
Mechanizing inductive reasoning

Emmanuel Kounalis and Michael Rusinowitch
CRIN, 54506 Vandoeuvre lcs Nancy, BP239 (France)

e-mail: { kounalis,rusi}@loria.fr

Abstract
Automating proofs by induction is important in many
computer science and artificial intelligence applications,
in particular in program verification and specification
systems. We present a new method to prove (and dis-
prove) automatically inductive properties. Given a set
of axioms, a well-suited induction scheme is constructed
automatically. We call such a scheme a test-set. Then,
for proving a property, we just instantiate it with terms
from the test-set and apply pure algebraic simplifica-
tion to the result. This method avoids completion and
explicit induction. However it retains their positive fea-
tures, namely the completeness of the former and t,he
robustness of the latter.

1 Introduction
Inductive reasoning consists in performing inferences
in domains where there exists a natural well-founded
relation on the objects. It is fundamental when prov-
ing properties of numbers, data-structures or programs
axiomatized by a set of conditional axioms. As op-
posed to deductive theorems, inductive theorems are
usually valid only in some particular models of the ax-
ioms, for instance Herbrand models or the initial model,
which fits nicely the semantics of data-type specifica-
tions, logic and functional programming.

As everybody knows from his experience, it might be
difficult, not only to find an appropriate well-founded
relation to support inductive inferences, but also to
guess suitable induction hypothesis. Two main ap-
proaches have been proposed to overcome these diffi-
culties. The first applies explicit induction arguments
on the structure of terms [1,3,2,4,14]. The second one
involves a proof by consistency: this is the induction-
less induction method [10,5,6]. However, both meth-
ods have many limitations either on the theorems to
be proved or on the underlying theory. For instance,
explicit induction techniques is unable to provide us
automatically with induction schemes, and cannot help
to disprove false conjectures. On the other hand, the
inductionless induction technique often fails where ex-
plicit induction succeeds. Moreover, there does not ex-
ist any realistic inductionless induction procedure for

240 AUTOMATED REASONING

conditional theories.
In this paper, we present an alternative proof system

for automatizing inductive reasoning in theories defined
by condiCona1 axioms. We show how to prove (and
disprove) equations and more generally clauses in the
initial model and Herbrand models respectively. Our
method combines the full power of explicit induction
and inductionless induction. It is refutationally com-
plete in the following sense : any positive clause which
is not valid in the initial model will be disproved in
finite time, provided that no negative literals are in-
troduced by the procedure. This method relies on the
notion of test-set (which, in essence, is a finite descrip-
tion of the initial model) and applies only pure algebraic
simplification. The key-idea of the simplification strat-
egy is to use axioms, previously proved conjectures, and
instances of the conjecture itself as soon as they are
smaller than the currently examined proposition with
respect to a well-founded relation. This last point cap-
tures the notion of Induction Hypothesis in the proof
by induction paradigm. The refut’ational aspect of our
procedure requires a convergence property of the ax-
iomatization and, also, suit,able test-sets. The conver-
gence can be obtained either by a Knuth-Bendix like
procedure [9] or semantic techniques specific to hierar-
chical axiomat,izations(see [12] and section 5.2 of this
paper). On the other side, building a test-set requires
itself some theorem proving. Whereas the computation
of test-sets is generally undecidable, in the last section.
we propose a method to obtain test-sets in conditional
theories over a free set of constructors. Our met.hod can
also be viewed as a real automatization of explicit
induction: indeed the test-set computation yields auto-
matically induction schemes which are well-adapted to
the axioms. In addition, we show how the method ap-
plies to proofs of propertirc of some recursive programs
and element(ary arithmetic.

