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Abstract 

This paper presents a new approach for exploiting 
Truth Maintenance Systems(TMSs) which makes 
them simpler to use without necessarily incurring 
a substantial performance penalty. The basic intu- 
ition behind this approach is to convey the local- 
ity of the knowledge representation of the problem 
solver to the TMS. The TMS then uses this local- 
ity information to control and restrict its inferences. 
The new TMSs accept arbitrary propositional for- 
mulae as input and use general Boolean Constraint 
Propagation(BCP) t o answer queries about whether 
a particular literal follows from the formulae. Our 
TMS exploits the observation that if the set of 
propositional formulae are converted to their prime 
implicates, then BCP is both efficient and logi- 
cally complete. This observation allows the prob- 
lem solver to influence the degree of completeness 
of the TMS by controlling how many implicates are 
constructed. This control is exerted by using the 
locality in the original task to guide which com- 
binations of formulae should be reduced to their 
prime implicates. This approach has been imple- 
mented and tested both within Assumption-Based 
Truth Maintenance Systems and Logic-Based Truth 
Maintenance Systems. 

1 Introduction 

This paper presents a new practical approach for ex- 
ploiting Truth Maintenance Systems which makes them 
simpler to use without necessarily incurring a substan- 
tial performance penalty. The basic intuition behind 
this new approach is to convey the locality of the knowl- 
edge representation of the problem solver to the TMS. 
Many AI problem solvers, particularly those which rea- 
son about the physical world, are inherently local - 
each constituent of the problem (e.g., a process such as 
flowing, a component such as a pipe, etc.) has a fixed 
behavioral model. Much of the reasoning can be viewed 
as propagation: whenever some new signal is inferred 
to be present the models of the components on which 
it impinges are consulted to see whether further infer- 
ences are possible from it. Many of these AI problem 
solvers either exploit TMSs to do much of this propa- 
gation, or use TMSs to represent the results of propa- 
gations. Although widely used, anyone who has used 
these strategies can attest that current TMSs manifest 
some surprising logical incompleteness when used in this 
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way. These blind spots result from the fact that local- 
ity present in the original model is often completely lost 
within the TMS. 

The TMS framework we present is fully expressive ac- 
cepting arbitrary propositional formulae as input. Pro- 
vided with advice from the overall problem solver it is, if 
needed, logically complete. Propositional satisfiability is 
NP-complete, but nevertheless often much of the cost of 
logical completeness can be avoided by exploiting local- 
ity. For example, conjunctions of formulae in the model 
library can be precompiled into their prime implicates 
to reduce run-time cost. Also, the TMS uses locality in- 
formation at run-time to determine which combinations 
of formulae are worth analyzing. 

We have implemented our framework and used it 
with both Assumption-Based Truth Maintanence Sys- 
tems (ATMSs) [2; 71 and Logic-Based Truth Mainte- 
nance Systems (LTMSS) [2; 19; 20; 211. We have used it 
to compile models from constraints, confluences, order- 
of-magnitude reasoning axioms and processes. A longer 
paper [lo] explores the role of this framework in quali- 
tative physics in more detail. 

1.1 Encoding models as formulae 

Most problem solvers wish to represent arbitrary propo- 
sitional formulae many of which derive from local con- 
stituents of the problem (e.g., component or process 
models). However, most TMSs lack the expressive power 
to represent arbitrary formulae. Therefore, one is typ- 
ically forced to encode the propositional formulae in 
terms the TMS accepts. For example, [4] provides 
a variety of ways of encoding propositional formulae 
for the Assumption-Based Truth Maintenance Systems 
(ATMSs). T ec ni h q ues like these are widely used in QPE 
[13; 141. u f t n or unately, these encodings tend to be ex- 
tremely cumbersome. The TMSs which accept arbitrary 
clauses (such as LTMSs) seem to be more powerful be- 
cause any propositional formula can easily be converted 
into an equivalent set of clauses by putting it into con- 
junctive normal form CNF[l]. 

Unfortunately, complete LTMSs based on clauses are 
rarely used because they are too inefficient. Instead, all 
common LTMS implementations use Boolean Constraint 
Propagation(BCP)[2; 19; 20; 211 on clauses. BCP is 
a sound, incomplete, but efficient inference procedure. 
BCP is inherently local considering only one proposi- 
tional formula (i.e., boolean constraint) at a time. This 
locality is the source of both its incompleteness and effi- 
ciency. Unfortunately, converting a formula to its CNF 
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clauses loses the locality 
sider the formula: 

of the original formula. Con- 

(x * (Y v 4) A (x v Y v 4 (1) 
If y were false, then considering this formula alone, in 
isolation, we can infer z must be true (this can be seen by 
the fact that if z were false, the first conjunct x j (yVz) 
requires x to be false, and the second conjunct (XV yVz) 
requires x to be true). However, this information is lost 
in converting the formula to its two CNF clauses: 

1xvyvz, xvyvz. 

