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Abstract 
Universal attachment is a general-purpose mechanism 
for integrating diverse representation structures and 
their associated inference programs into a framework 
built on logical representations and theorem proving. 
The integration is achieved by links, referred to as uni- 
versal attachments, that connect logical expressions to 
these structures and programs. In this paper, we de- 
scribe a compilation-based method for automatically 
generating new programs and new universal attach- 
ments to those programs given a base set of existing 
programs and universal attachments. The generation 
method provides the means to obtain large collections 
of attachments and attached programs without the tra- 
ditional specification overhead. As well, the method 
simplifies the task of validating that a collection of at- 
tachments is correct. 

1 Introduction 
Universal attachment [Myers, 19901 is a mechanism for 
integrating diverse representation and reasoning tech- 
niques into a framework based on logic and theorem 
proving. The motivations for using universal attach- 
ment are increased inferential efficiency and expanded 
representational capabilities. Following in the tradi- 
tion of previous attachment methods [Green, 19691 
[Weyhrauch, 19801, universal attachment centers on 
the notion of ‘attaching’ procedures and data struc- 
tures to logical expressions. When expressions having 
attachments are encountered during theorem proving, 
the attached procedures are executed on the attached 
data to directly evaluate the logical expressions rather 
than relying on further deduction. Universal attach- 
ment is a more expressive mechanism for merging pro- 
cedures and data structures into a theorem prover than 
previously defined attachment techniques, and as such 
supports a much broader class of attachments. 

This paper describes a method for automatically 
generating both new programs and new universal at- 
tachments to those programs. The general problem 
of automatically producing attachments and attached 
programs is extremely difficult. We present a method 
that relies on the existence of a base set of attach- 
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ments and attached programs. The method exploits 
the idea that concepts are often hierarchically defined. 
In particular, if a given logical expression 4 is defined 
in terms of subexpressions 41,. . . , 4, all having at- 
tachments, then compilation techniques can be used 
to generate an attached program for 4 that calls the 
attached programs for the (bd’s. Attachments to these 
newly generated programs are obtained by appropri- 
ately combining the attachments defined for the c$~‘s. 

An automated generation mechanism is important 
for several reasons. Such a mechanism can be used to 
create a large collection of attachments and attached 
programs, thus providing the computational advan- 
tages associated with such a collection but without the 
specification overhead. Another benefit relates to the 
correctness of attachments, where correctness means 
that the attached programs and the data upon which 
the programs operate embody the appropriate seman- 
tics for the expressions to which they are attached. 
Provided that the generation process is sound, the task 
of validating the correctness of a collection of automat- 
ically generated attachments reduces to that of validat- 
ing the smaller initial set of attachments. 

We begin in Section 2 by describing universal attach- 
ment. Section 3 outlines the generation process and 
conditions for its applicability, while Section 4 evalu- 
ates the approach taken. The automatic generation 
method has been implemented as part of a universal 
attachment system built on top of the KADS theorem 
prover [Stickel, 19881. 

2 Universal Attachment 

Before presenting the compilation-based generation 
method, we first summarize universal attachment and 
describe the condition of factorability required for the 
method to succeed. 

2 .l A Definition of Universal Attachment 

Definition 1 (Universal Attachment) A univer- 
sal attachment is a five-tuple represented as 

(4h>-,4,F) - (PAD) 
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where q.S[xl,..., x,J is the attachment pattern, F is the 
filter set, p is the attached program, A is the attachment 
map and D is the detachment map. 

The attachment pattern +[zr, . . . , x~] is a logical ex- 
pression (a relational, functional, quantified or boolean 
expression in some logical language L) defined over 
the distinguished variables xl, . . . , x~. Distinguished 
variables are schema variables ranging over the terms 
in the logical language being employed. As a matter 
of convenience, we will assume that the distinguished 
variables for an attachment pattern are simply the vari- 
ables appearing in the pattern (i.e. the distinguished 
variables for the term pZus(x,y) are x and y). 

The fidter set F is a collection of constraints or filters 
on bindings to the distinguished variables in 4, rep- 
resented as f [q, . . . , x,.,]. The language for expressing 
filters can be defined independently of the universal 
attachment framework, thus a different filter language 
can be utilized according to the nature of the appli- 
cations being considered. We present a sample filter 
language and its corresponding definition of filter sat- 
isfaction later in this section. 

