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Abstract 
This work pertains to the Knuth-Bendix (KB) algorithm 
which tries to find a complete set of reductions from 
a given set of equations. In the KB algorithm a term 
ordering is employed and it is required that every equa- 
tion be orientable in the sense that the left-hand side be 
greater than the right. The KB algorithm halts if a non- 
orientable equation is produced. A generalization of the 
KB algorithm has recently been developed in which ev- 
ery equation is orientable and which halts only when a 
complete set is generated. In the generalization a con- 
straint is added to each equation. The constraint governs 
when the equation can be used as a reduction. The con- 
straint is obtained from the equation by “solving” the term 
inequality left-hand side > right-hand side. To under- 
stand what it means to solve a term inequality, consider 
the analogy with algebra in which solving term equal- 
ities, i.e. unijicafion, is analogous to solving algebraic 
equalities. Then solving term inequalities is analogous 
to solving algebraic inequalities. Thus, the solution of 
term inequalities relates to unification as the solution of 
algebraic inequalities relates to the solution of algebraic 
equalities. We show how to solve term inequalities when 
using the lexicographic path ordering. 

Introduction 

In a landmark paper, Knuth and Bendix (Knuth & Bendix 
1970) described a technique for attempting to generate a 
complete set of reductions from the axioms of an equa- 
tional theory. If a complete set of reductions could be 
found, then it embodied a decision procedure for equa- 
tions provable from the axioms. In particular they gen- 
erated a complete set of reductions for groups. 

In their theory a term ordering was introduced and 
it was necessary for every equation to be orientable in 
the sense that one side be larger than the other in the 
ordering. Equations such as commutativity which could 
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not be oriented would cause the process to fail. Knuth 
and Bendix were well aware of this limitation of their 
method. In fact, they proposed using an approach in 
which a non-orientable equation would be made into 
two reductions, one which rewrites the left-hand side to 
the right-hand side and another which rewrites the right- 
hand side to the left-hand side and in which a method is 
available to “make sure that no infinite looping occurs 
when reducing words to a new kind of irreducible form.” 
This proposed approach has been effected (in (Peterson 
1990) and forthcoming publications) by adding a con- 
straint to each reduction. For example, commutativity is 
represented as x . y -+ y . x if x > y. 

By using constraints such as these we are able to gen- 
eralize the entire Knuth-Bendix process. In fact, com- 
plete sets of constrained reductions are now known for 
common equational theories including Abelian groups, 
rings, and Boolean algebras, and there is an analogue 
of the Knuth-Bendix procedure which begins with the 
axioms of an equational theory and attempts to generate 
a complete set of reductions. This constrained version 
of the Knuth-Bendix process will never fail because a 
non-orientable equation shows up-every equation can 
be oriented. It may, of course, fail because it runs for- 
ever trying to find a complete set. The process reduces 
to that of Knuth and Bendix when presented with equa- 
tions which are orientable without the use of constraints. 

As an example, the following three reductions taken 
collectively is a complete set equivalent to associativity 
and commutativi ty. 

1. (x * y) - 2 --) x - (y - 2) 
2. x-y+y-xifx>y 
3. x - (y - 2) + y - (2 - 2) if x > y. 
In reduction 1 there is no constraint. This means that 

the left-hand side is always greater than the right. In 
each of the other two reductions there is a con&mint 
which is a necessary and sufficient condition that the 
left-hand side be greater than the right. In order to find 
the constraint we must solve the inequality left-hand side 
> right-hand side. Looking back at the example, we see 
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that x > y is the solution to x . y > y. x and x > y is 
also the solution to x . (y -2) > y. (X -2). The manner in 
which these kinds of solutions are obtained is the subject 
of the present work. 

