf def. 3.3), we can split this formula into 
the conjunction: 

(21) 1x < y = tt v tt = tt v s(x) < s(y) = f f 

(22) x < .(I = tt v s(x) < s(y) = f f 

Kow, 21 is trivial and 22 is split again in: 
(23)x<y=ttVlx<y=ffVff=ff 
(24) x < y = tt V x < y = ff VSW < S(Y) = ff 

23 is trivial again and 24 is subsumed by the initial 
conjecture: this is the induction step (cf th. 4.2). The 
16,17,18 are proved exactly in the same way. Consider 
now 19. To disprove it, we are going to use the con- 
vergence properties of the initial system. Note that the 
saturation technique (see section 5) can prove the con- 
vergence property for l-7 and th. 5.1 for the whole 
axiomatizxtion. The instances to be considered are : 
0 < s(0) = f f, s(z) < s(s(x)) = f f The first one reduces 
tott = ff h w ose members are irreducible and different. 
By th. 4.3 the conject.ure is false. For 20, consider the 
following instance 0 < s(x) = f f V s(x) < 0 = tt. It 
can be reduced t,o tt = ff V ff = tt and therefore ‘20 is 
not valid. 

3 Preliminaries 
3.1 Definitions and notations 
Let F be a signature of function symbols, and X a set 
of variables. We shall denote by T(F, X) the set of 
terms built from F and X. We write s[tln to mean that 
the term t is a subterm of s at position n. The set of 
ground terms is denoted by T(F). A conditional equa- 
tion is an equation or an expression of one of t.he types: 
elA.. .Ae, =S eorelA.. .Ae, +or+wheree?el,...e, 
are equations, el 7”’ e, are conditions, a positive literal 
e in a conditional equation is a conclusion and + is the 
empty clause. In this paper, axiomatizations are built 
from conditional equations and goals to be proved are 
clauses (i.e. disjunction of equational literals, since = 
is the only predicate, here ‘). Given a binary relation 
4, --b* denotes its reflexive transitive closure. Given 
two binary relations, R, S, RoS denotes their composi- 
tion. A relation R is noetherian if there is 110 infinite 
sequence fl R t2 R . . . . In the following. we suppose 
given a reduction ordering + OIL the set of terms, that 
is, a transitive irreflexivc relation which is noetherian, 
monotonic (s + t implies U.J[S] + ~[t]) and st,able (s + t 
implies SLT + ta). A reduction ordering can be extended 
to literals by comparing the multiset of their members 
with the multiset extension of >-. Formula are compared 
by using the mult,iset extension of this last ordering to 
the multiset of their atomic subformulas. Since there is 
no ambiguity, all these extensions will also be denoted 
by +. An equation s = t will be written s --$ f if for all 
ground substitution so + TV; in tShatt case we say that 
the equation is orientable. 

1 we shall identify a conditional equat iou and its corresponding 
representation as a clause 
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3.2 Inductive theorems 
Given a set of conditional equations Ax on the signature 
F, we recall that a Herbrand model of Ax is a model 
of Ax whose domain is T(F) (axioms for equality are 
implicitly assumed to be valid, too). A formula F is a 
deductive theorem of Ax if it is valid in any model of 
Ax. This will be denoted by Ax /= F. The notion of in- 
ductive theory can be related to several kinds of models: 
Herbrand models or initial models (i.e least Herbrand 
models). These relations are discussed in [ll]. We 
have chosen to study the initial and Herbrand model 
approaches: 

Definition 3.1 Let H be a set of conditional equations 
on the signature F. A clause e is an inductive theorem 
of H ifl for any ground substitution o, H k eo. 

For clauses, validity in all Herbrand models differs, 
in general, from validity in the initial model. However 
these two notions of validity coincide for unconditional 
equations as it is proved in- [ll]. 