2 Overview of our approach: an
example

Before discussing the technical details of the method we
propose for mechanizing proofs of inductive theorems,
we first describe our inference system on a simple exam-

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

ple, namely positive integers with cut-off and gcd func-
tions and the less predicate. The arrow 4 just indicates
how to apply a (conditional) equation for simplification:

(1) x- 0-a:
(2) o-x -+ 0
(3) s(2) - s(y) + 5 - y

(4) (0 < s(x)) ---) tt

(5) (2 < 0) + ff
(6) x < y = tt j s(x) < s(y) 4 tt

(7) x < Y = ff *44 < S(Y) + ff
(8) x < y = tt * gcd(x, y) --+ gcd(y - 5, y>

(9) 5 < Y = ff * SCd(X, Y) + wd(x - Y, 4
(10) gcd(x,O) -+ x
(11) gcd(O,x) -+ x

Consider the conjectures:
(12) x - x = 0
(13) x < x = ff
(14) x < S(Z) = tt
(15)zcy=ttvx<y=ff
(16)x<y=ffVy<z=ff V x<z=tt
(17) gcd(s, z) = x
(18) gcd(c Y) = Wd(Y, 4
(19) x < s(x) = ff
(20) 2 < y = ff v y < x = tt

Except the two last ones all these propositions are valid
in the standard arithmetic:note that 13,15 and 16 state
that < is a total ordering on integers, and 18 is the com-
mutativity of gtd. This suggests to prove them by in-
duction. With our method the first step consists in com-
puting a test-set (see def. 4.1). By using techniques of
section 6,we get the test-set (0, S(X), tt, ff). The next
step consists in replacing variables of the conjecture by
the elements of the test-set and checking these instances
by using pure simplification. The simplification strut-
egy may use axioms, previously proved conjectures, and
instances of the conjecture itself as soon as they are
sm.aller (w.r.t. a noetherian relation which contains th,e

rewriting relation) than the currently examined propo-
sition. This last point captures the notion of Induction
Hypothesis in the proof by induction paradigm (see th.
4.1~. 2). For the equation 12, two instances need to be
checked: 0 - 0 = 0 and s(z) - s(z) = 0. The first one
reduces immediately to a trivial identity. For the sec-
ond one consider the reduction (notice the use of 12 as
an induction hypothesis): s(z) -s(x) -Q x - x -+x2 0 For
13, the only non-trivial instance is s(z) < s(z) = ff.
However, s(z) < s(z) -‘Is,7 f f. For the last deriva-
tion, we have used an induction hypothesis to satisfy
the condition of 7 (cf th. 4.1). For 14, the same argu-
ment can be employed. For 15, there are four instances
by terms from the test-set. The only non-trivial case
is ~(3) < s(y) = tt v s(z) < s(y) = ff . By using case
rewriting (cf def. 3.3), we can split this formula into
the conjunction:

(21) 1x < y = tt v tt = tt v s(x) < s(y) = f f

(22) x < .(I = tt v s(x) < s(y) = f f

Kow, 21 is trivial and 22 is split again in:
(23)x<y=ttVlx<y=ffVff=ff
(24) x < y = tt V x < y = ff VSW < S(Y) = ff

23 is trivial again and 24 is subsumed by the initial
conjecture: this is the induction step (cf th. 4.2). The
16,17,18 are proved exactly in the same way. Consider
now 19. To disprove it, we are going to use the con-
vergence properties of the initial system. Note that the
saturation technique (see section 5) can prove the con-
vergence property for l-7 and th. 5.1 for the whole
axiomatizxtion. The instances to be considered are :
0 < s(0) = f f, s(z) < s(s(x)) = f f The first one reduces
tott = ff h w ose members are irreducible and different.
By th. 4.3 the conject.ure is false. For 20, consider the
following instance 0 < s(x) = f f V s(x) < 0 = tt. It
can be reduced t,o tt = ff V ff = tt and therefore ‘20 is
not valid.