The domain of the universal attachment, namely 
the set of logical expressions for which the univer- 
sal attachment is defined, is determined jointly by 
the attachment pattern and the filter set. For F = 

{fl[xl, . . . , xla], . . . ,fm[xl,. . . ,x,J), the domain of 
is the set of logical expressions 

$$~t.t.Y,~~~tL2re fl[tl, . . . ,&I,. . . ,fm[tl, . . . , tn] 
are satisfied. 

The attached program p is the name of the program 
to be used in the attachment process. The attachment 
map A takes the list of bindings to the distinguished 
variables as input and generates the appropriate set 
of parameters for p (the attached data). The detach- 
ment map translates the result of evaluating p on the 
attached data to the appropriate expression in the log- 
ical language (the value of the universal attachment). 
The attachment and detachment maps provide a very 
important service in that they translate between logi- 
cal terms and structures used to represent those terms 
outside of the theorem prover. For this reason, we refer 
to them as the transdation maps. 

The interpretation of the attachment (1) is that a 
logical expression o in its domain will be evaluated by 
first executing p on the parameters obtained by apply- 
ing the attachment map to the bindings of the distin- 
guished variables, then translating the result according 
to the detachment map, and finally substituting that 
value back in for (Y. 

2.2 The Filter Language FL 

Before considering an example of universal attachment, 
we first describe a sample filter language, FL, defined 
for a logical language L. More information on both 
alternative filter languages and the advantages of using 
filter languages can be found in [Myers, 19901. 

The metalevel filter language -TL: is built on the 
assumption that filters can be specified for a dis- 
tinguished variable independently of all other distin- 
guished variables, i.e. filters can be written in the 
form f[xi]. The language consists of the predicates 
atomic(x), sort(x,s), and standard-name(x,s), with their 
satisfaction defined as follows:’ 

Definition 2 (Filter Satisfaction in FL) A term t 
satisfies a filter f in FL ifl 

1. f is atomic(t) and t is a logical constant symbol in L 
2. f is sort(t,s) and t has sort s. 
3. f is std-name(t,s) and t is a standard name for sort 

S. 

The filter atomic requires t to be a constant symbol 
in L. The filter sort dictates that t be of sort s; the 
corresponding sort information is included as part of 
L. Standard name filters are used to make syntactic 
distinctions within sorts. The user can associate a set 
of standard names with a sort by making the appropri- 
ate specifications in L. For example, we might specify 
that all numeric representations of integers within our 
logical language are standard names for the sort int of 
integers. The filter std-name(t,s) dictates that t must 
be a member of the set of standard names for sort s. To 
appreciate the need for standard names filtering, con- 
sider the logical constant the-pope’s-fuvourite-integer. 
Although this constant is of sort int, we would not 
want to attach to expressions in which this constant is 
bound to a distinguished variable since we don’t know 
the specific number that this constant denotes. We can 
eliminate such attachments by excluding this constant 
from the standard names for int. 

2.3 A Graph Example 
The following example illustrates how universal attach- 
ments can be applied. 

Example 1 (Path Connectivity) 
Consider a directed graph whose edges are described 
by the axiom 

edge(a, b) A edge(a, c) A edge(b, c) A edge(c, d) A edge(d, b) 

Here, the constants a, b, c and d denote particular 
nodes in the graph. 

Now suppose we define a logical relation path(x, y) 
in terms of the relation edge such that path(x, y) holds 
exactly when there is a sequence of edges connecting 
x to y. To answer queries about paths in the graph 
we can create a universal attachment. First, we define 
the LISP structure gr to be the following edge-based 
representation of the graph described by edge: 

‘Throughout this document, sans-serif font is used for 
expressions in 3’~, italica’aed text indicates expressions in 
the logical language C, and typewriter-style font indi- 
cates an attached program or data. 
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(def var gr 
‘((a (b cl> (b (c)) (c (d)) (d (b)))) . 

We also need a LISP function connp that takes two 
nodes and an edge-based representation of a graph 
as parameters; the function call (connp ni n2 g) re- 
turns t if nl and n2 are connected by a path in g, and 
nil otherwise. Finally, we require a metalevel func- 
tion h that maps logical representations of nodes onto 
the LISP representation of those nodes (i.e. h(a) = a, 
h(b) = b, etc). Using these components, we can create 
the universal attachment: 

(@h(c, y), F@“) + (connp,AP”ih, D”f) (2) 

Path = { st -name(x, node), std-name(y, node)} d 

Apath@, Y)) = (h(X)> h(Y), IF) - 

The domain of this universal attachment is the set of 
instances of path(x,y) where x and y are bound to stan- 
dard names of sort node. The attachment map Apath 
maps a pair of logical terms denoting nodes into the 
triple consisting of the LISP representation of those 
nodes and the LISP representation of our graph, gr. 
The detachment map D tf translates the LISP atoms t 
to the logical truth value true and nil to false. The at- 
tachment (2) states that instances of path(x,y) where 
x and y are bound to standard names for sort node 
should be evaluated by applying connp to the argu- 
ments h(x), h(y) and gr. 