Neither of these two clauses can, individually, be used 
to infer z from ly. Taken together, of course, they can. 

Consider QPE as an example [13; 141. QPE encodes 
every qualitative process model as a set of formulae 
which are eventually encoded as a set of ATMS horn 
clauses. Within QPE, this set of horn clauses represents 
a fixed local module, but within the ATMS each clause is 
treated independently. As some of the formulae cannot 
be converted to purely horn clauses, the basic ATMS 
algorithms are incomplete with respect to the original 
formulae, and the ATMS is therefore incapable of mak- 
ing some simple local inferences which follow from the 
model alone. QPE deals with this difficulty by adding 
more clauses (than conversion to CNF would indicate) 
so that the basic ATMS algorithms can make more infer- 
ences than they otherwise would. Part of our proposal 
is that the set of formulae representing a model be con- 
veyed to the TMS as a single module and the TMS use 
a complete inference procedure locally on modules. As a 
result we achieve the kind of functionality that is desired, 
without incurring substantial performance degradation 
and without burdening QPE with needless encoding de- 
tails. This process can be made efficient by recognizing 
that each model type instantiates the same set of for- 
mulae and therefore most of the work can be done at 
compile time once per model type. 

Conceptually, the new TMSs are supplied a set of ar- 
bitrary propositional formulae and use general BCP to 
answer queries whether a particular literal follows from 
the formulae. BCP is usually applied to clauses but can 
be applied to arbitrary formulae as well. As input the 
TMS can accept new propositional formulae to define a 
module, conjoin two existing modules, or accept a new 
formula to be conjoined with an existing module. Lo- 
cally, within each module, the TMS is logically complete. 
As a consequence, the problem solver can dynamically 
control the trade-off between efficiency and completeness 
- if completeness is required, all the modules are con- 
joined, if efficiency is is required, each formula is treated 
as an individual module. Later in this paper we present 
a number of techniques to guide the order in which mod- 
ules should be conjoined in order to minimize computa- 
tional cost. 

Consider the example of two pipes in series (Fig. 1). 
Each pipe is modeled by the qualitative equation (or con- 
fluence, see [3] for precise definitions) [dPl]-[dP,.] = [cZQ] 
where Pi is the pressure on the left, P, is the pressure on 

the right and Q is the flow from left to right. ([dx] is the 
qualitative (+, 0, -) value of 

5’. Th 
us, the attached 

pipes can be completely modele by three confluences: 

[@AI - [d&11 = [~QABI, (2) 
[~PB] - WC] = [~QBc], (3) 

[~QAB] = [~QBc]. (4) 
Suppose we know that the pressure is rising at A (i.e, 
[dPA] = [+I) and the pressure is fixed at C (i.e., [dPc] = 
[O]). Considering each component or confluence individ- 
ually we cannot infer anything about the flows. We only 
know one of the three variables in confluences (2) and 
(3), and none of the variables in confluence (4). There- 
fore, none of the confluences, individually, can be used 
to infer a new variable value. The only way to determine 
the behavior is to somehow solve the confluences - but 
that requires global reasoning over the confluences. 

If the individual qualitative equations are converted 
to their propositional equivalents for a TMS (as many 
qualitative physics systems do), then [~PB], [~&AB] and 
[QQBc] remain unknown due to the incompleteness of 
most TMS’s. However, in our TMS if the formulae rep- 
resenting the individual components are merged then 
[QQAB] = [~QBc] = [+I is inferred. As such component 
combinations reoccur in many systems, this combining 
can be done once in the model library. To compile this 
combination, our TMS merges the propositional encod- 
ing of the confluences but without the specific inputs 
([dPA] = [+] and [dPc] = [O]). The result is identical to 
the propositional encoding of the confluence: 

W’AI - [df’c] = [~&AB] = [~QBc]. 
After compiling this combination, and applying the in- 
puts our TMS infers that [QQAB] = [$QBc] = [+] far 
more efficiently than before (i.e., in one step). 

A device can always be analyzed by first compiling it 
without knowledge of any input or outputs. However, 
compiling a full device model is expensive - it is only 
useful if we expect to put it in the model library or 
need to consider many input value combinations. When 
analyzing a device our TMS does not force the problem- 
solver to decide whether or not to compile the device 
beforehand. Our TMS lazily compiles the propositional 
formulae it is supplied - it only compiles enough to 
answer queries for the givens it is supplied. When the 
givens are changed the TMS, if necessary, incrementally 
compiles more pieces of the device to answer the query. 
If all possible givens and queries are applied, then the 
compiled result will be the same as having compiled the 
full device beforehand. 

After developing our approach Section 8 expands on 
these observations and analyzes its relationship with the 
qualitative resolution rule [al; 121. 