3 Preliminaries
3.1 Definitions and notations
Let F be a signature of function symbols, and X a set
of variables. We shall denote by T(F, X) the set of
terms built from F and X. We write s[tln to mean that
the term t is a subterm of s at position n. The set of
ground terms is denoted by T(F). A conditional equa-
tion is an equation or an expression of one of t.he types:
elA.. .Ae, =S eorelA.. .Ae, +or+wheree?el,...e,
are equations, el 7”’ e, are conditions, a positive literal
e in a conditional equation is a conclusion and + is the
empty clause. In this paper, axiomatizations are built
from conditional equations and goals to be proved are
clauses (i.e. disjunction of equational literals, since =
is the only predicate, here ‘). Given a binary relation
4, --b* denotes its reflexive transitive closure. Given
two binary relations, R, S, RoS denotes their composi-
tion. A relation R is noetherian if there is 110 infinite
sequence fl R t2 R In the following. we suppose
given a reduction ordering + OIL the set of terms, that
is, a transitive irreflexivc relation which is noetherian,
monotonic (s + t implies U.J[S] + ~[t]) and st,able (s + t
implies SLT + ta). A reduction ordering can be extended
to literals by comparing the multiset of their members
with the multiset extension of >-. Formula are compared
by using the mult,iset extension of this last ordering to
the multiset of their atomic subformulas. Since there is
no ambiguity, all these extensions will also be denoted
by +. An equation s = t will be written s --$ f if for all
ground substitution so + TV; in tShatt case we say that
the equation is orientable.

1 we shall identify a conditional equat iou and its corresponding
representation as a clause

KOUNALIS AND RUSINOWITCH 241

3.2 Inductive theorems
Given a set of conditional equations Ax on the signature
F, we recall that a Herbrand model of Ax is a model
of Ax whose domain is T(F) (axioms for equality are
implicitly assumed to be valid, too). A formula F is a
deductive theorem of Ax if it is valid in any model of
Ax. This will be denoted by Ax /= F. The notion of in-
ductive theory can be related to several kinds of models:
Herbrand models or initial models (i.e least Herbrand
models). These relations are discussed in [ll]. We
have chosen to study the initial and Herbrand model
approaches:

Definition 3.1 Let H be a set of conditional equations
on the signature F. A clause e is an inductive theorem
of H ifl for any ground substitution o, H k eo.

For clauses, validity in all Herbrand models differs,
in general, from validity in the initial model. However
these two notions of validity coincide for unconditional
equations as it is proved in- [ll].

3.3 Conditional rewriting
The idea of rewriting is to impose a direction when us-
ing equations in proofs. This direction is indicated by
an arrow when it is independent from the instantiation:
I + r means that, we can replace 2 by r in some context.
When an instance of a conditional equation is orientable
and has a valid conditional part, it can be applied as
a rule. The conditions are checked by a recursive call
to the theorem-prover. Termination of such calls is en-

conditions to be smaller (w.r.t. sured by requiring the
the reduction ordering +) than the conclusion:

Definition 3.2 Let H be a set of clauses. Let A be
a term or a clause, and n an occurrence of A. Then
A[s& +H A[ta], if o is a substitution and there is a
conditional equation c + s = t, in H such that SO +
ta and H j= co and (s = t)o + cu..

A term A is reducible w.r.t. -)H, if there is a
term B such that A -)H B. Otherwise we say that
A is H-irreducible. The system H will be qualified
as convergent if for all ground terms a,b such that
H+a = b there exists a ground term c such that
o+H*c and b+H*c. One can easily see that it is also
equivalent to the property that every ground term pos-
sesses a unique irreducible form. Note that the con-
ditional rewriting relation may be undecidable. The
relation +H will be extended to sets of clauses in a
natural way: by definition, S U {c} -‘H S U {d} whcn-
ever c -)H d.

3.4 Case rewriting
Case reasoning is a very powerful technique which is
the basis of many theorem proving strategies. It is a

most important rule in the context of inductive theo-
rem proving where case splitting arises naturally from
induction hypothesis. We propose here a notion of case
rewriting which is well-suited to inductive reasoning.

Definition 3.3 Let H be a set of conditional equations
and c =+ s = t a conditional equation in H. Let A[su]~
be a clause (where o is a substitution) and let S be a
set of clauses. The case rewriting rule can be stated as
follows

S U {A[sa],} -H S U {(CO V A[sa],). (1~ V A[t&)}

if co is not a subclause of A[sa],, n occurs in a maximal
literal of A, so F to and (s = t)o + co

Let us denote “H U -‘H by L)H. The follow-

ing propositions is the base for proving (or disproving)
clausal theorems.

