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Abstract 

We present a strategy for restricting the application of 
the inference rule paramodulation. The strategy ap- 
plies to problems in first-order logic with equality and 
is designed to prevent paramodulation into subterms of 
Skolem expressions. A weak completeness result is pre- 
sented (the functional reflexive axioms are assumed). 
Experimental results on problems in set theory, com- 
binatory logic, Tarski geometry, and algebra show that 
the strategy can be useful when searching for refuta- 
tions and when applying Knuth-Bendix completion. 
The emphasis of the paper is on the effectiveness of 
the strategy rather than on its completeness. 

1 Introduction 

Most inference rules and strategies for guiding or re- 
stricting searches in automated deduction are syntac- 
tic in spirit. Examples are inference rules that gen- 
erate positive clauses only, unrestricted back-chaining 
searches, restriction strategies that consider orderings 
on terms, and guidance strategies that focus on clauses 
with few symbols. Notable exceptions, which use inter- 
pretations or the intended meaning of the symbols, are 
semantic inference rules, inference rules with built-in 
knowledge of the intended domain, the set of support 
strategy for starting the search with specific clauses, 
and ad hoc weighting methods for controlling searches. 

We present a paramodulation strategy which has a 
semantic motivation in that a distinction is made be- 
tween Skolem functions and ordinary functions. The 
strategy is to prevent paramodulation (equality substi- 
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tution) into proper subterms of Skolem terms. Human 
reasoners tend to treat the objects corresponding to 
Skolem terms as atomic, and it appears that programs 
can benefit by making a related distinction. 

One can easily show the completeness of the strat- 
egy for otherwise-unrestricted paramodulation in the 
presence of the functional reflexive axioms. The proof 
rests on the (not well-known) fact [BKS85, Ben891 that 
equality axioms are not required for Skolem functions. 
The focus of this work is to try to determine the prac- 
tical effectiveness of the strategy. 

The restriction strategy was added to the deduc- 
tion system OTTER [McCSO], and experiments were 
conducted on problems in set theory, combinatory 
logic, Tarski geometry, and Knuth-Bendix completion. 
The completeness result does not yet apply to Knuth- 
Bendix completion problems, but our experiments in- 
dicate that the strategy can be valuable for those prob- 
lems anyway. 

Preliminary work on this topic appeared in [McC89]. 

2 Preliminaries 

We assume a resolution/paramodulation refutation 
system for first-order logic with equality. If the for- 
mula representing the problem in question involves ex- 
istentially quantified variables or is not in conjunctive 
normal form, it is preprocessed. A standard way to 
preprocess consists of three steps: conversion to nega- 
tion normal form, Skolemization, then conversion to 
conjunctive normal form. The Skolemization proce- 
dure is the interesting step. Existentially quantified 
variables are replaced with new Slcolem functions and 
Skolem constants. Arguments of the Skolem functions 
are the universally quantified variables in whose scope 
the existential quantifier occurs. A term is a Skolem 
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expression if its leading function symbol is a Skolem 
function symbol, and Sk(F) is any Skolemization of a 
formula F. 

The result of preprocessing is a conjunction of 
clauses, whose variables are implicitly universally 
quantified. (Variables in clauses start with ‘U’--(Z).) 
The key property of Skolemization is that unsatisfiabil- 
ity is preserved: Sk(F) unsatisfiable (E-unsatisfiable) 
if and only if F is unsatisfiable (Eunsatisfiable). 

If the problem in question involves equality, one can 
either apply resolution inference rules with the equal- 
ity axioms, or apply specialized inference rules that 
operate on equalities. The equality axioms for a set 
of function and relation symbols are reflexivity, sym- 
metry, transitivity, and a substitution axiom for each 
argument position of each function symbol and rela- 
tion symbol. 

X=X 
x#y v y=x 
x#y v y#z v x=z 
X#Y v f-(.-,x ). . .) = f(. . ., y,. . .) 
x # y v lP(. . . ,x, . . .) v P(. . . , y, . . .) 

EqAx(F) is the set of equality axioms for the function 
and relation symbols of a formula F. Although equal- 
ity substitution axioms for Skolem functions have tra- 
ditionally been included, it is known [BKS85, Ben891 
that they are not necessary. 

The most widely used inference rule for equality is 
parumodulation [WOLB84], which generalizes equality 
substitution to include unification and extra literals in 
the spirit of resolution. Let N and L be disjunctions 
of literals, and let M be a literal containing a term 
t2. Paramodulation applies from clause tl = T V L 
into clause M[t2] V N if tl and t2 have most a general 
unifier CT. The paramodulant is (M[r] V N V L)a. 

The functional reflexive axioms for a set of func- 
tion symbols consists of an equality f (xl, . . . , x,) = 
f(Xl,... , x,) for each n-ary function symbol f. 

