
Automatically Generating Universal ttachments
Through Compilation

Karen L. Myers
Department of Computer Science

St anford University
Stanford, California 94305
myers@neon.stanford.edu

Abstract
Universal attachment is a general-purpose mechanism
for integrating diverse representation structures and
their associated inference programs into a framework
built on logical representations and theorem proving.
The integration is achieved by links, referred to as uni-
versal attachments, that connect logical expressions to
these structures and programs. In this paper, we de-
scribe a compilation-based method for automatically
generating new programs and new universal attach-
ments to those programs given a base set of existing
programs and universal attachments. The generation
method provides the means to obtain large collections
of attachments and attached programs without the tra-
ditional specification overhead. As well, the method
simplifies the task of validating that a collection of at-
tachments is correct.

1 Introduction
Universal attachment [Myers, 19901 is a mechanism for
integrating diverse representation and reasoning tech-
niques into a framework based on logic and theorem
proving. The motivations for using universal attach-
ment are increased inferential efficiency and expanded
representational capabilities. Following in the tradi-
tion of previous attachment methods [Green, 19691
[Weyhrauch, 19801, universal attachment centers on
the notion of ‘attaching’ procedures and data struc-
tures to logical expressions. When expressions having
attachments are encountered during theorem proving,
the attached procedures are executed on the attached
data to directly evaluate the logical expressions rather
than relying on further deduction. Universal attach-
ment is a more expressive mechanism for merging pro-
cedures and data structures into a theorem prover than
previously defined attachment techniques, and as such
supports a much broader class of attachments.

This paper describes a method for automatically
generating both new programs and new universal at-
tachments to those programs. The general problem
of automatically producing attachments and attached
programs is extremely difficult. We present a method
that relies on the existence of a base set of attach-

252 AUTOMATEDREASONING

ments and attached programs. The method exploits
the idea that concepts are often hierarchically defined.
In particular, if a given logical expression 4 is defined
in terms of subexpressions 41,. . . , 4, all having at-
tachments, then compilation techniques can be used
to generate an attached program for 4 that calls the
attached programs for the (bd’s. Attachments to these
newly generated programs are obtained by appropri-
ately combining the attachments defined for the c$~‘s.

An automated generation mechanism is important
for several reasons. Such a mechanism can be used to
create a large collection of attachments and attached
programs, thus providing the computational advan-
tages associated with such a collection but without the
specification overhead. Another benefit relates to the
correctness of attachments, where correctness means
that the attached programs and the data upon which
the programs operate embody the appropriate seman-
tics for the expressions to which they are attached.
Provided that the generation process is sound, the task
of validating the correctness of a collection of automat-
ically generated attachments reduces to that of validat-
ing the smaller initial set of attachments.

We begin in Section 2 by describing universal attach-
ment. Section 3 outlines the generation process and
conditions for its applicability, while Section 4 evalu-
ates the approach taken. The automatic generation
method has been implemented as part of a universal
attachment system built on top of the KADS theorem
prover [Stickel, 19881.

2 Universal Attachment

Before presenting the compilation-based generation
method, we first summarize universal attachment and
describe the condition of factorability required for the
method to succeed.

2 .l A Definition of Universal Attachment

Definition 1 (Universal Attachment) A univer-
sal attachment is a five-tuple represented as

(4h>-,4,F) - (PAD)

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

where q.S[xl,..., x,J is the attachment pattern, F is the
filter set, p is the attached program, A is the attachment
map and D is the detachment map.

The attachment pattern +[zr, . . . , x~] is a logical ex-
pression (a relational, functional, quantified or boolean
expression in some logical language L) defined over
the distinguished variables xl, . . . , x~. Distinguished
variables are schema variables ranging over the terms
in the logical language being employed. As a matter
of convenience, we will assume that the distinguished
variables for an attachment pattern are simply the vari-
ables appearing in the pattern (i.e. the distinguished
variables for the term pZus(x,y) are x and y).

The fidter set F is a collection of constraints or filters
on bindings to the distinguished variables in 4, rep-
resented as f [q, . . . , x,.,]. The language for expressing
filters can be defined independently of the universal
attachment framework, thus a different filter language
can be utilized according to the nature of the appli-
cations being considered. We present a sample filter
language and its corresponding definition of filter sat-
isfaction later in this section.