3.3 Conditional rewriting 
The idea of rewriting is to impose a direction when us- 
ing equations in proofs. This direction is indicated by 
an arrow when it is independent from the instantiation: 
I + r means that, we can replace 2 by r in some context. 
When an instance of a conditional equation is orientable 
and has a valid conditional part, it can be applied as 
a rule. The conditions are checked by a recursive call 
to the theorem-prover. Termination of such calls is en- 

conditions to be smaller (w.r.t. sured by requiring the 
the reduction ordering +) than the conclusion: 

Definition 3.2 Let H be a set of clauses. Let A be 
a term or a clause, and n an occurrence of A. Then 
A[s& +H A[ta], if o is a substitution and there is a 
conditional equation c + s = t, in H such that SO + 
ta and H j= co and (s = t)o + cu.. 

A term A is reducible w.r.t. -)H, if there is a 
term B such that A -)H B. Otherwise we say that 
A is H-irreducible. The system H will be qualified 
as convergent if for all ground terms a,b such that 
H+a = b there exists a ground term c such that 
o+H*c and b+H*c. One can easily see that it is also 
equivalent to the property that every ground term pos- 
sesses a unique irreducible form. Note that the con- 
ditional rewriting relation may be undecidable. The 
relation +H will be extended to sets of clauses in a 
natural way: by definition, S U {c} -‘H S U {d} whcn- 
ever c -)H d. 

3.4 Case rewriting 
Case reasoning is a very powerful technique which is 
the basis of many theorem proving strategies. It is a 

most important rule in the context of inductive theo- 
rem proving where case splitting arises naturally from 
induction hypothesis. We propose here a notion of case 
rewriting which is well-suited to inductive reasoning. 

Definition 3.3 Let H be a set of conditional equations 
and c =+ s = t a conditional equation in H. Let A[su]~ 
be a clause (where o is a substitution) and let S be a 
set of clauses. The case rewriting rule can be stated as 
follows 

S U {A[sa],} -H S U {(CO V A[sa],). (1~ V A[t&)} 

if co is not a subclause of A[sa],, n occurs in a maximal 
literal of A, so F to and (s = t)o + co 

Let us denote “H U -‘H by L)H. The follow- 

ing propositions is the base for proving (or disproving) 
clausal theorems. 

Proposition 3.1 The case rewriting rule is sound (the 
derived set of clauses is logically equivalent to the initial 
set). The relation CI’H is noetherian. 

4 How to prove and disprove in- 
ductive theorems 

In this section, we propose general methods to prove 
(or disprove) automatically that clauses are inductive 
consequences of theories axiomatized by a set of con- 
ditional equations. These techniques allow us to re- 
place inductive reasoning by pure simplification. Such 
a mechanization of inductive proofs is based on the no- 
tion of test-set, which, in essence, provides us with a 
finite description of the initial model. 

4.1 Test sets 
First, let us define the height of a term as the height of 
the tree representation of this term. The height of a set 
of conditional equations will be the maximal height of 
the terms occurring in this set. The height of an object 
x will be denoted by lx]. 
Definition 4.1 A test-set for a set of conditional 
equations H is a fin.ite subset S(H) of T(F, X) such 
that the following properties hold: 

completeness: for any H-irreducible ground term s, 
there exists a term t in S(H) and a substitution o 
such that ta = s. 

soundness: for any term t in S(H) th.ere exists an H- 
irreducible grou,J term s and a substitution o such 
that to = s. 

transnormality: every n,on-ground term in S(H) has 
infinitely many ground instances which are H- 
irreducible. 

coveredness: any non-ground term t in S(H), It] > 1 
where I = I HI - 1 if every variable in the left-hand 
side of the positive literals in H occurs once and 
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1 = ]H] if H contains a rule whose left-hand side 
has multiple occurrences of the same variable. 

Definition 4.2 A test-substitution w.r.t. S(H) is 
a substitution which applies every variable to an element 
of the test-set S(H) 

Example 4.1 Let us come back to the introductory ex- 
ample. Let H be the set of axioms 1,2,. . . , 10. As we 
pointed out, S(H) = (0, s(x), tt, ff} may be considered 
as a test-set. Note that the four properties of the defy- 
nition are verified. 