2 BCP on formulae and clauses 

As our approach draws on the intuitions underlying 
BCP, we give a synopsis of it here. (Note that BCP 
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Figure 1: Assembling the qualitative models of the two 
joined pipes is equivalent to merging the formulae mod- 
eling the two pipes. 

achieves similar results to unit resolution.) BCP oper- 
ates on a set of propositional formulae (not just clauses) 
F in terms of propositional symbols S. A formula is de- 
fined in the usual way with the connectives 7, j, E, V, A 
and oneof. (oneof is a useful connective requiring that 
exactly one of its arguments be true.) For the purposes 
of this paper a clause is a disjunction of literals with 
no literal repeated and not containing complementary 
literals. 

BCP labels every symbol T (i.e., true), F (i.e., false) 
or U (i.e., unknown). BCP is provided an initial set 
of assumption literals d; if z E d, then x is labeled 
T, and if lx E d, then x is labeled F. A may not 
contain complementary literals. All remaining symbols 
are initially labeled U. The reason for distinguishing A 
from F is that F is guaranteed to grow monotonically 
while assumptions may be added and removed from A 
at any time. 

BCP operates by relabeling symbols from U to T or 
F as it discovers that these symbols logically follow from 
F U A. A labeling which does not label any symbol U 
is complete. Conversely a labeling which labels some 
symbols U is partial. A completion of a partial labeling 
is one which relabels all the U symbols T or F. Given 
any labeling each BCP constraint (in the BCP literature 
propositional formulae are called constraints) is in one 
of 4 possible states. 

The labeling satisfies the constraint: for every com- 
pletion of the current labeling the constraint is true. 
For example, labeling x T satisfies the constraint XV y. 

The labeling violates the constraint: there is no com- 
pletion of the current labeling which satisfies the con- 
straint. Consider two examples: (1) if the constraint 
is x V y and both x and y are labeled F, then the 
constraint is violated, and (2) if the constraint is 
(x v Y) A (1: v 1Y) and x is labeled I?, then there is 
no way to satisfy the constraint. 

A constraint forces a symbol’s label if in every com- 
pletion of the current labeling which makes the con- 
straint true that symbol is always labeled T or always 
F. There may be multiple such symbols. For exam- 
ple, if x is labeled T, then the constraint x - (y A z) 
forces y and z to be labeled T. Consider the example 

from the introduction: (x j (y V z)) A (z V y V z). If 
y is labeled F, then the label of z is forced to be T. 

l Otherwise a constraint is open. 

BCP processes the constraints one at a time mono- 
tonically expanding the current labeling. The behavior 
of BCP depends on the condition the constraint is in: 

If the current labeling satisfies the constraint, then 
the constraint is marked as satisfied and is no longer 
considered. 
If the current labeling violates the constraint, then a 
global contradiction is signaled. 
If the current labeling forces the label of some other 
symbol, then that symbol is labeled and all unsatis- 
fied and unviolated constraints mentioning that sym- 
bol are scheduled for reconsideration. If the current 
constraint is now satisfied it is so marked. 
Otherwise the constraint remains open and BCP re- 
considers it when some (other) symbol it references is 
labeled T or F. 

If this BCP is applied purely to clauses, then the result- 
ing behavior is identical to the clausal BCP dicussed in 
the LTMS literature. 

If the constraints are arbitrary formulae, then deter- 
mining whether a constraint forces a symbol label is 
complex to implement and computational expensive ex- 
ecute. However, if the constraints are clauses, then BCP 
can be implemented simply and efficiently. In particular, 
we store a count with each clause indicating the number 
of symbols which are labeled U or whose label satisfies 
the clause. For example, given the clause x V -y where x 
is labeled U and y is labeled T, the count for the clause 
is 1. Whenever this counter is reduced to 1, then the 
clause forces the label of a single remaining symbol (i.e., 
in this case 1: is forced to 3”). If the count is reduced 
to 0, then the clause is violated and a contradiction is 
signaled. As a consequence of this encoding, BCP on 
clauses can be implemented simply by following point- 
ers and decrementing counters. Conversely, the process 
of removing an assumption from A can be efficiently im- 
plemented by following pointers and incrementing coun- 
ters. (See [7] for details.) BCP on clauses is equivalent 
to the circuit value problem and therefore is P-complete 
(see also [15]). Its worse case complexity is the number 
of literals in the clauses. 

BCP is logically incomplete in that it sometimes fails 
to label a symbol T or F when it should. For example, 
consider the two clauses from the introduction: 

7xvyvz, xvyvz. 

If y is labeled F, then BCP on the clauses does not label 
z T. (Note that BCP is also logically incomplete in that 
it sometimes fails to detect contradictions.) 