The domain of the universal attachment, namely
the set of logical expressions for which the univer-
sal attachment is defined, is determined jointly by
the attachment pattern and the filter set. For F =

{fl[xl, . . . , xla], . . . ,fm[xl,. . . ,x,J), the domain of
is the set of logical expressions

$$~t.t.Y,~~~tL2re fl[tl, . . . ,&I,. . . ,fm[tl, . . . , tn]
are satisfied.

The attached program p is the name of the program
to be used in the attachment process. The attachment
map A takes the list of bindings to the distinguished
variables as input and generates the appropriate set
of parameters for p (the attached data). The detach-
ment map translates the result of evaluating p on the
attached data to the appropriate expression in the log-
ical language (the value of the universal attachment).
The attachment and detachment maps provide a very
important service in that they translate between logi-
cal terms and structures used to represent those terms
outside of the theorem prover. For this reason, we refer
to them as the transdation maps.

The interpretation of the attachment (1) is that a
logical expression o in its domain will be evaluated by
first executing p on the parameters obtained by apply-
ing the attachment map to the bindings of the distin-
guished variables, then translating the result according
to the detachment map, and finally substituting that
value back in for (Y.

2.2 The Filter Language FL

Before considering an example of universal attachment,
we first describe a sample filter language, FL, defined
for a logical language L. More information on both
alternative filter languages and the advantages of using
filter languages can be found in [Myers, 19901.

The metalevel filter language -TL: is built on the
assumption that filters can be specified for a dis-
tinguished variable independently of all other distin-
guished variables, i.e. filters can be written in the
form f[xi]. The language consists of the predicates
atomic(x), sort(x,s), and standard-name(x,s), with their
satisfaction defined as follows:’

Definition 2 (Filter Satisfaction in FL) A term t
satisfies a filter f in FL ifl

1. f is atomic(t) and t is a logical constant symbol in L
2. f is sort(t,s) and t has sort s.
3. f is std-name(t,s) and t is a standard name for sort

S.

The filter atomic requires t to be a constant symbol
in L. The filter sort dictates that t be of sort s; the
corresponding sort information is included as part of
L. Standard name filters are used to make syntactic
distinctions within sorts. The user can associate a set
of standard names with a sort by making the appropri-
ate specifications in L. For example, we might specify
that all numeric representations of integers within our
logical language are standard names for the sort int of
integers. The filter std-name(t,s) dictates that t must
be a member of the set of standard names for sort s. To
appreciate the need for standard names filtering, con-
sider the logical constant the-pope’s-fuvourite-integer.
Although this constant is of sort int, we would not
want to attach to expressions in which this constant is
bound to a distinguished variable since we don’t know
the specific number that this constant denotes. We can
eliminate such attachments by excluding this constant
from the standard names for int.

2.3 A Graph Example
The following example illustrates how universal attach-
ments can be applied.

Example 1 (Path Connectivity)
Consider a directed graph whose edges are described
by the axiom

edge(a, b) A edge(a, c) A edge(b, c) A edge(c, d) A edge(d, b)

Here, the constants a, b, c and d denote particular
nodes in the graph.

Now suppose we define a logical relation path(x, y)
in terms of the relation edge such that path(x, y) holds
exactly when there is a sequence of edges connecting
x to y. To answer queries about paths in the graph
we can create a universal attachment. First, we define
the LISP structure gr to be the following edge-based
representation of the graph described by edge:

‘Throughout this document, sans-serif font is used for
expressions in 3’~, italica’aed text indicates expressions in
the logical language C, and typewriter-style font indi-
cates an attached program or data.

MYERS 253

(def var gr
‘((a (b cl> (b (c)) (c (d)) (d (b)))) .

We also need a LISP function connp that takes two
nodes and an edge-based representation of a graph
as parameters; the function call (connp ni n2 g) re-
turns t if nl and n2 are connected by a path in g, and
nil otherwise. Finally, we require a metalevel func-
tion h that maps logical representations of nodes onto
the LISP representation of those nodes (i.e. h(a) = a,
h(b) = b, etc). Using these components, we can create
the universal attachment:

(@h(c, y), F@“) + (connp,AP”ih, D”f) (2)

Path = { st -name(x, node), std-name(y, node)} d

Apath@, Y)) = (h(X)> h(Y), IF) -

The domain of this universal attachment is the set of
instances of path(x,y) where x and y are bound to stan-
dard names of sort node. The attachment map Apath
maps a pair of logical terms denoting nodes into the
triple consisting of the LISP representation of those
nodes and the LISP representation of our graph, gr.
The detachment map D tf translates the LISP atoms t
to the logical truth value true and nil to false. The at-
tachment (2) states that instances of path(x,y) where
x and y are bound to standard names for sort node
should be evaluated by applying connp to the argu-
ments h(x), h(y) and gr.