Proposition 3.1 The case rewriting rule is sound (the
derived set of clauses is logically equivalent to the initial
set). The relation CI’H is noetherian.

4 How to prove and disprove in-
ductive theorems

In this section, we propose general methods to prove
(or disprove) automatically that clauses are inductive
consequences of theories axiomatized by a set of con-
ditional equations. These techniques allow us to re-
place inductive reasoning by pure simplification. Such
a mechanization of inductive proofs is based on the no-
tion of test-set, which, in essence, provides us with a
finite description of the initial model.

4.1 Test sets
First, let us define the height of a term as the height of
the tree representation of this term. The height of a set
of conditional equations will be the maximal height of
the terms occurring in this set. The height of an object
x will be denoted by lx].
Definition 4.1 A test-set for a set of conditional
equations H is a fin.ite subset S(H) of T(F, X) such
that the following properties hold:

completeness: for any H-irreducible ground term s,
there exists a term t in S(H) and a substitution o
such that ta = s.

soundness: for any term t in S(H) th.ere exists an H-
irreducible grou,J term s and a substitution o such
that to = s.

transnormality: every n,on-ground term in S(H) has
infinitely many ground instances which are H-
irreducible.

coveredness: any non-ground term t in S(H), It] > 1
where I = I HI - 1 if every variable in the left-hand
side of the positive literals in H occurs once and

242 AUTOMATEDREASONING

1 =]H] if H contains a rule whose left-hand side
has multiple occurrences of the same variable.

Definition 4.2 A test-substitution w.r.t. S(H) is
a substitution which applies every variable to an element
of the test-set S(H)

Example 4.1 Let us come back to the introductory ex-
ample. Let H be the set of axioms 1,2,. . . , 10. As we
pointed out, S(H) = (0, s(x), tt, ff} may be considered
as a test-set. Note that the four properties of the defy-
nition are verified.

The construction of test-sets for equational theories
is decidable and may be performed in relatively efficient
way. The algorithm is based on pumping lemmas in tree
languages and is detailed in [8]. Such an algorithm does
not exist for conditional theories. However, in the last
section, we shall give a method to derive test-sets in
theories defined over a free set of constructors.

4.2 Inductive proofs by simplification
Our notion of induction refers to a noetherian order-
ing on ground terms, which contains the conditional
rewriting relation. We can use as an inductive hy-
pothesis any instance of the theorem we want to
prove, as soon as this instance is smaller (w.r.t.
+)t han the one that is currently considered. In
Theorem 4.1 we propose two rewriting relations which
are sound, with regard to the use of induction hypothe-
sis. Both of them allow to utilize the conjecture after a
first normal simplification step has been applied. How-
ever, if the first step is conditional, we can also use the
conjecture when attempting to satisfy the conditions of
the rule (case a). The following notations will be useful:

Definition 4.3 Let u = v be an equation, then ?L=9
denotes the symmetric closure of +{U=21) and +H/U=V

denotes the relation (a)*o(+H)o(x)*. Let H be a
set of conditional equations, let A be a term and n an
occurrence of A. Then we write A[sa], +H[~=~] A[ta],
if o is a substitution and there is a conditional equation
al = bl A a . s A a, = b, =+ s = t in H, such that:
1. su + to and (s = t)a t (al = bl A .a. A a, = b,)a
2. Vi, 3c aio+HU{U=v) *c and b~o+~~U~U=U)*c

The following theorem shows how to prove equations
in the initial model of conditional theories.

Theorem 4.1 (see [9]) Let H be a set of conditional
equations, S(H) a test-set, and u = v an equation. We
suppose that one of the following hypothesis is verified:

a. +HU{U=V) is noetherian. In this case we define w
as the reflexive closure of the relation:
(-‘H[u=~~)O(~Hu(u=~~)~

b. +H/u=v is noetherian. In this case we de-
fine w as the reflexive closure of the relation:

If, for all test-substitution v there is a term 0 such that
uv C\A Q and uv * Q then ‘u = v is an inductive theorem
for H (and therefore is valid in the initial model of H
by proposition 3.2).