The construction of test-sets for equational theories 
is decidable and may be performed in relatively efficient 
way. The algorithm is based on pumping lemmas in tree 
languages and is detailed in [8]. Such an algorithm does 
not exist for conditional theories. However, in the last 
section, we shall give a method to derive test-sets in 
theories defined over a free set of constructors. 

4.2 Inductive proofs by simplification 
Our notion of induction refers to a noetherian order- 
ing on ground terms, which contains the conditional 
rewriting relation. We can use as an inductive hy- 
pothesis any instance of the theorem we want to 
prove, as soon as this instance is smaller (w.r.t. 
+)t han the one that is currently considered. In 
Theorem 4.1 we propose two rewriting relations which 
are sound, with regard to the use of induction hypothe- 
sis. Both of them allow to utilize the conjecture after a 
first normal simplification step has been applied. How- 
ever, if the first step is conditional, we can also use the 
conjecture when attempting to satisfy the conditions of 
the rule (case a). The following notations will be useful: 

Definition 4.3 Let u = v be an equation, then ?L=9 
denotes the symmetric closure of +{U=21) and +H/U=V 

denotes the relation (a )*o(+H)o(x)*. Let H be a 
set of conditional equations, let A be a term and n an 
occurrence of A. Then we write A[sa], +H[~=~] A[ta], 
if o is a substitution and there is a conditional equation 
al = bl A a . s A a, = b, =+ s = t in H, such that: 
1. su + to and (s = t)a t (al = bl A .a. A a, = b,)a 
2. Vi, 3c aio+HU{U=v) *c and b~o+~~U~U=U)*c 

The following theorem shows how to prove equations 
in the initial model of conditional theories. 

Theorem 4.1 (see [9]) Let H be a set of conditional 
equations, S(H) a test-set, and u = v an equation. We 
suppose that one of the following hypothesis is verified: 

a. +HU{U=V) is noetherian. In this case we define w 
as the reflexive closure of the relation: 
(-‘H[u=~~)O(~Hu(u=~~)~ 

b. +H/u=v is noetherian. In this case we de- 
fine w as the reflexive closure of the relation: 

If, for all test-substitution v there is a term 0 such that 
uv C\A Q and uv * Q then ‘u = v is an inductive theorem 
for H (and therefore is valid in the initial model of H 
by proposition 3.2). 

Example 4.2 Consider the following conditional ax- 
ioms for integers with +, odd and even,. 

(24) x+0-x 
(25) X+S(Y) - S(X +Y) 
(26) even(O)+ tt 

(27) evenw>> --) ff 
(28) even(s(s(s))) - even(x) 
(29) euen( 2) = tt a odd(s(x)) --f tt 
(30) even(x) = ff * odd(W) - ff 

Here the test-set is (0, s(O),s(s(z)), tt, f f}. Let us 
prove first the commutativity of +. We apply case b. of 
th. 4.1. We just consider the non-trivial case, which is 
an instantiation by the last scheme: s(s(x)) + s(s(y)) = 

SMYN + s(W). Aft er simplification, we have to con- 
sider the goal: s(s(s(s(x)) + y)) = s(s(s(s(y)) + x)). 
Commutativity can be applied strictly inside the equa- 
tion, since it is supposed to be true for smaller instances 
(induction hypoth,esis). We get: s(s(y + s(s(x)))) = 

SW + SMY>>>> and then, simplification finishes the 
job. By assuming now the commutativity of +, we can 
prove in the same way : odd(x + s(x)) = tt. First, 
odd(s(s(x))+s(s(s(x)))) - odd(s(s(s(s(s(x+.~)))))) - 
tt. To justify the last rewriting step we need to prove as 
a lemma even(s(s(s(s(x + 2))))) = tt or its simplified 
form even.(x + .r) = tt. This is achieved by the same 
technique. 