Let S be a set of clauses involving equality. The 
following are basic results in logic and 
orem proving. 

automated the- 

o S is E-unsatisfiable if and only if S&EqAx(S) is 
unsatisfiable. 

o Paramodulation is a complete inference rule 
for equality. In particular, if S is an E- 
unsatisfiable set of clauses, there is a paramodula- 
tion/resolution/factoring refutation of S & (x = 
x). (Some useful restrictions of paramodulation, 
such as the set of support strategy, require the 

presence of the functional reflexive axioms for 
completeness. Even when required for complete- 
ness, they are rarely used in practice.) 

3 The Restriction Strategy 

Although the following result is basic in logic, it ap- 
pears in just one [Lov’?~] (as far as we can tell) of the 
standard texts on resolution-based automated theorem 
proving, and it is not widely used by the automated 
theorem proving community. A first-order formula F 
is Eunsatisfiable if and only if F&EqAx(F) is unsat- 
isfiable. (Note that F is not necessarily Skolemized.) 

An immediate consequence of that result is that 
the equality substitution axioms can be fixed before 
Skolemization occurs; in particular, equality substitu- 
tion axioms are not required for the Skolem functions. 
In fact, the following five statements are equivalent. 

(1) F is E-unsatisfiable. 

(2) F&EqAx( F) is unsatisfiable. 

(3) Sk(F) is Eunsatisfiable. 

(4) Sk(F&EqAx(F)) is unsatisfiable. 

(5) Sk(F)&EqAx(Sk(F)) is unsatisfiable. 

Research in automated theorem proving with equal- 
ity has focused on the equivalence (3) iff (5)) because 
clause sets rather than the first-order formulas are usu- 
ally taken as given. For example, the widely used and 
cited problem set [MOW761 presents clauses, including 
equality axioms for Skolem functions. 

The fact that equality axioms are not needed for 
Skolem functions can be turned into a strategy for 
restricting paramodulation, because paramodulation 
into a term corresponds to a sequence of resolution 
steps with equality axioms. For example, let f be a 3- 
place function symbol, and consider a term f (t 1, t2, ts). 
Paramodulation into t2 or one of its subterms corre- 
sponds to a sequence of resolution steps with equal- 
ity axioms. One of the equality axioms is x # y V 
f (x1, x, x3) = f (xi, y, xs), because paramodulation is 
into the second argument of f. If f is a Skolem func- 
tion, that equality axiom need not be present, indi- 
cating that the paramodulation inference need not be 
made. 

The Strategy. Never paramodulate 
subterm of a Skolem expression. 

into a proper 
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An Outline of the Completeness Proof. If one 
assumes unrestricted paramodulation as a starting 
point, it is not difficult to show the completeness of the 
restriction. Let S be an E-unsatisfiable set of clauses; 
let F be the set of function and relation symbols, 
excluding Skolem function symbols, of S; let EqAx 
be the equality axioms for F; and let FRA be the 
functional reflexive axioms for F. Let R be a hy- 
perresolution/factoring refutation of S&EqAx. Such 
a refutation exists because S&EqAx is unsatisfiable 
and hyperresolution/factoring is complete. R can be 
transformed-as in [CL73, pp. 171-172]-into a hy- 
perresolution/factoring/paramodulation refutation of 
S& (2 = 2) &F RA. Each hyperresolution inference 
with an equality axiom can be directly transformed 
into a paramodulation inference that satisfies the re- 
striction. 

Motivation. The restriction strategy has intuitive 
appeal as well. The arguments of Skolem functions 
should serve as place holders for the objects on which 
the “existing” object depends-equality substitution 
should not be applied to them. For an example in 
set theory, if A e B is assumed, one can conclude 
that there is an object c in A that is not in B. In 
clauses, c is a Skolem function applied to A and B. 
If A and B are complicated expressions, one might 
wish to reason about them by applying equality sub- 
stitutions, but not to the occurrences in the Skolem 
expression representing c-those should be fixed when 
c is “chosen”. If A and B are not ground when c is 
chosen, further inferences should be free to instantiate 
the Skolem expression. With this view, the arguments 
of Skolem functions serve as constraints on unification 
and constraints on inference. 

4 Applications 
Experiments 

and 

OTTER [McC90] is a resolution/paramodulation the- 
orem prover for first-order logic with equality. The 
paramodulation restriction strategy was installed in 
OTTER, and a number of experiments were conducted 
to try to determine the value of the strategy. 

Four application areas were chosen for study: sev- 
eral versions of a problem in set theory, two problems 
in combinatory logic, a problem in Tarski geometry, 
and a benchmark algebra problem in complete sets 
of reductions. The set theory and geometry prob- 
lems are non-Horn and require a mixture of resolution 
and paramodulation; in addition, the set theory prob- 

lems use defined concepts. The combinatory logic and 
algebra problems require no resolution because they 
are presented as equality units; the algebra problem 
requires demodulation (term rewriting) and is not a 
search for a refutation. 