2.4 Factorable Attachment Maps

The general definition of an attachment map A pre-
sented above, whereby A translates the list of bindings
to distinguished variables into the list of parameters
for the attached program, is very broad. In order to
facilitate the automatic generation process, we impose
the restriction of factorability on attachment maps.

Definition 3 (Factorability) An attachment map is
factorable i$ it can be represented us a collection of
unay and zeroury functions on bindings to distin-
guished variu bles.

The attachment map Apath in Example 1 is fac-
torable, being composed of the unary function h ap-
plied to bindings to x, h applied to bindings to y, and
the constant function gr with value gr. We will refer to
the individual unary and zeroary functions as the com-
ponent translations of the attachment map. Factorabil-
ity guarantees that attachment maps are definable in
terms of bindings to individual distinguished variables,
independent of all other bindings. As will be seen in
Section 2, this independence is important for the com-
pilation process. The factorability requirement is not
burdensome; virtually all standard applications of uni-
versal attachments use factorable attachment maps.

For this document, we assume a standardized repre-
sentation of attachment maps. Each map consists of a
list of ordered pairs, where the first entry of the pair is

a component translation function and the second entry
is the distiniguished variable for which the component
translation is defined. If the component translation is
zeroary, than the second entry is simply 0. Using this
notation, we would represent the attachment map in
Example 1 = ((b) (hy) (gd)).

3 The Generation Method
In this section we describe both the generation method
and the compilation criteria that a logical expression
must satisfy for the method to apply. For simplicity,
we assume that all attached programs are written in
LISP.

The generation method derives from the observation
that concepts are often hierarchically defined. Given a
logical expression 4 defined in terms of subexpressions
having attachments, the method employs compilation
techniques to produce an attached program for 4 that
calls the programs attached to 4’s subexpressions.
A universal attachment from 4 to the generated pro-
gram is obtained by merging the subexpressions’ at-
tachments in a manner that depends on the logical
structure of f$.

We begin by stating a concise definition of the com-
pilation criteria. This definition will serve as a refer-
ence for the remainder of the section. Following the
definition, we provide a thorough explanation of its
parts (in particular the concepts of weak satisfaction,
nesting constraints, preserving truth values and enu-
merubility used in the criteria are defined) as well as a
full description of the generation process.

Definition 4 (Compilation Criteria) A logical ex-
pression C$ satisfies the compilation criteria i$ one of
conditions Cl, C2, or C3 is met:

Cl There is un attachment
(a[~~,. . . , xk], Fa) + (p”, A”, Da) such that:
Cl.1 Q[Xl, . . . , xk] unifies with 4, producing bind-

ingsxl :tl, xk :tk.
Cl.2 For each filter f[xJ E Fey, f[tJ is weakly satis-

fied.
Cl.3 Each non-atomic ti satisfies the compilation

criteria.
Cl.4 The detachment maps in the attachments de-

fined by Cl.3 satisfy the nesting constraints.
C2 q5 is a boodean expression, either

A,“,,P$“, , * . . , ti,], or
lPb

Vy=,ai[tj, . . . , th,], where:
C2.1 Each ,& satisfies the compilation criteria.

2This form of compilation is stronger than that associ-
ated with logic programming [Warren, 19771. First of all,
logic programming compilation is limited to Horn clauses.
Furthermore, the compilation of a logic program produces
an encoding in terms of pre-defined primitives (such as uni-
fications and stack manipulations) of the search process fol-
lowed by the interpreter, while the compilation we propose
builds code from arbitrary attached programs.

254 AUTOMATEDREASONING

C2.2 The attachments defined by C2.1 for each pi
have detachment maps that preserve truth values.

C3 4 is a quantified expression of the form 32. Q or
V.Z. a such that:

C3.1 a satisfies the compilation criteriu.
C3.2 z is bound to a distinguished variable in the

attachment pattern of the attachment defined by
c3.1.

C3.3 The terms satisfying the filters specified for z
in the attachment defined by 63.1 are enumer-
able.