3 Compiling into prime implicates 

The previous example (the encoding of formula (1)) 
shows that running BCP on the original formulae is usu- 
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ally not the same as running BCP on the clauses pro- 
duced by converting the formulae to CNF. (BCP on the 
original formulae is usually much stronger or, at worst, 
equivalent.) Hence, we cannot directly use the efficient 
BCP algorithms that have been developed for clauses for 
arbitrary formulae and no correspondingly efficient BCP 
algorithm is known. This section shows that if each in- 
dividual formula is encoded by its prime implicates[16; 
17; 221, then BCP on the resulting clauses is equivalent 
to running BCP on the original formulae. 

We use the following definitions. Clause A is sub- 
sumed by clause B if all the literals of B appear in A. 
Therefore if A subsumes B, then B is true wherever A 
is. An implicate of a set of propositional formulae 3 
is a clause entailed by 3 not containing complementary 
literals. A prime implicate of a set of formulae 3 is an 
implicate of 3 no proper subclause of which is an impli- 
cate of 3. 

Consider the simple example of the introduction. Us- 
ing the conventional conversion to CNF the formula, 

(x * (Y V %)) A (x V Y V z), (5) 

is equivalent to the conjunction of the clauses, 

1xv yvz, xvyvz. 

However, there is only one prime implicate, 

yv %. 

This example illustrates that there may be fewer prime 
implicates of a formula than the conjuncts in the CNF 
of a formula. Unfortunately, the reverse is usually the 
case. Consider the clause set: 

YaVb, wvd, -eve, lbvldvle. 

In this case, these 4 are all prime implicates, but there 
are 3 more (for a total of 7): 

There are a variety of different algorithms for comput- 
ing prime implicates (see [6; 7; 9; 16; 22; 231). Stripped 
of all the efficiency refinements discussed in the next 
section, our basic approach is to use a variation of the 
consensus method to compute prime implicates. First, 
the formula is converted into CNF to produce an initial 
set of clauses. Then we repeatedly take two clauses with 
exactly one pair of complementary literals and construct 
a resulting clause with both those literals removed. All 
clauses subsumed by others are removed. This process 
continues until no new unsubsumed clause is producible. 

Using the preceeding definitions, the following theo- 
rems are key to an efficient implementation of BCP on 
constraints: 

Theorem 1 Given a set of clauses Z which are the set 
of prime implicates of some set of propositional formulae 
and a set of assumptions d, then if Iud is inconsistent, 
then BCP will detect a violation. 

Proof. If Z U A is inconsistent, then there must be a 
clause, 

-Al v . . . v -A,, 

entailed by Z where Ai E A. This clause is an implicate 
of Z and thus subsumed by some clause S of 2. As all 
the 1Ai are labeled F, BCP will detect that clause S is 
violated. 0 

Theorem 2 Given a set of clauses Z which are the set 
of prime implicates of some set of propositional formulae 
and a set of assumptions A such that AM is consistent, 
then BCP computes the correct label for every node. 

Proofs for the remaining theorems can be found in [lo]. 

Theorem 3 Let A be a set of literuls, 3 a set of propo- 
sitional formulae and Z is the union of the prime impli- 
cates of euch of the formulae of 3 individually. If BCP 
on A U 3 does not detect any violations, then BCP on 
Au3 produces the same symbol labels us BCP on duz. 

Theorem 4 Let A be a set of literuls, 3 a set of propo- 
sitional formulae, and Z is the union of the prime im- 
plicates of each of the formulae of 3 individually. BCP 
on A U3 detects a violation exactly when BCP on ZU3 
detects a violation. 

The first two theorems tell us that we can make BCP 
complete if we need to. The second two theorems tell 
us that running BCP on the prime implicates of the in- 
dividual formulae is the same as running BCP on the 
formulae. Thus, we can exploit the efficient implemen- 
tations of clausal BCP. 

Note that the prime implicates, by themselves, do not 
solve the task - they represent a family of solutions 
each characterized by a distinct assumption set A. Com- 
puting the prime implicates is analogous to compiling a 
propositional formula (or set of them) so that it is easy 
to compute the resulting solution once some input, i.e., 
A is provided. 

Fig. 2 illustrates some of the options engendered by 
the theorems. Although replacing the entire set of for- 
mulae with their equivalent set of prime implicates al- 
lows BCP to be logically complete, the required set of 
prime implicates can be extremely large. This large set 
is both difficult to construct and, its very size makes it 
hard for BCP to work on. Therefore it is usually im- 
practical to exploit this strategy directly. 

4 Basic LAMS transactions 

Our basic formula LTMS permits the following transac- 
tions: 

(add-formula formula): This adds an individual 
formula to the TMS. Section 2 outlines the allowed con- 
nectives. 

(add-assumption symbol label): This labels the 
symbol T or F. This retracts any previous 
add-assumption for this symbol. 