Example 4.2 Consider the following conditional ax-
ioms for integers with +, odd and even,.

(24) x+0-x
(25) X+S(Y) - S(X +Y)
(26) even(O)+ tt

(27) evenw>> --) ff
(28) even(s(s(s))) - even(x)
(29) euen(2) = tt a odd(s(x)) --f tt
(30) even(x) = ff * odd(W) - ff

Here the test-set is (0, s(O),s(s(z)), tt, f f}. Let us
prove first the commutativity of +. We apply case b. of
th. 4.1. We just consider the non-trivial case, which is
an instantiation by the last scheme: s(s(x)) + s(s(y)) =

SMYN + s(W). Aft er simplification, we have to con-
sider the goal: s(s(s(s(x)) + y)) = s(s(s(s(y)) + x)).
Commutativity can be applied strictly inside the equa-
tion, since it is supposed to be true for smaller instances
(induction hypoth,esis). We get: s(s(y + s(s(x)))) =

SW + SMY>>>> and then, simplification finishes the
job. By assuming now the commutativity of +, we can
prove in the same way : odd(x + s(x)) = tt. First,
odd(s(s(x))+s(s(s(x)))) - odd(s(s(s(s(s(x+.~)))))) -
tt. To justify the last rewriting step we need to prove as
a lemma even(s(s(s(s(x + 2))))) = tt or its simplified
form even.(x + .r) = tt. This is achieved by the same
technique.

It is straightforward to generalize the previous method
to proving that clauses are inductive theorems. How-
ever, in this general situation, case analysis is crucial:
Theorem 4.2 Let H be a set of conditional equations,
S(H) a test-set? and C a clause. If, for all test-

substitution u, (CY) wH* (pl,pz *a * ,p,), and every
clause pj is either a tautology (con!ains two complemen-
tary literals or an instance of x=x) or is subsumed by
an axiom or contains an instance of C which is strictly
smaller w.r.t. >- than Cu, then C is an inductive theo-
rem of H

Example 4.3 Let us prove now the transitivity of <
(see axioms in the introductory example): x < y =
ffVY< z=ffVx< t = tt. The only non-trivial
instance by a test-substitution among the eight of them
is: s(x) < a(y) = ff V s(y) < a(z) = ff V s(r) < t?(z) =

tt. After three steps of case-rewriting, we get only one
clause which is not a tautology, namely:
x<y=ffVy<z=ffVx<z=ttVs(x)<s(y)=ff

vs(y) < s(z) = ff v s(x) < s(z) = tt

KOUNALIS AND RUSINOWITCH 243

This clause contains a subclause which is a strictly
smaller instance of the one to be proved. Hence by th.
4.2, the proof is achieved. In the same way we could
prove in the example 4.2 that even(x) = ttvodd(x) = tt.

4.3 Disproving inductive theorems
The notion of test-set is particularly useful for refuting
inductive properties. The next definition provides us
with criteria t.o reject such conjectures.

Definition 4.4 We suppose that we are given a set of
conditional equations H, and a test-set S(H). Let H’
be the set of positive literals of H. Then, a clause Tel V

. . .vle,Vgl = dl v.. .vg, = d, is quasi-inconsistent
with respect to H if there is a test-substitution CT such
that, for all i 5 m, eio is an inductive theorem and for
all j 5 n at least one of the following is verified:

l gjo f djo and gjo and djo are irreducible by H’.
l gjo + djo and gjo is irreducible by H’.
a gjo 4 djo and djo is irreducible by H’.

The next result shows that, when the set of axioms is
convergent, a quasi-inconsistent clause cannot be induc-
tively valid. This is proved by building a well-chosen
ground instance of the clause, which is false in some
Herbrand model of the axioms. In particular, if the
clause is an equation then it is not valid in the initial
model.

Theorem 4.3 Let H be a convergent set of conditional
equations and S(H) a test set for H. If C is quasi-
inconsistent w.r.t. H then C is not an inductive theo-
rem of H.