63.4 The attachment defined by C3.1 has a detach-
ment map that preserves truth values.

Cl: Base Case

Cl constitutes the base case of the definition. For a
logical expression 4 to be compilable in the base case,
condition Cl.1 requires the existence of an attachment

(+a, * * . , xk], Fa) - (p”, A”, DCY) (3)
where 4 unifies with CV[X~, . . . , Xk]. Condition Cl.2
further requires that if f[xi] is in F” and xi is bound to
ti in the unification for C1.l, then f[ti] must be weakly
satisfied. In contrast to the notion of satisfaction from
Definition 2, weak satisfaction only requires that the
nonvariable components of a term satisfy a given filter.
This relaxation of the satisfaction criteria accounts for
variables in the expression being compiled. For the
filter language FL, a term t weakly satisfies atomic(t)
iff t is a variable or logical constant name, and t weakly
satisfies std-name(t,s) iff t unifies with a standard name
for sort s. Weak satisfaction is identical to standard
satisfaction for the filter sort(t,s).

The condition Cl.3 accounts for the binding of dis-
tinguished variables to non-atomic functional expres-
sions in 4. In general, an expression 4 that satisfies
Cl.1 will have the form

(Ylol[t:,...,t~,],...~k[t~ ,..., t;,31
where each ,&[ti, . . . , tki] is either a variable, a con-
stant, or a non-atomic functional expression. A pro-
gram that evaluates 4 must necessarily include code
to evaluate every non-atomic Pk[i$, . . . , t&l. Thus the
nesting of functional expressions in 4 invalidates the
compilability of 4 unless an attached program exists
to evaluate these expressions, or an appropriate pro-
gram can be created through compilation. In either
case, the nested expressions must satisfy the compil-
ability criteria, prompting condition C1.3.3

If we let the set Z index the non-atomic
&[ti;,.. . , tii], condition Cl.3 guarantees the existence

3Note that Cl.3 makes the base case of the definition it-
self recursive. The well-definedness of the criteria is ensured
since the base case recursion parallels the logical structure
of q5 and hence must be finite.

of the attachments:4

(Ph, * * - , x nail, Fpi) - (pp’, Api, D”l) , i E z. (5)

Cl.4 requires that these attachments satisfy certain
nesting constraints. The nesting constraints ensure
the soundness of consolidating programs attached to
nested functional terms with p” from (3) into a single
attached program for the entire expression 4. We can
express the nesting constraints as follows:
Definition 5 (Nesting Constraints) For every i E
Z:

NC1 The range of DPi must satisfy the filters in F”
defined for xi.

NC2 If (m, xi) E A” and i E Z, then m(Dpa(c)) = c
for every c in the range of the function pp,.

Condition NC1 states that if ,&[tf , . . . , tii] is a non-
atomic expression bound to the distinguished variable
xi then the range of the detachment map DPi must sat-
isfy the filters defined for xi. This constraint ensures
that substituting the values produced by the attach-
ments in (5) for the corresponding nested expressions
in c@l[t:, . . . , t&l,. . . pk[tt, . . . , ti,]] yields an expres-
sion in the domain of the attachment (3). Condition
NC2 requires that the composition of the component
attachment map m defined for a distinguished vari-
able xi and the detachment map Dpa for the nested
expression oj[ti, . . . , ti,] is the identity map. This con-
straint ensures that the attachments in (5) and (3) have
the same interpretation for attached symbols that they
both utilize.

The program generated for 4 is simply an ap-
plication of p” with nested function applications of
the ppS for i E Z used to evaluate the non-atomic
Pip”,, * * . , thi]. Defining the parameter list for the new
program is somewhat complex. In particular, a param-
eter must be defined for each distinct component trans-
lation map applied to a distinguished variable bind-
ing. The factorability of the attachment maps makes
it possible both to identify these translations and to
build the required new attachment map that accounts
for all such translations; details are in [Myers, 19901.
The detachment map is simply Da from (3) while the
new filter set is obtained by ‘merging’ the filter sets for
the nested expressions and F”. The merging process
is an enhanced union operation that eliminates filters
subsumed by other filters in the union. For example,
sort(t,sl) subsumes sort(t,s2) if sort s2 contains sort sl.

Example 2 Let int and rat be functions that map log-
ical representations of integers and rationals onto ap-
propriate LISP representations of those numbers. Using

4These attachments may be in the set of predefined at-
tachments or may be generated recursively by the com-
pilation process. The guaranteed attachments for subex-
pressions in the recursive cases C2 and C3 also have this
characteristic.