2.4 Factorable Attachment Maps 

The general definition of an attachment map A pre- 
sented above, whereby A translates the list of bindings 
to distinguished variables into the list of parameters 
for the attached program, is very broad. In order to 
facilitate the automatic generation process, we impose 
the restriction of factorability on attachment maps. 

Definition 3 (Factorability) An attachment map is 
factorable i$ it can be represented us a collection of 
unay and zeroury functions on bindings to distin- 
guished variu bles. 

The attachment map Apath in Example 1 is fac- 
torable, being composed of the unary function h ap- 
plied to bindings to x, h applied to bindings to y, and 
the constant function gr with value gr. We will refer to 
the individual unary and zeroary functions as the com- 
ponent translations of the attachment map. Factorabil- 
ity guarantees that attachment maps are definable in 
terms of bindings to individual distinguished variables, 
independent of all other bindings. As will be seen in 
Section 2, this independence is important for the com- 
pilation process. The factorability requirement is not 
burdensome; virtually all standard applications of uni- 
versal attachments use factorable attachment maps. 

For this document, we assume a standardized repre- 
sentation of attachment maps. Each map consists of a 
list of ordered pairs, where the first entry of the pair is 

a component translation function and the second entry 
is the distiniguished variable for which the component 
translation is defined. If the component translation is 
zeroary, than the second entry is simply 0. Using this 
notation, we would represent the attachment map in 
Example 1 = ((b) (hy) (gd)). 

3 The Generation Method 
In this section we describe both the generation method 
and the compilation criteria that a logical expression 
must satisfy for the method to apply. For simplicity, 
we assume that all attached programs are written in 
LISP. 

The generation method derives from the observation 
that concepts are often hierarchically defined. Given a 
logical expression 4 defined in terms of subexpressions 
having attachments, the method employs compilation 
techniques to produce an attached program for 4 that 
calls the programs attached to 4’s subexpressions. 
A universal attachment from 4 to the generated pro- 
gram is obtained by merging the subexpressions’ at- 
tachments in a manner that depends on the logical 
structure of f$. 

We begin by stating a concise definition of the com- 
pilation criteria. This definition will serve as a refer- 
ence for the remainder of the section. Following the 
definition, we provide a thorough explanation of its 
parts (in particular the concepts of weak satisfaction, 
nesting constraints, preserving truth values and enu- 
merubility used in the criteria are defined) as well as a 
full description of the generation process. 

Definition 4 (Compilation Criteria) A logical ex- 
pression C$ satisfies the compilation criteria i$ one of 
conditions Cl, C2, or C3 is met: 

Cl There is un attachment 
(a[~~,. . . , xk], Fa) + (p”, A”, Da) such that: 
Cl.1 Q[Xl, . . . , xk] unifies with 4, producing bind- 

ingsxl :tl, . . . . xk :tk. 
Cl.2 For each filter f[xJ E Fey, f[tJ is weakly satis- 

fied. 
Cl.3 Each non-atomic ti satisfies the compilation 

criteria. 
Cl.4 The detachment maps in the attachments de- 

fined by Cl.3 satisfy the nesting constraints. 
C2 q5 is a boodean expression, either 

A,“,,P$“, , * . . , ti,], or 
lPb 

Vy=,ai[tj, . . . , th,], where: 
C2.1 Each ,& satisfies the compilation criteria. 

2This form of compilation is stronger than that associ- 
ated with logic programming [Warren, 19771. First of all, 
logic programming compilation is limited to Horn clauses. 
Furthermore, the compilation of a logic program produces 
an encoding in terms of pre-defined primitives (such as uni- 
fications and stack manipulations) of the search process fol- 
lowed by the interpreter, while the compilation we propose 
builds code from arbitrary attached programs. 

254 AUTOMATEDREASONING 



C2.2 The attachments defined by C2.1 for each pi 
have detachment maps that preserve truth values. 