It will be helpful to consider how the solution of term 
inequalities relates to unification. In unification, a term 
equality, such as (X s y) . (X . u) = (W . Z) . y is given and 
it is required to find a most general substitution for the 
variables which makes the equality true. In this case, 
the substitution is (x t w, y + w . a, z + w .a). This 
process could be named solving term equalities but uniJi- 
cation has been chosen instead. The problem of solving 
term inequalities is similar. Given a term inequality, 
such as x . (y . z) > z s y, find the region in term space 
where the inequality is true. In this case it turns out to 
be where x > z or x = z or y > z or y = z. Consider 
an analogy to algebra. The solution in real numbers of 
a polynomial equation is a finite (possibly empty) set 
analogous to the single most general unifier of a term 
equation. The solution of a polynomial inequality, how- 
ever, consists of a region, possibly with several disjoint 
intervals, such that the inequality is true if and only if the 
variable is in the region. For example, x2 - 5x + 4 > 0 
if and only if x > 4 or x < 1. Thus we may expect 
the solution of a term inequality to be a similar type of 
region in term space. 

So far we have been implicitly assuming that an un- 
derlying term ordering existed. Throughout this paper 
we use the lexicographic path ordering. Knuth and 
Bendix used an ordering which has since become known 
as the Knuth-Bendix ordering (Dershowitz 1987). How- 
ever, it has a more complex definition than the lexico- 
graphic path ordering and is, therefore, presumed more 
difficult to work with. A possible research problem is 
to figure out how to solve term inequalities when using 
the Knuth-Bendix ordering. 

Related Work 

In (Kirchner & Kirchner 1989) a theoretical overview 
of constrained equational reasoning is presented. They 
work modulo an equational theory such as associativ- 
ity and commutativity. However, they assume that con- 
straints are based on term equalities, wheras we assume 
constraints are based on term inequalities. In (Comon 
1990) it is shown than the question of the existence of 
solutions to term inequalities based on the lexicographic 
path ordering, such as those herein, is decidable, but 
NP-hard. 

The automatic solution of algebraic inequalities has a 
similar goal (i.e. the isolation of variables) to that of 
solving term inequalities, but is accomplished by com- 
pletely different methods. A good beginning reference 
to the solution of algebraic inequalities is (Sacks 1987). 

An Example 
In order to provide further motivation for the introduc- 
tion of a technique for solving term inequalities, we 
present an example of the operation of the constrained 
Knuth-Bendix algorithm. We emphasize those places 
in which term inequalities are solved. Details of how 
the constrained Knuth-Bendix algorithm works in gen- 
eral will be described elsewhere. The reader is as- 
sumed familiar with the ordinary Knuth-Bendix algo- 
rithm throughout this section. 

The following problem is from page 91 of (Monthly 
1968). 

Suppose S is a semigroup in which x2 = x3 and 
x2y = yx2 for all x, y in S. Then (xY)~ = x2y2. 

We will describe how a solution can be mechanically 
obtained using the constrained Knuth-Bendix algorithm. 
We present only the part that directly leads to the desired 
equation. Other equations will be generated in an actual 
implementation. 

A semigroup has one associative operation. Thus, the 
first reduction is 

1. (x - y) * 2 + 2 * (y - 2). 
The equation x2 = x3 is orientable because X. (x . x) > 
x . x for every x. So the second reduction is 

2. x * (x * x) + x - 5. 
The equation x2 y = yx2, i.e., xe(x.y) = y.(asx), is not 
orientable, so the ordinary KB algorithm does not apply 
to this problem. However, the inequality x . (x - y) > 
y - (x e x) may be solved and the solution is x > y. Thus 
the equation x2y = yx2 may be represented as the two 
reductions 

3. 2 - (x-y) --) y - (x -x) if x > y, 
4. y - (x - x) -+ 2 - (x - y) if y > 5. 
If we unify the left-hand side of 2 with the x-y subterm 

of 1 and proceed as in the ordinary KB process, we 
obtain the new reduction 

5. x * (x - (x - y)) ---) x - (x * y). 
Unifying the left-hand side of 3 with the subterm x - 

(x . y) of 5 and applying 3 and 5 once each to the result 
gives the equality 

x * (y * (x * x)) = x * (x - y) 

which is produced only if the constraint of 3, i.e. x > y, 
holds. Now we try to reduce this equality under the 
assumption x > y. Since x > y implies the constraint 
of reduction 3, the right-hand side can be reduced by 3 
giving 

x * (y - (x - x)) = y - (x * x). 

No further reductions are possible. At this point, the 
inequality x > y which came from one of the parents 

PETERSON 259 



is discarded and the new equality is oriented on its own 
merits. In this case the equality is orientable and we add 

6. x - (y - (x - x)) ---* y - (x - x) 
as a new reduction. 