MYERS 255

int and rat we can specify attachments for the expres-
sions add(z, y) and div(x, y), which have the intended in-
terpretations of integer addition and rational division.
Let add and div be LISP programs of two inputs that
compute integer addition and rational division, and int
and rat be the sorts of integer and rational numbers.
By defining Aint
along with Arat

= ((int, cc), (int, y)) and Dint = int-‘,

= ((rat, x), (rat, y)) and Drat = rat-‘,
we can create the attachments:

Wd(x, Y>, w- name(z, iinn?, sfd-name(y, int)})

--f (add,A , Dint)

(div(x, y), {std-name(z, rat), std-name(y, rat)})

+ (div, Arat, Drat) .

Now consider the logical definition
Vxy. avg(x, y) = div(add(x, y), 2) .

The expression div(add(x,y)) satisfies the base case of
the compilation criteria. Using the generation method,
we obtain the following program and attachment:

(defun avg-lisp (nl n2)
(div (add nl n2) 2)))

(avg(x, y), {std-name(x, int), std-name(y, int)})

--) (avg-lisp, Aint , Drat) .

C2: Boolean Expressions
If 4 is a boolean expression that doesn’t satisfy C1, 4
is still compilable provided that condition 62 is satis-
fied. All boolean expressions share the same compila-
tion criteria and generation method; here we restrict
attention to conjunctive expressions, where 4 has the
form Ar=,ai[ti, . . . ,ti.].

Compilation condiiion (22.1 guarantees the exis-
tence of attachments

(Qi[W - * , xki], F”‘) + (p”*, A”‘, Dai), i = 1,. . . , n.
These attachments provide the programs used to con-
struct the new attached program for 4.

To motivate C2.2, we consider the nature of the pro-
gram to be generated for 4. The form of this program
will mirror the logical structure of 4: the program con-
sists of an application of the LISP function and to the
results obtained by evaluating the attached programs
P cyi. This strategy is sound only if the values produced
by the pai ‘ match’ the notion of truth values utilized
in LISP. In particular, when an attached program pQ’
returns t (or nil), then the truth (or falsity) of the cor-
responding conjunct should be established. The need
for this semantic correspondence motivates the follow-
ing definition.
Definition 6 (Truth Value Preservation)
A function g from a representation language 151 to a
representation language ,& preserves truth values i$
g maps truth and falsity in Cl onto truth and falsity,
respectively, in CAL.

Example 3 The detachment map Dtf defined in Ex-
ample 1 preserves truth values from LISP to our logical
language: it maps t to true and nil to false.

Although there may be many functions that preserve
truth values from one language to another, we will des-
ignate Dtf as the canonical truth preserving function
from LISP to our logical language. Verifying that a de-
tachment map D preserves truth values thus reduces
to checking that D = Dtf .

As noted above, the new attached program for
/$,a$;, . . . , t”,,] consists of an application of the LISP
function and to the values obtained by evaluating the
P cri. In analogy with programs generated for the base
case Cl., a parameter is required for each unique trans-
lation applied to a distinguished variable binding and
the new attachment map is the collection of these
translations. The new filter set is the union of the
filter sets for the individual conjuncts where subsumed
filters are once again removed. The detachment map
is the canonical truth value preserving function, Dtf .

C3: Quantified Expressions

Condition C3 constitutes the compilation criteria for a
quantified expression Vz. cv or 3%. cy that fails to satisfy
Cl.

C3.1 requires the existence of an attachment

(+a,...,x~],Fa) ---) (p*,Aa,D”) (6)
for the matrix of the quantified expression. The un-
derlying idea for compiling quantified expressions is to
apply the program p” from the attachment (6) to the
attached LISP representations of all possible bindings
to the quantified variable z.

To make this approach feasible, the quantified vari-
able must be bound to a distinguished variable xi in
(Y[Xl,... ,4 (C3-2), and the set of terms satisfying
the filters in F” defined for za must be enumerable
(C3.3). With standard names filters, enumerability
is obtained by using the list of standard names defined
for the sort of the quantified variable. More complex
mechanisms for achieving enumerability are described
in [Myers, 19901; these mechanisms use attached struc-
tures directly to determine the domain of quantifica-
tion. For example, with quantified expressions defined
relative to a graph, the domain of iteration can be lim-
ited to the set of standard names for nodes in that
graph rather than the set of standard names for all
nodes appearing in any graph.

The new attached program consists of an iteration
whose domain is the set of LISP objects obtained by
applying the component translation map m defined for
zd (i.e. (m, xi) E A”) to the enumeration of terms sat-
isfying the filters for xi in F”. At each step, p” is
called. For existential quantifiers, the program returns
t only if pa evaluates to t for some value in the domain.
For universal quantifiers, the program returns nil if a

256 AUTOMATEDREASONING

value is found for which pa evaluates to nil and re-
turns t otherwise. As with the compilation of boolean
expressions, we require that the detachment map D”
preserve truth values (C3.4) to ensure that the seman-
tics of the iteration process match the semantics of the
logical quantifier.