(retract-assumption symbol): This removes the 
initial label for the symbol. Note that the symbol will 
retain a non-U if it follows from A U 3. 
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Figure 2: This figure illustrates the different ways BCP 
can be used. BCP on arbitrary formulae (expensive) 
produces labeling A. If the formulae encoded as their 
CNF clauses, then an efficient clausal BCP produces an 
(unfortunately weaker) labeling B. If formulae are in- 
dividually converted into their prime implicates, then 
the efficient clausal BCP finds the same labeling A as 
the inefficient formula BCP on the original constraints. 
Finally, if the prime implicates of all the formulae are 
constructed, then clausal BCP is logically complete. 

(label? symbol): This returns the label for the sym- 
bol. 

(inconsistent?): Tests whether A U 3 is inconsis- 
tent. 

5 Lazy compilation 

Using the results of the section 3 a complete formula 
LTMS algorithm can be implemented as follows. The 
algorithm always maintains the set of prime implicates 
3’ of 3. Whenever a new formula f is added to 3, 
3’ is updated by computing the prime implicates of the 
old 3’ and the new formula f thus avoiding recomput- 
ing the same prime implicates from scratch each time. 
Whenever A is changed, we execute the usual clausal 
BCP algorithm on 3’. Therefore, the major cost is paid 
up front when a formula is added to 3 and not when A 
is changed. 

The algorithm just sketched out is needlessly expen- 
sive. In the next few sections we present techniques 
which substantially improve its performance in most cir- 
cumstances. The basic intuition behind these techniques 
to to delay the construction of additional implicates un- 
til absolutely necessary because constructing and storing 
implicates is the most expensive aspect of our frame- 
work. In all these techniques 3’ is no longer a set of 
prime implicates of 3, but simply a set of implicates of 
3 none of which is subsumed by another. 

Experience has shown that problem solvers often 

supply a sequence of formulae without making any 
intervening queries. Thus, calls to add-formula, 
add-assumption and retract-assumption are not be 
acted upon until an actual query is made. When the 
problem solver requests a label of a symbol the follow- 
ing steps are performed: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Update A. 
Perform clausal BCP. 

If BCP supplies a label for the symbol, we are done. 

Take the first queued formula f. If there isn’t one, 
then go to step 7. 

Add each of its prime implicates to the LTMS clause 
set 3’ and mark each such clause as unprocessed. 

Go to step 2 

Consider all unprocessed clauses u. Remove all other 
clauses subsumed by u from 3’. Mark u as processed. 

For two clauses u and v in 3’ which contain exactly 
one complementary pair of literals, which have not 
been resolved before, compute the consensus of u and 
v, add it to 3’, and remove the clauses it subsumes 
from 3’. 

If no new clause was added in the previous step and 
no formulae additions are queued, the the label is U. 

Go to 2. 

Although in the naive algorithm which initially com- 
putes all prime implicates, retracting an assumption is 
very simple, in this algorithm retracting an assumption 
can later provoke further implicate construction because 
some symbol might lose its T/F label. Checking for in- 
consistency is nearly identical. If at any point clausal 
BCP reports an inconsistency, then no further process- 
ing is necessary. 

The basic intuition behind this algorithm is to run 
the efficient clausal BCP before constructing new impli- 
cates. This is analogous to the familiar unit-preference 
strategy except that the initial unit clauses (i.e, -4) can 
be retracted. 

The preceeding algorithm still computes far too many 
implicates than is necessary for a particular A. We can 
exploit BCP labels to further delay the construction of 
new implicates. In particular, computing the consen- 
sus of two clauses where the complementary literals are 
labeled T/F cannot provide new information (for the 
current d). Therefore, we can add this restriction to 
the algorithm. This yields substantial performance im- 
provements if not all possible A are explored. 

Many efficiency improvements are possible on this ba- 
sic scheme. An important one results from distinguish- 
ing between the two different reasons a symbol can be 
labeled T/F: (1) a symbol can be labeled because it 
follows via BCP from 3 alone (we call this a fixed la- 
bel), or (2) a symbol can be labeled because it follows 
via BCP from 3 U A but not from 3 alone (we call this 
a variable label). The important difference is that the 
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fixed labels cannot change as A changes. If a fixed lit- 
eral label satisfies a clause, then that clause is removed 
from 7. If a variable literal label satisfies a clause, then 
the clause is temporarily set aside. If a fixed literal label 
violates a clause, then the literal is removed from the 
clause. These results happen anyway as a consequence 
of constructing implicates. However, BCP achieves them 
earlier and more efficiently. Note that as variable labels 
change, clauses which were previously set aside need to 
be reanalyzed to compute further implicates. 

6 Pre-compiling formulae 
Many AI problem solvers operate with a knowledge base 
or component library. Given a particular task, pieces of 
this knowledge base are instantiated as needed. For ex- 
ample, in Qualitative Process Theory most processes are 
instantiated with the same fixed set of formulae (but 
with different symbols). Hence, the schemas for the 
prime implicates for each model in the library can be 
constructed a priori, and many implicate constructions 
can be thus avoided run time. 