Similarly, if we unify the left-hand side of 4 with the 
x.y subterm of 1, we obtain the equation x.(x.(y.z)) = 
y . (x . (x s 2)). We now find x > y as the solution of the 
term inequality x . (x . (y . 2)) > y . (x + (x -2)) and add 
the reductions 

7. x - (x - (y - 2)) + y. (x f (x - 2)) if x > y, 
8. y - (x - (x - z)) ---) x - (1: - (y - 2)) if y > 2. 

Finally, unifying the left-hand side of 7 with the left- 
hand side of 2 and reducing once with 7 and 2, respec- 
tively, yields the equation 

under the always valid constraint y . z > y. We now 
reduce this equality to normal form using 1, 6 and 5, 
and obtain 

which is the equality we are trying to prove. Note that 
if this were now added as a reduction, the solution of a 
term inequality would again be required. 

The Lexicographic Path Ordering 

Recall that terms are formed from function symbols (in- 
cluding constants) and variables. The definition of the 
lexicographic path ordering depends on a given linear 
ordering on the function symbols. Therefore, we as- 
sume there are only a finite number of function symbols 
and they are put into a linear order. This ordering of 
function symbols and the lexicographic path ordering 
on terms will both be denoted by > because either it is 
possible to figure out from the context whether > is the 
term ordering or the function symbol ordering, or they 
are both true simultaneously. 

Ground terms contain no variables. Two ground terms 
are equal if and only if they are identical. 

The lexicographic path ordering (lpo) is defined only 
for ground terms. It is defined recursively as follows 
(Dershowitz 1987): 

Definition. Suppose 

s = f(sl, - - -, sm) and t = g(tl, - - - , tn) 

are ground terms. (We may have m = 0 andlor n = 0 
for a constant.) Then s > t if and only if 

Ll sj 2 t for some i, 1 5 i 5 m, or 
L2 f >gands>tiforevery j,I< j<n,or 

L3 f = g and for some k, 1 5 k 5 n, we have s; = t; 
whenever 1 5 i < k, Sk > tk, and s > ti whenever 
k<isn. 

Note that the first inequality in L2 is from the func- 
tion symbol ordering, and in the last part of L3 we do 
mean s > tj, not sj > tj. The two examples given 
next should help clear up any confusion related to this 
definition. First, however, we note that it is possible to 
prove (Dershowitz 1987) that the Ipo is a well-ordering 
of the set of ground tezms and it satisfies the subterm 
property, i.e., if s is a strict subterm of t, then t > s. 

For the first example, suppose the function symbol 
order is . > a > b and it is required to show that a a b > 
b -a. According to Ll and L3 of the definition, this will 
be so if and only if 

azb-aor (1) 
b 2 b - a or (2) 
a > b and a. b > a or (3) 
a = b and b > a. (4 

In line (3) the first predicate is true by the given function 
symbol order and the second predicate is true by the 
subterm property. Thus we have shown what is required. 
Incidently, lines (l), (2) and (4) are all false. 

As the second example let’s determine the larger of 
a. (b + c) and a + (b . c) when the function symbol order 
is + > . > a > b > c. Since these two terms are not 
equal, one must be larger than the other. We can use 
the definition above to test Q . (b + C) > u + (b - c). 

Since + > -, L2 and L3 do not apply. By Ll, we have 
a - (6 + c) > a + (b - c) if and only if 

a 2 a + (b - c) or (5) 
b + c 2 a + (b - c). (6) 

But (5) is false by the subterm property. By Ll and L3, 
(6) is true if and only if 

b 2 a + (b - c) or 
c 2 a + (b - c) or 
b>aandb+c>b.cor 
b= aandc>b-c. 

But all of these are clearly false. Thus we do not have 
a. (b + c) > a + (b . c). So we must have a + (b - C) > 
us(b+c). 

Solving Term Inequalities 
Using the definition of the lexicographic path ordering, 
we can determine the larger of any two ground terms. 
Suppose, however, that a given inequality contains vari- 
ables, and the question is to determine where it is sat- 
isfied. This can be done by recursively applying the 
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definition of the lpo and gathering all the bottom-level 
expressions which cannot be simplified. To clarify the 
meaning of this, let’s do a couple of examples. 