It is straightforward to generalize the previous method 
to proving that clauses are inductive theorems. How- 
ever, in this general situation, case analysis is crucial: 
Theorem 4.2 Let H be a set of conditional equations, 
S(H) a test-set? and C a clause. If, for all test- 

substitution u, (CY) wH* (pl,pz *a * ,p,), and every 
clause pj is either a tautology (con!ains two complemen- 
tary literals or an instance of x=x) or is subsumed by 
an axiom or contains an instance of C which is strictly 
smaller w.r.t. >- than Cu, then C is an inductive theo- 
rem of H 

Example 4.3 Let us prove now the transitivity of < 
(see axioms in the introductory example): x < y = 
ffVY< z=ffVx< t = tt. The only non-trivial 
instance by a test-substitution among the eight of them 
is: s(x) < a(y) = ff V s(y) < a(z) = ff V s(r) < t?(z) = 

tt. After three steps of case-rewriting, we get only one 
clause which is not a tautology, namely: 
x<y=ffVy<z=ffVx<z=ttVs(x)<s(y)=ff 

vs(y) < s(z) = ff v s(x) < s(z) = tt 
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This clause contains a subclause which is a strictly 
smaller instance of the one to be proved. Hence by th. 
4.2, the proof is achieved. In the same way we could 
prove in the example 4.2 that even(x) = ttvodd(x) = tt. 

4.3 Disproving inductive theorems 
The notion of test-set is particularly useful for refuting 
inductive properties. The next definition provides us 
with criteria t.o reject such conjectures. 

Definition 4.4 We suppose that we are given a set of 
conditional equations H, and a test-set S(H). Let H’ 
be the set of positive literals of H. Then, a clause Tel V 

. . .vle,Vgl = dl v.. .vg, = d, is quasi-inconsistent 
with respect to H if there is a test-substitution CT such 
that, for all i 5 m, eio is an inductive theorem and for 
all j 5 n at least one of the following is verified: 

l gjo f djo and gjo and djo are irreducible by H’. 
l gjo + djo and gjo is irreducible by H’. 
a gjo 4 djo and djo is irreducible by H’. 

The next result shows that, when the set of axioms is 
convergent, a quasi-inconsistent clause cannot be induc- 
tively valid. This is proved by building a well-chosen 
ground instance of the clause, which is false in some 
Herbrand model of the axioms. In particular, if the 
clause is an equation then it is not valid in the initial 
model. 

Theorem 4.3 Let H be a convergent set of conditional 
equations and S(H) a test set for H. If C is quasi- 
inconsistent w.r.t. H then C is not an inductive theo- 
rem of H. 

Example 4.4 The axioms are as in example 4.2. (note 
that they satisfy the convergenw property). Consider 
the conjecture even(x) = tt V odd(x) = f f. It is quasi- 
inconsistent as shown by the following instance: 

even(s(0)) = tt V odd(s(0)) = ff 

The theorems 4.1,4.2 and 4.3 can be combined into an 
inductive theorem-proving procedure which is complete 
for positive clauses, in the sense that it will disprove 
every positive clause which is not an inductive theorem, 
provided that no negative literals are introduced by the 
procedure. However, in the general case, the procedure 
allows to disprove many false conjectures. 

5 How to get convergence 
Convergent systems of equations have the property that 
two terms are equal if and only if they simplify to iden- 
tical ones. In this section, we recall several methods 
to obtain the convergence property which is crucial for 
disproving conjectures. 

5.1 The saturation technique 
The saturation technique generalizes Knuth and Bendix 
procedure [7] to conditional theories. It is based on a 
refutationally complete set of inference rules. These 
rules have been discussed in [13]. 

5.2 Hierarchical techniques 
Hierarchical axiomatizations are natural tools for build- 
ing structured specifications. They are obtained by in- 
cremental extensions of a base theory with new func- 
tion definitions. For hierarchical axiomatizations [12] , 
ground confluence can be obtained by semantic meth- 
ods. The next theorem underlies Plaisted’s work [12]: 

Theorem 5.1 Let H be a convergent set of conditional 
equations on the signature F - ( f ), and let H’ be an ex- 
tension of H with conditional equations where the sym- 
bol f occurs. Assume that H’ has the same initial model 
than H. If for every ground term f (tl, . . . , tn) there ex- 
ists t’ E T(F - {f}) such that f(tl,...,tn) (-‘it)* t’ 

then H’ is convergent. 