A single propositional formula may yield a very large 
number of prime implicates. If some of the symbols of 
a formula are internal (i.e., appear only in the formula, 
are guaranteed never to be referenced by any new in- 
put formula and are of no further interest to the prob- 
lem solver), then all the clauses mentioning that symbol 
can be discarded without affecting the functionality of 
the TMS. As a result BCP need not stumble over these 
needless clauses. 

The basic formula LTMS transactions which support 
this insight are: 

(compile-formula schema internal-symbols): 
Used at compile time. This converts the formula schema 
into a set of prime implicate schemas. This is designed 
to be used when constructing the knowledge base or 
the model library. internal-symbols is a set of inter- 
nal symbols which are guaranteed not to appear again. 
Therefore, after computing prime implicates, all clauses 
mentioning internal symbols are discarded. 

(load-formula schema): This takes the prime im- 
plicate schemas and communicates them to the TMS. 

7 Exercising problem solver control 
In many cases, even lazily constructing sufficient impli- 
cates of Y=’ to ensure completeness for the given A is 
too costly. In this circumstance the problem solver pro- 
vides external guidance to control which prime impli- 
cates should be constructed and to choose when to give 
up completeness. 

One way to limit the computational cost of the algo- 
rithm is instead of running the algorithm on the entire 
set of formulae, only apply the algorithm to subsets of 
the formulae. This locality is captured by the notion of 
module. A module is a set of formulae and the LTMS 
data base consists of a set of modules. The algorithm 
is restricted to perform subsumption tests and consen- 
sus constructions only within modules. But the clausal 

BCP is run across all clauses of all modules. The prob- 
lem solver is provided an additional interface to control 
when to modules are to be merged. This requires the 
following additional transactions: 

load-formula* and add-formula*: These create 
modules initially containing only their formula argu- 
ment. 

(merge-modules module1 modulea): This tells the 
TMS to conjoin the two modules, by computing the nec- 
essary implicates of the combination. 

(internal symbol) : Used at run time. This informs 
the TMS that the symbol is internal. If all occurrences of 
this symbol appear in the same module, than all clauses 
mentioning this symbol can be discarded. This greatly 
reduces the number of clauses the TMS needs to con- 
sider . 

At the one extreme every formula is an individual 
module and the problem solver never merges modules. 
In this case the result is equivalent to running BCP on 
formulae. As all the formulae may be pre-compilable, 
this may require no implicate construction at run time. 

If the problem solver is exercising control to achieve 
completeness, we must examine more carefully when 
completeness is achieved for a particular A. Just be- 
cause some symbol is labeled U is no indication of in- 
completeness - no one guarantees that every literal or 
its negation should follow from Fud. However, if every 
clause is individually satisfied, then we know that the 
clause set is consistent and we can complete the labeling 
by arbitrarily changing every U to T or I?. (Of course, 
this observation is implicit in the lazy algorithm which 
stops resolving clauses when they are satisfied.) 

This last observation provides two fundamental tech- 
niques for coping with incompleteness. First, the prob- 
lem solver can introduce additional assumptions to at- 
tempt to satisfy open constraints, in effect, performing a 
backtrack search. (This has the disadvantage of extend- 
ing A which may not be desired.) Second, the problem 
solver controls which modules should be merged and in 
which order. Merging has two important effects: (a) 
merging can enable the construction of new implicates 
which yield relabelings, and (b) if each of the modules 
are either satisfied (we define a module to be satisfied if 
every one of its clauses is satisfied) or merged into one 
common unsatisfied module, then we know that BCP is 
complete. This tradeoff of whether to use backtracking 
or merging to construct a solution is analogous to the 
one faced by CSP [8; 181 solvers. 

Both approaches to coping with incompleteness can 
be improved with various tactics. We focus here on 
tactics to improve the performance of merging. If an 
internal symbol is labeled U, then the modules which 
mention it are candidates for early merging. Whether 
or not this relabels the internal symbol, after the merge 
all clauses mentioning an internal symbol can be dis- 
carded. Modules sharing no symbols can be trivially 
merged as the implicates of the conjunction is the union 
of the antecedent implicates. If all modules are merged 
and BCP has not detected a violated clause, then by a 
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slight extension of theorem 1 FUA is satisfiable. When 
used in this way our TMS is yet another way to test for 
propositional satisfiability. 

Our implementation also includes an automatic fa- 
cility which systematically merges those two modules 
which would produce a module with the fewest number 
of symbols (determined directly by counting the non- 
internal symbols). This exploitation of locality often 
avoids intermediate implicate bloat. 

8 Modeling 

The user of this style of TMS must make a fundamental 
tradeoff whether all the formulae should be in one mod- 
ule (and hence be logically complete), or whether the 
formulae should all be in individual modules (more effi- 
cient but incomplete). Suppose all the formulae are in 
one module. For those symbols which were not provided 
any initial labels, the same set of implicates will now suf- 
fice for any labeling for them. This ideally matches the 
requirements of problem solving tasks which require the 
inputs to be changed while the input formulae remain 
constant. In other words, by computing the implicates 
we have made it easy to solve exponentially many prob- 
lems via BCP on these implicates. 