Example 1. Solve x - y > y - x. By Ll and L3 of the 
definition, x . y > y . x if and only if 

x>y*xor (1) 
yly-xor (2) 
x>yandx.y>xor (3) 
x=yandy>x. (4 

But (1) and (2) are false by the subterm property and the 
fact that no term equals a subterm of itself. Also (4) is 
false since it consists of two incompatible statements. In 
(3), the second predicate is true by the subterm property. 
This leaves only the first predicate of (3). Thus the 
answer is 2 > y. 

In order to simplify the presentation we will from now 
on omit the or from the end of each line and we will 
replace each and with a comma. 

Example 2. Solve x . y > y - a given that a > . in 
the function symbol ordering. This example will begin 
to show the complexity that can arise. By Ll and L3, 
x + y > y - a if and only if 

x>y-a (5) 
x=y.a (6) 
Y>Y-a (7) 
y=y-a (8) 
x>y, x.y>a (9) 
x = y, y > a. (10) 

By the subterm property, (7) is false. Since y and y . a 
are not unifiable, (8) is false. Replacing the equalities by 
equivalent unifiers and expanding the second predicate 
in (9) using Ll gives the following form for the solution 

x>y.a (11) 
Ix - Y * 4 (12) 
x>y, x>a (13) 
x>y, x=a (14 
X>Y, Y>a 05) 
x>y, y=a (16) 
{x + ~1, Y > a. (17) 

However, note that (1 l), (12), (15) and (16) each implies 
‘(13) by the subterm and transitive properties of >. Thus 
(1 l), (12), (15) and (16) can be eliminated from the 
above leaving 

x>y, x>a 

{x - a), a > Y 

lx + ~1, Y > a. 

as tne solution. 
We now present an algorithm which can be used to 

solve any given term inequality. It is presented as a 
person would use it with pencil and paper. From a ma- 
chine standpoint it is not very efficient as presented. It 
can be made more efficient at the expense of greater 
complexity and less understandability. Because of lim- 
ited space, efficiency considerations will be deferred to 
a later paper. 

Begin with the given inequality on a line by itself. 
As we proceed, each intermediate stage will consist of 
a table of one or more lines of the form 

where 6 is a substitution (possibly empty) and each el- 
ement ei is either an equality or an inequality. An in- 
equality is fully reduced if it has one of the forms v > t 
or t > V, where v is a variable and t is a term which 
does not contain v. A line is a component if it consists 
of a substitution 8 followed by 0 or more fully reduced 
inequalities which do not contain the variables that are 
replaced in 8. 

Algorithm. Repeat steps 1 to 3 below until each line is 

1: 

2. 

3. 

component. 
Move down the table to the first line which is not a 
component and across this line from left to right to the 
first element which is not a fully reduced inequality. 
Call this element e and its line t. 
If e is an equality, unify the two sides. If unification 
is impossible, delete line L If the table is now empty, 
stop; the answer is false. If unification is possible, 
let o be the mgu. Delete e in line !Z, replace the 
substitution 0 at the beginning of e with 8 composed 
with 0, and apply v to the rest of L 
If e is an inequality, then 
i. 

ii. 

. . . 
111. 

if e has the-form- v > t where v is a variable which 
occurs in term t, delete line e; if the table is now 
empty, stop; the answer is false; 
if e has the form t > v where v is a variable which 
occurs in t, delete e from e; tf e is now empty, stop; 
the answer is true; 
otherwise, the lpo definition will apply to e; delete 
line e; add to the end of the table several lines 
corresponding to the results of applying the lpo 
dejktition to e; each of these lines will be identical 
to 4 except that the position formerly occupied by 
e will be replaced by one possible way in which e 
might be true. 

Now do the following. 
4. Delete each line which is inconsistent. 
5. For each line !Z, if e implies another line, delete .C 
6. Delete the redundant elements in each line. An ele- 

ment e is redundant in e if e - (e) =+ e. 
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Steps 4 to 6 may be interleaved with 1 to 3 in order 
to keep the table as simple as possible. Steps 4-6 will 
be automated in the next section. 

Example 2 above was performed using essentially 
these steps. The answers to three other examples are 
now presented. The reader may go through the above 
steps to verify these. 