Verification of inductive properties often involves the 
proof of some lemmas. Adding these lemmas to the 
initial axiomatization does not destroy the convergence 
property as stated in the following result: 
Theorem 5.2 If H is convergent and C is a condi- 
tional equation which is an inductive theorem of H. 
Then --+Hu{c} is convergent. 

For instance, in the introductory example l-11 and 
12,13,14,17,18 is convergent. 

6 How to get test-sets 
In this section, we propose a method of constructing 
test-sets for conditional theories whose signature F can 
be partitionned into a set C of constructors and a set D 
of defined functions. Therefore, we assume that every 
left-hand side of an orientable instance of a conclusion 
has a symbol from D. This corresponds to the well- 
known principle of definition of [5]. In order to simplify 
our presentation WC shall suppose that D = {f). 

Definition 6.1 Let CS be the set {g(al.. . . , rn); g E 
C}, a pattern tree T off (x1.. . . ,E,). where f E D is 
a tree whose nodes are terms. The root is f (xl?. . . ,x,). 
Every successor of a node :. is obtained by replacing a 
variable of s by ((II element of S whose variables h,a.ve 

been renamed. 

Example 6.1 Let C.9 be {&S(T)} . Here is a pattern tree of 

x < y: 
X<Y \ 

T < 0 

0 < S(Y) 

*p .$bv) 

4x1 < S(Y) 

In the following, we describe a procedure for deriv- 
ing a pattern-tree such that a test-set can be extracted 
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from its leaves arguments. Hence, we suppose given a 
set of conditional equations defining a function f. To 
construct a suitable pattern tree of f(zr, . . . ,zn), the 
next definition tells us how to identify the nodes to be 
expanded and the variables to be replaced. 
Definition 6.2 A term t &I extensible at position u 
w.r.t. H if t/u is a variable and there is a rule c =+ I + 
r E H such th.at l/u is a function symbol or a variable 
occurrkg more than once in 1. A term t is extensible 
w.r.t. H if it is extensible at some position u. 

Definition 6.3 Given a set H of conditional equa- 
tions, we say that t is pseudo-reducible by H if there 
is a set of rules {cl * 11 -+ r-1, . . . ,c, =$ I, -+ rn} 
in S such that t/u1 = lIoI,. . . , t jun = Ino, and 
ClUl v . . . V &a, is an inductive theorem of H. 

Note immediately that if a term is pseudo-reducible, all 
its ground instances are reducible. Also, proving that a 
node is pseudo-reducible amounts to prove some induc- 
tive theorems. To avoid any vicious circle, either we can 
use a different method to prove these particular proper- 
ties or we can use our method itself with a less refined 
test-set than the one we are trying to build. Let H be 
a set of conditional equations and let T be a pattern 
tree for f (xl,. . . , zn). If each leaf of 2’ is either pseudo- 
reducible or not-extensible then we say T is complete 
for H. The tree in example 6.1 is complete for the ax- 
ioms of the preliminary example. The previous defini- 
tions provides us with a procedure to derive complete 
pattern-trees. Starting from the tree 2’ = f (x1, . . . . x,), 
we iterate the following operations: 

o Select non-deterministically a leaf t which is extensible 
at some position u and not pseudo-reducible 

o For any c in CS, rename c in c’ with new variables 
and add t[c’] u as a son of t. 

When the previous procedure halts with success (as 
it did on all the examples we have tested), it provides 
immediately a test-set: 

Theorem 6.1 Given a set of conditional equations H, 
if there is a finite complete pattern-tree for f (xl, . . . , x,) 
whose all leaves are pseudo-reducible then a test-set for 
H can be computed. 

Given a finite complete prl.ttern-tree, let G’ be the 
set of its leaves arguments. We define G to be a subset 
of G’ such that every element of G’ has an instance 
in G and no element of G is an instance of another 
element, of G. In the example 6.1, G’ = {O,s(z), s(y)} 
and G = {O,s(x)}. 

7 Conclusion 

are convergent, test-sets give an efficient strategy to dis- 
prove theorems. We also feel that this method should 
generalize easily to the case of conditional equations 
with negative lit,erals in the conditions. 
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