One clearcut example of this occurs in qualitative sim- 
ulation. Typically qualitative analysis uses propagation 
to determine the qualitative behavior of a system, how- 
ever, it is well known that simple propagation is incom- 
plete and therefore that additional techniques are needed 
(feedback heuristics, feedback analysis, etc.) One such 
technique is the qualitative resolution rule [ll] which 
assembles individual component models into larger as- 
semblages so that (a) the entire device can be repeat- 
edly simulated on different inputs by simple propagation 
alone and (b) larger devices can be analyzed by building 
it out of known assemblages. 

Our TMS framework achieves the analogous effect. 
The qualitative resolution rule (sometimes called the 
qualitative Gauss rule) is implemented using our TMS. 
[ll] presents an example where two pipes (Fig. 1) con- 
nected together produce a model for a single pipe. Con- 
sider the following instance of the qualitative resolution 
rule. Let 2, y and z be qualitative quantities such that 
(we drop [...I when unambiguous), 

a:+y=o, -x+z=o 
From these two confluences we can infer the confluence, 

y+z=o. (6) 
(To those unfamiliar with qualitative physics this may 
not seem that surprising, but it is important to remem- 
ber that qualitative arithmetic does not obey the usual 
field axioms and thus the equations cannot be manip- 
ulated as in conventional arithmetic.) The qualitative 
resolution rule is analogous to binary resolution. Two 
confluences can be usefully combined only if they share 
at most one symbol in common, otherwise the result is 
meaningless. 

Our TMS achieves the effect of the qualitative resolu- 
tion rule by conjoining the formulae of the two individ- 
ual pipes. One way to expand x + y = 0 into clauses is 
to encode all the value combinations disallowed by the 
confluence: 

1(x=+) v 1(y=+), 
1(x = +) v 1(y = O), 
1(x = 0) v 1(y = +), 
1(x = 0) v 1(y = -), 

-lx= ( 4 v ‘(Y = 01, 

1x= ( -) v 1(y = -)* 

Expanding -x + z = 0 into clauses includes: 

1x= ( -) v -(z = +), 
1x= ( -) v l(% = O), 
1(x = 0) v l(% = +), 
1(x = 0) v l(% = -), 
1(x = +) v l(% = O), 
1(x = +) v l(% = -). 

If we add the clause, 

(x = +) v (x = 0) v (2 = -), 

compute prime implicates and consider {x = +, x = 
0,x = -} internal symbols, then the result is exactly 
the prime implicates of the result of the qualitative res- 
olution rule (i.e., of y + z = 0). This encoding might 
appear cumbersome, but the clauses are easily analyzed 
with BCP. As we have argued earlier, propagation on 
clauses (i.e., BCP) is efficiently implemented by follow- 
ing pointers and manipulating counters. Thus, by ‘As- 
sembling’ the device, we obtain a set of prime implicates 
with which it is easy to determine a system’s outputs 
from its inputs. 

Dormoy [12] p oints out that applying the qualitative 
resolution rule sometimes produces a combinatorial ex- 
plosion. This is analogous to the explosion that can 
occur in expanding a formula to its prime implicates. In 
his paper Dormoy proposes a joining rule for controlling 
this explosion. The joining rule applies the qualitative 
resolution only to components which share an internal 
variable - it is equivalent to our TMS heuristic of com- 
bining modules which share internal symbols. 

Consider the two pipe problem of the introduction 
again. Suppose we know that [#A] = [+] and [d&l = 
[O]. We have, in effect, two choices how to solve the 
problem. We could first inform the TMS of these values 
and then ask it to merge the modules of the two pipes; 
or we could first merge the two modules and then add 
these values. Although the answer [d&l = [+] remains 
the same, the resulting TMS data base is quite different. 
If we start with [&‘A] = [+] and [UC] = [0], then most 
of the prime implicate constructions can be avoided be- 
cause these initial values provide initial BCP labels to 6 
symbols (i.e., the symbolsrepresenting the possible qual- 
itative values for #A and ~PB). On the other hand, if 
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the modules are merged first without initial values, then 
all prime implicates are constructed, and although only 
a few of them are necessary to solve for the given inputs 
it is now much easier to solve problems when the inputs 
are changed. 

Although computing all the prime implicates for a full 
device may be expensive, it often may be very useful to 
incur this cost. Once the prime implicates of a device 
are constructed, the input-output behavior is completely 
characterized. From the resulting data base of prime im- 
plicates one can construct the inputs from the outputs 
just as easily as outputs from the inputs without con- 
structing any additional prime implicates. So the same 
data base can be efficiently utilized for a variety of dis- 
tinct tasks. 