Example 4.4 The axioms are as in example 4.2. (note
that they satisfy the convergenw property). Consider
the conjecture even(x) = tt V odd(x) = f f. It is quasi-
inconsistent as shown by the following instance:

even(s(0)) = tt V odd(s(0)) = ff

The theorems 4.1,4.2 and 4.3 can be combined into an
inductive theorem-proving procedure which is complete
for positive clauses, in the sense that it will disprove
every positive clause which is not an inductive theorem,
provided that no negative literals are introduced by the
procedure. However, in the general case, the procedure
allows to disprove many false conjectures.

5 How to get convergence
Convergent systems of equations have the property that
two terms are equal if and only if they simplify to iden-
tical ones. In this section, we recall several methods
to obtain the convergence property which is crucial for
disproving conjectures.

5.1 The saturation technique
The saturation technique generalizes Knuth and Bendix
procedure [7] to conditional theories. It is based on a
refutationally complete set of inference rules. These
rules have been discussed in [13].

5.2 Hierarchical techniques
Hierarchical axiomatizations are natural tools for build-
ing structured specifications. They are obtained by in-
cremental extensions of a base theory with new func-
tion definitions. For hierarchical axiomatizations [12] ,
ground confluence can be obtained by semantic meth-
ods. The next theorem underlies Plaisted’s work [12]:

Theorem 5.1 Let H be a convergent set of conditional
equations on the signature F - (f), and let H’ be an ex-
tension of H with conditional equations where the sym-
bol f occurs. Assume that H’ has the same initial model
than H. If for every ground term f (tl, . . . , tn) there ex-
ists t’ E T(F - {f}) such that f(tl,...,tn) (-‘it)* t’

then H’ is convergent.

Verification of inductive properties often involves the
proof of some lemmas. Adding these lemmas to the
initial axiomatization does not destroy the convergence
property as stated in the following result:
Theorem 5.2 If H is convergent and C is a condi-
tional equation which is an inductive theorem of H.
Then --+Hu{c} is convergent.

For instance, in the introductory example l-11 and
12,13,14,17,18 is convergent.

6 How to get test-sets
In this section, we propose a method of constructing
test-sets for conditional theories whose signature F can
be partitionned into a set C of constructors and a set D
of defined functions. Therefore, we assume that every
left-hand side of an orientable instance of a conclusion
has a symbol from D. This corresponds to the well-
known principle of definition of [5]. In order to simplify
our presentation WC shall suppose that D = {f).

Definition 6.1 Let CS be the set {g(al.. . . , rn); g E
C}, a pattern tree T off (x1.. . . ,E,). where f E D is
a tree whose nodes are terms. The root is f (xl?. . . ,x,).
Every successor of a node :. is obtained by replacing a
variable of s by ((II element of S whose variables h,a.ve

been renamed.

Example 6.1 Let C.9 be {&S(T)} . Here is a pattern tree of

x < y:
X<Y \

T < 0

0 < S(Y)

*p .$bv)

4x1 < S(Y)

In the following, we describe a procedure for deriv-
ing a pattern-tree such that a test-set can be extracted

244 AUTOMATEDREASONING

from its leaves arguments. Hence, we suppose given a
set of conditional equations defining a function f. To
construct a suitable pattern tree of f(zr, . . . ,zn), the
next definition tells us how to identify the nodes to be
expanded and the variables to be replaced.
Definition 6.2 A term t &I extensible at position u
w.r.t. H if t/u is a variable and there is a rule c =+ I +
r E H such th.at l/u is a function symbol or a variable
occurrkg more than once in 1. A term t is extensible
w.r.t. H if it is extensible at some position u.

Definition 6.3 Given a set H of conditional equa-
tions, we say that t is pseudo-reducible by H if there
is a set of rules {cl * 11 -+ r-1, . . . ,c, =$ I, -+ rn}
in S such that t/u1 = lIoI,. . . , t jun = Ino, and
ClUl v . . . V &a, is an inductive theorem of H.