The parameters for the new program are identical to
those of p” except that the parameter corresponding to
the variable of quantification is replaced by a param-
eter representing the domain of the iteration. Corre-
spondingly, the new attachment map is obtained from
A” by replacing the pair (m, xi) by a function that
returns the domain of the iteration. The new filter set
is obtained from F” by removing filters defined on xi.
The new detachment map is Dtf .

Example 4 Consider the logical expression

Vz. incycle G 3Y. Paw? Y> A PqY, z) *

Given the attachment (2) defined in Example 1, the
expression 3y. path(z, y) A path(y, Z) satisfies the com-
pilation conditions in C3. The compilation process
produces the program incycle-lisp defined by

(defun incycle-lisp (u v domain)
(some #‘(lambda (item)

(and (connp u item v)
(connp item u v)))

domain)) .

The formal parameters u and v to incycle-lisp cor-
respond to a node and a graph, respectively. The pa-
rameter domain is the list of values over which the
iteration is defined. During each step of the itera-
tion, the current iterated value item is tested to see
if the code fragment (and (connp u item v) (connp
it em u v)) > evaluates to t. This code fragment is
produced by recursively compiling the logical expres-
sion path(z, y) A path(y, z).

The following attachment for incycle is also cre-
ated, according to the principles described above:

(incycle({std-name(x, node)))

+ (incycle-lisp, Aincycle, D”f)

A in”yc’e((~)) = (h(z),gr,) (a b c d)) .

4 Closing Remarks
This paper has presented a compilation-based method
for generating new programs and universal attach-
ments to those programs from a base set of existing
programs and universal attachments. We have tested
an implementation of the method in the domain of
graph theory. The class of new attached programs and
attachments produced by the implementation method
has proven to be quite rich. In addition, the generated
attachments appear to provide significant gains in the
run-time efficiency of the theorem prover.

For non-quantified expressions, the compilation pro-
cess consolidates all relevant attachments into a sin-
gle program. This consolidation eliminates repeated
transitions between the theorem prover and the at-
tached computational mechanism, thus reducing the
total overhead for translations. The programs con-
structed for quantified expressions can provide effi-
ciency gains for a different reason: by limiting the do-
main of iteration for these programs to the relevant
terms, the attached programs can be much faster than
theorem proving.

The only previous attempt at automating the gen-
eration of attachments was Aiello’s work on produc-
ing new semantic attachments through compilation
[Aiello, 198Oa] [Aiello, 1980b]. Because universal
attachments subsume semantic attachments, Aiello’s
work is necessarily less ambitious than that reported
here. In particular, the compilation of quantified ex-
pressions is not addressed. Her work also fails to de-
limit sufficient restrictions on the class of expressions
that are compilable, leading to situations where her
method generates programs that are incorrect for the
expressions they are designed to evaluate.

Acknowledgements
I would like to thank Jens Christensen, Nils Nilsson,
Eunok Paek and Carolyn Talcott for many useful dis-
cussions related to this work. The author is supported
by an IBM Graduate Fellowship.

References
[Aiello, 198Oa] Luigia Aiello. Automatic generation of

semantic attachments in FOL. In Proceedings of the
First National Conference on Artificial Intelligence,
1980.

[Aiello, 1980b] Luigia Aiello. Evaluating functions de-
fined in first order logic. In Proceedings of the Logic
Programming Workshop, De brecen, Hungary, 1980.

[Green, 19691 Cordell Green. Application of theorem
proving to problem solving. In Proceedings of the
First International Joint Conference on Artificial
Intelligence, pages 219-239, 1969.

[Myers, 19901 Karen L. Myers. Universal attachment.
Forthcoming Ph.D. dissertation, Stanford Univer-
sity.

[Stickel, 19881 Mark E. Stickel. The KLAUS auto-
mated deduction system. In Proceedings of the Ninth
International Conference on Automated Deduction,
pages 750-751, 1988.

[Warren, 19771 David Warren. Implementing PRO-
LOG - Compiling predicate logic programs. Tech-
nical Report 39, University of Edinburgh, 1977.

[Weyhrauch, 19801 Richard W. Weyhrauch. Prole-
gomena to a theory of mechanized formal reasoning.
Artificial Intelligence, 13:133-170, 1980.

MYERS 257