C3 4 is a quantified expression of the form 32. Q or 
V.Z. a such that: 

C3.1 a satisfies the compilation criteriu. 
C3.2 z is bound to a distinguished variable in the 

attachment pattern of the attachment defined by 
c3.1. 

C3.3 The terms satisfying the filters specified for z 
in the attachment defined by 63.1 are enumer- 
able. 

63.4 The attachment defined by C3.1 has a detach- 
ment map that preserves truth values. 

Cl: Base Case 

Cl constitutes the base case of the definition. For a 
logical expression 4 to be compilable in the base case, 
condition Cl.1 requires the existence of an attachment 

(+a, * * . , xk], Fa) - (p”, A”, DCY) (3) 
where 4 unifies with CV[X~, . . . , Xk]. Condition Cl.2 
further requires that if f[xi] is in F” and xi is bound to 
ti in the unification for C1.l, then f[ti] must be weakly 
satisfied. In contrast to the notion of satisfaction from 
Definition 2, weak satisfaction only requires that the 
nonvariable components of a term satisfy a given filter. 
This relaxation of the satisfaction criteria accounts for 
variables in the expression being compiled. For the 
filter language FL, a term t weakly satisfies atomic(t) 
iff t is a variable or logical constant name, and t weakly 
satisfies std-name(t,s) iff t unifies with a standard name 
for sort s. Weak satisfaction is identical to standard 
satisfaction for the filter sort(t,s). 

The condition Cl.3 accounts for the binding of dis- 
tinguished variables to non-atomic functional expres- 
sions in 4. In general, an expression 4 that satisfies 
Cl.1 will have the form 

(Ylol[t:,...,t~,],...~k[t~ ,..., t;,31 
where each ,&[ti, . . . , tki] is either a variable, a con- 
stant, or a non-atomic functional expression. A pro- 
gram that evaluates 4 must necessarily include code 
to evaluate every non-atomic Pk[i$, . . . , t&l. Thus the 
nesting of functional expressions in 4 invalidates the 
compilability of 4 unless an attached program exists 
to evaluate these expressions, or an appropriate pro- 
gram can be created through compilation. In either 
case, the nested expressions must satisfy the compil- 
ability criteria, prompting condition C1.3.3 

If we let the set Z index the non-atomic 
&[ti;,.. . , tii], condition Cl.3 guarantees the existence 

3Note that Cl.3 makes the base case of the definition it- 
self recursive. The well-definedness of the criteria is ensured 
since the base case recursion parallels the logical structure 
of q5 and hence must be finite. 

of the attachments:4 

(Ph, * * - , x nail, Fpi) - (pp’, Api, D”l) , i E z. (5) 

Cl.4 requires that these attachments satisfy certain 
nesting constraints. The nesting constraints ensure 
the soundness of consolidating programs attached to 
nested functional terms with p” from (3) into a single 
attached program for the entire expression 4. We can 
express the nesting constraints as follows: 
Definition 5 (Nesting Constraints) For every i E 
Z: 

NC1 The range of DPi must satisfy the filters in F” 
defined for xi. 

NC2 If (m, xi) E A” and i E Z, then m( Dpa(c)) = c 
for every c in the range of the function pp,. 

Condition NC1 states that if ,&[tf , . . . , tii] is a non- 
atomic expression bound to the distinguished variable 
xi then the range of the detachment map DPi must sat- 
isfy the filters defined for xi. This constraint ensures 
that substituting the values produced by the attach- 
ments in (5) for the corresponding nested expressions 
in c@l[t:, . . . , t&l,. . . pk[tt, . . . , ti,]] yields an expres- 
sion in the domain of the attachment (3). Condition 
NC2 requires that the composition of the component 
attachment map m defined for a distinguished vari- 
able xi and the detachment map Dpa for the nested 
expression oj[ti, . . . , ti,] is the identity map. This con- 
straint ensures that the attachments in (5) and (3) have 
the same interpretation for attached symbols that they 
both utilize. 

The program generated for 4 is simply an ap- 
plication of p” with nested function applications of 
the ppS for i E Z used to evaluate the non-atomic 
Pip”,, * * . , thi]. Defining the parameter list for the new 
program is somewhat complex. In particular, a param- 
eter must be defined for each distinct component trans- 
lation map applied to a distinguished variable bind- 
ing. The factorability of the attachment maps makes 
it possible both to identify these translations and to 
build the required new attachment map that accounts 
for all such translations; details are in [Myers, 19901. 
The detachment map is simply Da from (3) while the 
new filter set is obtained by ‘merging’ the filter sets for 
the nested expressions and F”. The merging process 
is an enhanced union operation that eliminates filters 
subsumed by other filters in the union. For example, 
sort(t,sl) subsumes sort(t,s2) if sort s2 contains sort sl. 