Note immediately that if a term is pseudo-reducible, all
its ground instances are reducible. Also, proving that a
node is pseudo-reducible amounts to prove some induc-
tive theorems. To avoid any vicious circle, either we can
use a different method to prove these particular proper-
ties or we can use our method itself with a less refined
test-set than the one we are trying to build. Let H be
a set of conditional equations and let T be a pattern
tree for f (xl,. . . , zn). If each leaf of 2’ is either pseudo-
reducible or not-extensible then we say T is complete
for H. The tree in example 6.1 is complete for the ax-
ioms of the preliminary example. The previous defini-
tions provides us with a procedure to derive complete
pattern-trees. Starting from the tree 2’ = f (x1, x,),
we iterate the following operations:

o Select non-deterministically a leaf t which is extensible
at some position u and not pseudo-reducible

o For any c in CS, rename c in c’ with new variables
and add t[c’] u as a son of t.

When the previous procedure halts with success (as
it did on all the examples we have tested), it provides
immediately a test-set:

Theorem 6.1 Given a set of conditional equations H,
if there is a finite complete pattern-tree for f (xl, . . . , x,)
whose all leaves are pseudo-reducible then a test-set for
H can be computed.

Given a finite complete prl.ttern-tree, let G’ be the
set of its leaves arguments. We define G to be a subset
of G’ such that every element of G’ has an instance
in G and no element of G is an instance of another
element, of G. In the example 6.1, G’ = {O,s(z), s(y)}
and G = {O,s(x)}.

7 Conclusion

are convergent, test-sets give an efficient strategy to dis-
prove theorems. We also feel that this method should
generalize easily to the case of conditional equations
with negative lit,erals in the conditions.

References

PI

PI

PI

PI

151

PI

PI

PI

PI

PO1

WI

WI

PI

PI

R. Aubin. Mechanizing structural induction. In Theo-
retical Computer Science 9, pp. 329-362, 1979.

R.S. Boyer and J.S. Moore. A Computational Logic.
Academic Press, New York, 1979.

R-M. Burstall. Proving properties of programs by
structural induction. In Computer Journal 12, pp. 41-
48, 1969.

S.J. Garland and J.V. Guttag. An overview of LP, the
Larch Prover. In N. Dershowitz, ed., Proc. of the 3rd
RTA Conf., USA, pp. 137-151, LNCS 355, 1989.

G. Huet and J-M. Hullot. Proofs by induction in equa-
tional theories with constructors. J. of Computer and
System Sciences, 25(2):239-266, 1982.

J.P. Jouannaud and E. Kounalis. Proof by induction
in equational theories without constructors. In Proc. of
1st Symp. on Logic In Computer Science, pp. 358-366,
Boston (USA), 1986.

D.E. Knuth and P.B. Bendix. Simple word problems
in universal algebras. In J. Leech, ed., Computational
Problems in Abstract Algebra, pp. 263-297, Pergamon
Press, Oxford, 1970.

E. Kounalis. Pumping lemmas in tree languages. in
Mathematical Foundations of Computer Science, 1990.

E. Kounalis and M. Rusinowitch. A mechanization
of conditional reasoning. In First International Symp.
on Artificial Intelligence and Mathematics, Fort Laud-
erdale, Florida, 1990.

D.L. Musser. On proving inductive properties of ab-
stract. data types. In Proc. 7th ACM POPL, pp. 154-
162, 1080

P. Padawitz. Computing in Horn Clause Theories.
Springer-Verlag, 1988.

D. Plaisted. Semantic confluence tests and comple-
tion methods. In Journal Information and Control 65,
pp. 182-215, 198.7.

M. Rusinowitch. Theorem-proving with resolution and
superposition. In Proc. of the International Conference
on Fifth, Gen,eration Computer Sy.stems, 1988.

H. Zhang, D. Kapur, and M.S. Krishnamoorthy. A
mechanizable induction principle for equational speci-
fications. In E. Lusk and R. Overbeek, ed.: Proc. 9th
CADE, pp. 162-181, LNCS 310, 1988.

We have presented new methods for inductive reason-
ing. These methods try to capture as much as possible
the power of simplification. Moreover, when the axioms

KOUNALIS AND RUSINOWITCH 245