4.1 Set Theory 

The problem, to show that the composition of two 
functions is also a function, is the naive version of one 
of the lemmas in [BLM+86]. It is an easy problem, but 
OTTER has difficulty with defined concepts, non-Horn 
clauses, and mixtures of equality and other relations, 
all of which occur in this kind of set theory problem. 

Definitions of relation, single-valued set, function, and 
composition. 

VR(relation(R) t-, V’u(u E R ---+ 3x3y(u = (x, y)))) 

VS ( singval(S) * VxVyVz CL 
(5, Y) E S& (x,z)ES ] -y=z)) 

VF(function(F) w relation(F) & sing&(F)) 

VuVFVG u E F o G c--) 3x3y3z 

Property of ordered pair. 

vxvyv%vw((x,y) = (z, w) + 2 = % & y = 20) 

Theorem. 

VFVG(function(F)&function(G) --+ function(F o G)) 

Four versions of the theorem were considered. Ver- 
sions ST-l and ST-2 use the clauses shown below. Ver- 
sion ST-3 does not use the defined relations relation, 
sing&, or function (the theorem is stated in terms of 
the composition, ordered pair, and equality). Version 
ST-4 is entirely in terms of ordered pair and equality. 
Table 1 contains a summary of the results. 
Clause form of the denial of the theorem. (Function 
symbols starting with the letter f are Skolem function 
symbols .) 
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1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

X=X 
-relation(z) V u # z V u = (f7(2, u), f8(2, u)) 

relation(z) V f9(z) E 2 

relation(z) V f9(2) # (z, y) 
~singvf.zz(x) v (u,v) fi! x v (21,l.u) fz x v 2, = w 

singvuZ(x) v (fl(EE),f2(a;)) E z 
singvuZ(x) v (fl(x),f3(x)) E x 
singvuZ(x) v f2(z) # f3(2) 
-~function(x) V relation(z) 
-function(x) v singvuZ( x) 
function(x) V ~reZution(s) V 3G2gvuZ(x) 
2 e Y 0 x v z = (f4(z, 2, Y), f6(z, 2, Y)) 
2 $!YOX v (f4(z,2,y),fS(z,r:,y)) E x 
2 tz Y 0 x v (f5(& $9 Yh f6(& 2, ?I)> E Y 
aEyox v ~#(wJ> v ( u, v) 4 x v (VJ) e Y 
(w) # (us v) v x = u 
(xc, Y) # (u, 4 v Y = ?J 
funchon( F) 
function(G) 
-function(F o G) 

Table 1: Set Theory 

4.2 Combinatory Logic and Fragments 

Combinatory Logic (CL) is closely related to the un- 
typed X-calculus. There are two constants S and 
I<, and one binary operator apply. Terms are nor- 
mally written without the operator, and when paren- 
theses are omitted, association to the left is assumed. 
For example, the term appby(appby(a, b), appZy(c, d)) is 
normally written ub(cd). Many interesting first-order 
equational theorems in CL can be found in [Smu85]. 
Problem W, versions W-l and W-2. In combinatory 
logic, find a combinator W with the property Wxy = 
zyy. Version W-l uses a finely tuned search strategy 
for problems of this type, and W-2 uses a more naive 
search strategy. 

vxvyv%(sxy% = xz(yz)) 
VxVy(Kxy = 2) 

Theorem. %VVxVy(Wxy = xyy) 
Denial of the theorem in clauses, with explicit function 
symbol for apply (f and g are Skolem functions, and 
Ans(z) is an answer literal). 

1. ++@, 4, Y), 2) = 445 4, U(Y) 4) 
2. u(u(K, x), y) = x 
3. +4? f (4, g(4) # 44f (4 9(4), g(4) v A44 

If axioms different from those for S and I< are used, 
the system is in general weaker than CL and is called 
a fragment of CL. 
Problem FP, versions FP-1 and FP-2. Find a 
fixed point combinator in the fragment {Q, M}, with 
QXYX = y(x:z) and Mx = 2~. Version FP-1 uses a 
finely tuned search strategy for problems of this type, 
and FP-2 uses a more naive search strategy. 

Theorem. 3OVx(Ox = x(0x)) 
Denial of the theorem in clauses, with explicit function 
symbol for apply. (f is a Skolem function). 