Example 2 Let int and rat be functions that map log- 
ical representations of integers and rationals onto ap- 
propriate LISP representations of those numbers. Using 

4These attachments may be in the set of predefined at- 
tachments or may be generated recursively by the com- 
pilation process. The guaranteed attachments for subex- 
pressions in the recursive cases C2 and C3 also have this 
characteristic. 
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int and rat we can specify attachments for the expres- 
sions add(z, y) and div(x, y), which have the intended in- 
terpretations of integer addition and rational division. 
Let add and div be LISP programs of two inputs that 
compute integer addition and rational division, and int 
and rat be the sorts of integer and rational numbers. 
By defining Aint 
along with Arat 

= ((int, cc), (int, y)) and Dint = int-‘, 

= ((rat, x), (rat, y)) and Drat = rat-‘, 
we can create the attachments: 

Wd(x, Y>, w- name(z, iinn?, sfd-name(y, int)}) 

--f (add,A , Dint) 

(div(x, y), {std-name(z, rat), std-name(y, rat)}) 

+ (div, Arat, Drat) . 

Now consider the logical definition 
Vxy. avg(x, y) = div(add(x, y), 2) . 

The expression div(add(x,y)) satisfies the base case of 
the compilation criteria. Using the generation method, 
we obtain the following program and attachment: 

(defun avg-lisp (nl n2) 
(div (add nl n2) 2))) 

(avg(x, y), {std-name(x, int), std-name(y, int)}) 

--) (avg-lisp, Aint , Drat) . 

C2: Boolean Expressions 
If 4 is a boolean expression that doesn’t satisfy C1, 4 
is still compilable provided that condition 62 is satis- 
fied. All boolean expressions share the same compila- 
tion criteria and generation method; here we restrict 
attention to conjunctive expressions, where 4 has the 
form Ar=,ai[ti, . . . ,ti.]. 

Compilation condiiion (22.1 guarantees the exis- 
tence of attachments 

(Qi[W - * , xki], F”‘) + (p”*, A”‘, Dai), i = 1,. . . , n. 
These attachments provide the programs used to con- 
struct the new attached program for 4. 

To motivate C2.2, we consider the nature of the pro- 
gram to be generated for 4. The form of this program 
will mirror the logical structure of 4: the program con- 
sists of an application of the LISP function and to the 
results obtained by evaluating the attached programs 
P cyi. This strategy is sound only if the values produced 
by the pai ‘ match’ the notion of truth values utilized 
in LISP. In particular, when an attached program pQ’ 
returns t (or nil), then the truth (or falsity) of the cor- 
responding conjunct should be established. The need 
for this semantic correspondence motivates the follow- 
ing definition. 
Definition 6 (Truth Value Preservation) 
A function g from a representation language 151 to a 
representation language ,& preserves truth values i$ 
g maps truth and falsity in Cl onto truth and falsity, 
respectively, in CAL. 

Example 3 The detachment map Dtf defined in Ex- 
ample 1 preserves truth values from LISP to our logical 
language: it maps t to true and nil to false. 

Although there may be many functions that preserve 
truth values from one language to another, we will des- 
ignate Dtf as the canonical truth preserving function 
from LISP to our logical language. Verifying that a de- 
tachment map D preserves truth values thus reduces 
to checking that D = Dtf . 

As noted above, the new attached program for 
/$,a$;, . . . , t”,,] consists of an application of the LISP 
function and to the values obtained by evaluating the 
P cri. In analogy with programs generated for the base 
case Cl., a parameter is required for each unique trans- 
lation applied to a distinguished variable binding and 
the new attachment map is the collection of these 
translations. The new filter set is the union of the 
filter sets for the individual conjuncts where subsumed 
filters are once again removed. The detachment map 
is the canonical truth value preserving function, Dtf . 

C3: Quantified Expressions 

Condition C3 constitutes the compilation criteria for a 
quantified expression Vz. cv or 3%. cy that fails to satisfy 
Cl. 

C3.1 requires the existence of an attachment 

(+a,...,x~],Fa) ---) (p*,Aa,D”) (6) 
for the matrix of the quantified expression. The un- 
derlying idea for compiling quantified expressions is to 
apply the program p” from the attachment (6) to the 
attached LISP representations of all possible bindings 
to the quantified variable z. 