Example 3. Solve x + (y - z) > x - ( y + z) given that 
+ > . in the function symbol ordering. The solution 
is 

X’Y 
tx + Yb 

Example 4. Solve x. ( y . z) > y. (2. x) . The solution 
is 

x>y, x>z 

1% + 4, 2 > Y 
ix + Yh Y ’ 2. 

Example 5. Solve (y + z) + ( y + w) > x + (z + tu) . 
The solution is 

y+z>x 
{x-y+z}, y>z. 

Reasoning with Components 

In the previous section we have seen that every term 
inequality can be solved and the solution has the form 
Cl v c, v ’ * . V C,, where each Ci is a component. In 
order to complete the automation of the solution pro- 
cess we need to have algorithms for determining when 
a component is inconsistent, when one component im- 
plies another, and when an element in a component is 
redundant. 

The purpose of this section is to describe these algo- 
rithms. 

Note first that even without steps 4-6, the algorithm 
of the previous section would generate a solution of the 
given inequality. The purpose of steps 4-6 is to render 
the solution in a simple form. This simplification is a 
practical necessity because without it solutions to even 
simple inequalities would be unwieldy. However, valid- 
ity is not compromised if we do not find every possible 
way in which steps 4-6 can be performed. Thus, we do 
not attempt to find every possible way in which simpli- 
fication can be effected by steps 4-6. We will find the 
common ones, however. 

We first show how to decide if a conjunction of fully 
reduced inequalities implies another fully reduced in- 
equality. Let el , e2, . . a , en and e be fully reduced in- 
equalities. Let ei = (4 > ri) for each i and let e = 

(A?! > r). To decide whether or not 

el, e2, - - - , en =+ e 

we consider all possible inequality sequences of the form 

where each f$ > rj is one of the ei. In the above 
display, each 2 is shown by the subterm property; each 
> is present in the ei. If we can find such a sequence, 
then we have proved e; otherwise we assume a proof is 
not possible. E;or example, suppose we wish to show 
that (x > y, y > z) =+ x > Z. We have 

x=x>y=y>z=z 

as an expression of form (1). Thus it is proved. 
Now suppose C and D are components and it is re- 

quired to determine whether C 3 D. Let 

where 4 = {VI + tl,***,vn - tn}. Then C + D is 
equivalent to 

where &9 = (~6 = tl6, .. . , v,O = tne} because sub- 
stitution of equals for equals is logically valid, and af- 
ter 6 is used in this way it can no longer contribute 
to the required implication. Normally inequalities can- 
not prove equalities, so if the implication is to be true, 
we must have 40 true. That is, we must have vlB G 
tl@,-,v,e z tn0. We are left with the problem of 
determining the validity of 

To do this, consider the proof of each fi0 separately and 
conjoin the results. Thus, we must be able to solve the 
problem 

el,--- jen * fe 

where f is fully reduced. If f 8 is fully reduced, use the 
procedure of the previous paragraph. Otherwise, solve 
the inequality f0 using the procedure of Section 4 and 
obtain Ci v - . -V C,, where each C; is a component. We 
will determine the validity of el , . a . , en + Ci separately 
for each i and disjoin the results. For el, . . . , e, to imply 
the component { 4, ei , - - - , ek}, 4 must be empty and 
w-h e, must imply each ei separately as detailed in 
the previous paragraph. 

For example, in Section 4 it was required to show that 
(x > y - a} a {x > y, x > a}. To do this, we show 
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x>y~a=+x>ya.ndx>y~a=+x>aseparately. 
The first follows from 

x=x>>-a>y 
and the second from 

x=x>y-a>a, 
each of which has the form (1). 

In order to show that a component (6, el, . . . , e,) is 
inconsistent, we let i run from 1 to n, ei = (6 > r-i) 
and test 

el,.-+ ,ei-l,ei+l,-3 n e *t-i>&. 
If this is so for some i, then the component is incon- 
sistent. Otherwise it is presumed consistent. For exam- 
ple, suppose {X > y, y > X} is the component. Try 
x > y =r) x > y. This is easily proved by the above 
method. Thus this component is inconsistent. 

Similarly, in order to test an element e of a component 
C for redundancy, check C - (e} =+ e. 
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