1. u(+(Q> 4, Y), 2) = a(~, +, 4) 
2. u(M, 2) = u(x, 2) 
3. +, f(4) # a(f@), 46 f(4)) v A44 

Table 2: Combinatory Logic 
Time ] Time with-restriction ] 
9 seconds 9 seconds 
(no proof) 12 seconds 
1 second 1 second 
50 seconds 3 seconds 

4.3 Complete Sets of Reductions 

By setting the appropriate options, OTTER can be 
made to search for a complete set of reductions with 
the Knuth-Bendix procedure. The completeness ar- 
gument as presented does not directly apply in this 
context, because the goal is a canonical term-rewriting 
system rather than a refutation. However, the restric- 
tion strategy can be directly applied, because the com- 
putation of critical pairs is itself a restricted form of 
paramodulaion. 

A benchmark completion problem [Chr89]. Given an 
associative system with 24 left identities and 24 right 
inverses, find a complete set of reductions. The 24 in- 
verses can be clearly interpreted as Skolem functions. 
Paramodulation into proper subterms of inverse ex- 
pressions was prevented, but simplification of those 
subterms was allowed. 
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f (f (6 Id7 4 = fh f (YY 4) 5 Remarks 
f(el,x) = 2 
f(e2,x) = x 
. . 

f( e24, x) = x 

f(x, 91(x:)) = el 
f (x,92(x)) = e2 
. 
. 

f(x, 924(x)) = e24 

The time required to find a complete set of reduc- 
tions was 474 seconds without the restriction and 56 
seconds with it. The same set was found. 

4.4 Tarski Geometry 

Tarski developed and studied several first-order axiom- 
atizations of elementary geometry-we used the ver- 
sion reproduced in [Wos88]. The domain is points in 
the plane, and the primitives are a S-place relation “be- 
tween” and a 4-place relation “equidistance of 2 pairs 
of points”. We experimented with test problem 10 in 
[WosSS], the five point theorem. Even though equal- 
ity relation and several Skolem functions are present, 
the restriction strategy had little or no effect in any of 
the comparisons we made. Part of the reason is that 
there are few occurrences of equality in the axioms and 
equality plays a small role in the proof of the theorem. 

Researchers in automated deduction usually start with 
or are presented with clauses rather than the fully 
quantified formulas from which they came (for exam- 
ple [MOW76]). In th e algebra completion problem, 
it is clear that the 24 inverses can be interpreted as 
Skolem functions, but it is not always obvious whether 
a function symbol is a Skolem function symbol. A par- 
tial solution is presented in [McC88], which contains 
a procedure that attempts to “un-Skolemize” a set of 
clauses-that is, eliminate function symbols by intro- 
ducing existentially quantified variables, while main- 
taining unsatisfiability. Such function symbols can be 
interpreted as Skolem functions, and the strategy can 
be applied to them. 

We conclude with several points on enhancements 
and 

e 

related work. 

We believe that the strategy can be shown to 
be complete without the presence of the func- 
tional reflexive axioms. One attack, suggested 
by Dan Benanav [BenSO], is to define paramod- 
ulation so that all occurrences of the instantiated 
“into” term are replaced and use a version of the 
lifting lemma that does not require the functional 
reflexive axioms. 

4.5 Summary of Experimental Results 

It is difficult to evaluate the effectiveness and general- 
ity of new ideas in automated theorem proving. The 
fact that a new strategy performs well on a particu- 
lar problem is little indication of its performance on 
semantically or syntactically similar problems. The 
Skolem function restriction strategy had a positive ef- 
fect in three of the four areas that were considered. 
In none of the experiments did the strategy have a 
negative effect. In particular, we have not found any 
cases in which the strategy blocks a refutation or inter- 
feres in any other way with the search for a refutation 
(even though the functional reflexive axioms are never 
included and other restrictions are sometimes applied). 

A refinement of the strategy was suggested, also 
by Benanav [BenSO], in which the relevant func- 
tions are the ones with just variables as arguments 
in the input clauses, rather than Skolem functions. 
This is analogous to the unnecessary equality ax- 
ioms studied in [Ben89]. 

Should demodulation (term rewriting, simplifica- 
tion) be prohibited inside of Skolem expressions 
when searching for a refutation? 

Is the strategy compatible with the Knuth-Bendix 
completion procedure ? In particular, can critical 
pair computation and/or simplification be pre- 
vented inside of Skolem expression? If not, is 
there a related restriction that is compatible? 

The consequences and completeness of the restric- 
tion strategy have not yet been analyzed for Knuth- 
Bendix completion. However, the algebra completion 
experiment shows that the restriction can be useful 
in practice even if it is not complete. When the re- 
stricted procedure terminates, we do not in general 
know whether the resulting set is canonical. However, 
the unrestricted procedure can then be applied to the 
resulting set to check whether it is canonical; the cost 
of such a check is very small. 

Can the restriction shed any light on the prob- 
lem of searching for models/counterexamples of 
clauses containing Skolem functions? 
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