To make this approach feasible, the quantified vari- 
able must be bound to a distinguished variable xi in 
(Y[Xl,... ,4 (C3-2), and the set of terms satisfying 
the filters in F” defined for za must be enumerable 
(C3.3). With standard names filters, enumerability 
is obtained by using the list of standard names defined 
for the sort of the quantified variable. More complex 
mechanisms for achieving enumerability are described 
in [Myers, 19901; these mechanisms use attached struc- 
tures directly to determine the domain of quantifica- 
tion. For example, with quantified expressions defined 
relative to a graph, the domain of iteration can be lim- 
ited to the set of standard names for nodes in that 
graph rather than the set of standard names for all 
nodes appearing in any graph. 

The new attached program consists of an iteration 
whose domain is the set of LISP objects obtained by 
applying the component translation map m defined for 
zd (i.e. (m, xi) E A”) to the enumeration of terms sat- 
isfying the filters for xi in F”. At each step, p” is 
called. For existential quantifiers, the program returns 
t only if pa evaluates to t for some value in the domain. 
For universal quantifiers, the program returns nil if a 
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value is found for which pa evaluates to nil and re- 
turns t otherwise. As with the compilation of boolean 
expressions, we require that the detachment map D” 
preserve truth values (C3.4) to ensure that the seman- 
tics of the iteration process match the semantics of the 
logical quantifier. 

The parameters for the new program are identical to 
those of p” except that the parameter corresponding to 
the variable of quantification is replaced by a param- 
eter representing the domain of the iteration. Corre- 
spondingly, the new attachment map is obtained from 
A” by replacing the pair (m, xi) by a function that 
returns the domain of the iteration. The new filter set 
is obtained from F” by removing filters defined on xi. 
The new detachment map is Dtf . 

Example 4 Consider the logical expression 

Vz. incycle G 3Y. Paw? Y> A PqY, z) * 

Given the attachment (2) defined in Example 1, the 
expression 3y. path(z, y) A path(y, Z) satisfies the com- 
pilation conditions in C3. The compilation process 
produces the program incycle-lisp defined by 

(defun incycle-lisp (u v domain) 
(some #‘(lambda (item) 

(and (connp u item v) 
(connp item u v))) 

domain) ) . 

The formal parameters u and v to incycle-lisp cor- 
respond to a node and a graph, respectively. The pa- 
rameter domain is the list of values over which the 
iteration is defined. During each step of the itera- 
tion, the current iterated value item is tested to see 
if the code fragment (and (connp u item v) (connp 
it em u v) ) > evaluates to t. This code fragment is 
produced by recursively compiling the logical expres- 
sion path(z, y) A path(y, z). 

The following attachment for incycle is also cre- 
ated, according to the principles described above: 

(incycle( {std-name(x, node))) 

+ (incycle-lisp, Aincycle, D”f ) 

A in”yc’e((~)) = (h(z),gr, ) (a b c d)) . 

4 Closing Remarks 
This paper has presented a compilation-based method 
for generating new programs and universal attach- 
ments to those programs from a base set of existing 
programs and universal attachments. We have tested 
an implementation of the method in the domain of 
graph theory. The class of new attached programs and 
attachments produced by the implementation method 
has proven to be quite rich. In addition, the generated 
attachments appear to provide significant gains in the 
run-time efficiency of the theorem prover. 

For non-quantified expressions, the compilation pro- 
cess consolidates all relevant attachments into a sin- 
gle program. This consolidation eliminates repeated 
transitions between the theorem prover and the at- 
tached computational mechanism, thus reducing the 
total overhead for translations. The programs con- 
structed for quantified expressions can provide effi- 
ciency gains for a different reason: by limiting the do- 
main of iteration for these programs to the relevant 
terms, the attached programs can be much faster than 
theorem proving. 

The only previous attempt at automating the gen- 
eration of attachments was Aiello’s work on produc- 
ing new semantic attachments through compilation 
[Aiello, 198Oa] [Aiello, 1980b]. Because universal 
attachments subsume semantic attachments, Aiello’s 
work is necessarily less ambitious than that reported 
here. In particular, the compilation of quantified ex- 
pressions is not addressed. Her work also fails to de- 
limit sufficient restrictions on the class of expressions 
that are compilable, leading to situations where her 
method generates programs that are incorrect for the 
expressions they are designed to evaluate. 
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