9 Conclusion 

We have shown a simple example of using our frame- 
work for simple qualitative physics analysis tasks. The 
applicability of these techniques extends to any problem- 
solving paradigm for which finite propositional encod- 
ings exist and there is some notion of locality in the 
original task which can be conveyed to the TMS. Many 
tasks for which TMS’s are normally used are candidates 
for this approach. One obvious one which we are cur- 
rently exploring is model-based diagnosis [5]. 

10 Acknowledgments 

Daniel G. Bobrow, John Lamping, Olivier Raiman and 
Vijay Saraswat provided extensive insights on early 
drafts. 

References 

PI 

PI 

PI 

t-4 

PI 

Chang, C. and Lee R.C., Symbolic Logic and Me- 
chanical Theorem Proving, (Academic Press, New 
York, 1973). 
de Kleer, J., An assumption-based truth mainte- 
nance system, Artificial Intelligence 28 (1986) 127- 
162. Also in Readings in NonMonotonic Reasoning, 
edited by Matthew L. Ginsberg, (Morgan Kaufman, 
1987) 280-297. 
de Kleer, J. and Brown, J.S., A qualitative physics 
based on confluences, Artificial Intelligence 24 
(1984) 7-83; also in: D.G. Bobrow (Ed.), Reuson- 
ing About Physical Systems (MIT Press and North 
Holland, 1985) 7-83; also in: J.R. Hobbs and R.C. 
Moore (Eds.), Formal Models of the Common-Sense 
World (Ablex, Norwood, NJ, 1985) 109-183. 
de Kleer, J., Extending the ATMS, Artificial Intel- 
ligence 28 (1986) 163-196. 
de Kleer, J. and Williams, B.C., Diagnosing mul- 
tiple faults, Artificial Intelligence 32 (1987) 97- 
130. Also in Readings in NonMonotonic Reasoning, 
edited by Matthew L. Ginsberg, (Morgan Kaufman, 
1987), 372-388. 

PI 

PI 

PI 

PI 

WI 

WI 

WI 

P31 

WI 

WI 

WI 

PA 

Dl 

P91 

PO1 

WI 

PI 

WI 

de Kleer, J., A practical clause management system, 
SSL Paper P88-00140, Xerox PARC. 
de Kleer, J., Forbus, K., and McAllester D., Tuto- 
rial notes on truth maintenance systems, IJCAI-89, 
Detroit, MI, 1989. 
de Kleer, J., A comparison of ATMS and CSP tech- 
niques , Proceedings of the Eleventh International 
Joint Conference on Artificial Intelligence, Detroit, 
MI (August 1989). 
de Kleer, J., A Clause Management System based 
on Boolean Constraint Propagation and clause syn- 
thesis, 1990. 
de Kleer , J . , Compiling Devices, submit ted for pub- 
lication, 1990. 
Dormoy, J. and Raiman, O., Assembling a device, 
in: Proceedings AAAI-88, Saint Paul, Minn (1988) 
330-336. 
Dormoy, J-L., Controlling qualitative resolution, 
in: Proceedings AAAI-88, Saint Paul, Minn (1988) 
319-323. 
Forbus, K.D., Qualitative process theory, Artificial 
Intelligence 24 (1984) 85-168. 
Forbus, K.D., The qualitative process engine, Uni- 
versity of Illinois Technical Report UIUCDCS-R- 
86-1288, 1986. 
Dowling and Gallier, Linear time algorithms for 
testing the satisfiability of propositional horn for- 
mulae, Journal of Logic Programming 3 267-284 
(1984). 
Kean, A. and Tsiknis, G., An incremental method 
for generating prime implicants/implicates, Univer- 
sity of British Columbia Technical Report TR-88- 
16, 1988. 
Kohavi, Z., Switching and Finite Automata Theory 
(McGraw-Hill, 1978). 
Mackworth, A.K., Constraint satisfaction, Ency- 
clopedia of Artificial Intelligence, edited by S.C. 
Shapiro, (John Wiley and Son, 1987) 205-211. 
McAllester, D., A three-valued truth maintenance 
system, S.B. Thesis, Department of Electrical En- 
gineering, Cambridge: M.I.T., 1978. 
McAllester, D., An outlook on truth maintenance, 
Artificial Intelligence Laboratory, AIM-551, Cam- 
bridge: M.I.T., 1980. 
McAllester, D., A widely used truth maintenance 
system, unpublished, 1985. 
Reiter, R. and de Kleer, J., Foundations of 
Assumption-Based Truth Maintenance Systems: 
Preliminary Report, in: Proceedings AAAI-87, 
Seattle, WA (July, 1987), 183-188. 
Tison, P., Generalized consensus theory and ap- 
plication to the minimization of boolean functions, 
IEEE transactions on electronic computers 4 (Au- 
gust 1967) 446-456. 

DEKLEER 271 


