
Exploiting locality in a TMS

Johan de Kleer
Xerox Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto CA 94304 USA
Email: deKleer@xerox.com

Abstract

This paper presents a new approach for exploiting
Truth Maintenance Systems(TMSs) which makes
them simpler to use without necessarily incurring
a substantial performance penalty. The basic intu-
ition behind this approach is to convey the local-
ity of the knowledge representation of the problem
solver to the TMS. The TMS then uses this local-
ity information to control and restrict its inferences.
The new TMSs accept arbitrary propositional for-
mulae as input and use general Boolean Constraint
Propagation(BCP) t o answer queries about whether
a particular literal follows from the formulae. Our
TMS exploits the observation that if the set of
propositional formulae are converted to their prime
implicates, then BCP is both efficient and logi-
cally complete. This observation allows the prob-
lem solver to influence the degree of completeness
of the TMS by controlling how many implicates are
constructed. This control is exerted by using the
locality in the original task to guide which com-
binations of formulae should be reduced to their
prime implicates. This approach has been imple-
mented and tested both within Assumption-Based
Truth Maintenance Systems and Logic-Based Truth
Maintenance Systems.

1 Introduction

This paper presents a new practical approach for ex-
ploiting Truth Maintenance Systems which makes them
simpler to use without necessarily incurring a substan-
tial performance penalty. The basic intuition behind
this new approach is to convey the locality of the knowl-
edge representation of the problem solver to the TMS.
Many AI problem solvers, particularly those which rea-
son about the physical world, are inherently local -
each constituent of the problem (e.g., a process such as
flowing, a component such as a pipe, etc.) has a fixed
behavioral model. Much of the reasoning can be viewed
as propagation: whenever some new signal is inferred
to be present the models of the components on which
it impinges are consulted to see whether further infer-
ences are possible from it. Many of these AI problem
solvers either exploit TMSs to do much of this propa-
gation, or use TMSs to represent the results of propa-
gations. Although widely used, anyone who has used
these strategies can attest that current TMSs manifest
some surprising logical incompleteness when used in this

264 AUTOMATED REASONING

way. These blind spots result from the fact that local-
ity present in the original model is often completely lost
within the TMS.

The TMS framework we present is fully expressive ac-
cepting arbitrary propositional formulae as input. Pro-
vided with advice from the overall problem solver it is, if
needed, logically complete. Propositional satisfiability is
NP-complete, but nevertheless often much of the cost of
logical completeness can be avoided by exploiting local-
ity. For example, conjunctions of formulae in the model
library can be precompiled into their prime implicates
to reduce run-time cost. Also, the TMS uses locality in-
formation at run-time to determine which combinations
of formulae are worth analyzing.

We have implemented our framework and used it
with both Assumption-Based Truth Maintanence Sys-
tems (ATMSs) [2; 71 and Logic-Based Truth Mainte-
nance Systems (LTMSS) [2; 19; 20; 211. We have used it
to compile models from constraints, confluences, order-
of-magnitude reasoning axioms and processes. A longer
paper [lo] explores the role of this framework in quali-
tative physics in more detail.

1.1 Encoding models as formulae

Most problem solvers wish to represent arbitrary propo-
sitional formulae many of which derive from local con-
stituents of the problem (e.g., component or process
models). However, most TMSs lack the expressive power
to represent arbitrary formulae. Therefore, one is typ-
ically forced to encode the propositional formulae in
terms the TMS accepts. For example, [4] provides
a variety of ways of encoding propositional formulae
for the Assumption-Based Truth Maintenance Systems
(ATMSs). T ec ni h q ues like these are widely used in QPE
[13; 141. u f t n or unately, these encodings tend to be ex-
tremely cumbersome. The TMSs which accept arbitrary
clauses (such as LTMSs) seem to be more powerful be-
cause any propositional formula can easily be converted
into an equivalent set of clauses by putting it into con-
junctive normal form CNF[l].

Unfortunately, complete LTMSs based on clauses are
rarely used because they are too inefficient. Instead, all
common LTMS implementations use Boolean Constraint
Propagation(BCP)[2; 19; 20; 211 on clauses. BCP is
a sound, incomplete, but efficient inference procedure.
BCP is inherently local considering only one proposi-
tional formula (i.e., boolean constraint) at a time. This
locality is the source of both its incompleteness and effi-
ciency. Unfortunately, converting a formula to its CNF

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

clauses loses the locality
sider the formula:

of the original formula. Con-

(x * (Y v 4) A (x v Y v 4 (1)
If y were false, then considering this formula alone, in
isolation, we can infer z must be true (this can be seen by
the fact that if z were false, the first conjunct x j (yVz)
requires x to be false, and the second conjunct (XV yVz)
requires x to be true). However, this information is lost
in converting the formula to its two CNF clauses:

1xvyvz, xvyvz.

Neither of these two clauses can, individually, be used
to infer z from ly. Taken together, of course, they can.

Consider QPE as an example [13; 141. QPE encodes
every qualitative process model as a set of formulae
which are eventually encoded as a set of ATMS horn
clauses. Within QPE, this set of horn clauses represents
a fixed local module, but within the ATMS each clause is
treated independently. As some of the formulae cannot
be converted to purely horn clauses, the basic ATMS
algorithms are incomplete with respect to the original
formulae, and the ATMS is therefore incapable of mak-
ing some simple local inferences which follow from the
model alone. QPE deals with this difficulty by adding
more clauses (than conversion to CNF would indicate)
so that the basic ATMS algorithms can make more infer-
ences than they otherwise would. Part of our proposal
is that the set of formulae representing a model be con-
veyed to the TMS as a single module and the TMS use
a complete inference procedure locally on modules. As a
result we achieve the kind of functionality that is desired,
without incurring substantial performance degradation
and without burdening QPE with needless encoding de-
tails. This process can be made efficient by recognizing
that each model type instantiates the same set of for-
mulae and therefore most of the work can be done at
compile time once per model type.

Conceptually, the new TMSs are supplied a set of ar-
bitrary propositional formulae and use general BCP to
answer queries whether a particular literal follows from
the formulae. BCP is usually applied to clauses but can
be applied to arbitrary formulae as well. As input the
TMS can accept new propositional formulae to define a
module, conjoin two existing modules, or accept a new
formula to be conjoined with an existing module. Lo-
cally, within each module, the TMS is logically complete.
As a consequence, the problem solver can dynamically
control the trade-off between efficiency and completeness
- if completeness is required, all the modules are con-
joined, if efficiency is is required, each formula is treated
as an individual module. Later in this paper we present
a number of techniques to guide the order in which mod-
ules should be conjoined in order to minimize computa-
tional cost.

Consider the example of two pipes in series (Fig. 1).
Each pipe is modeled by the qualitative equation (or con-
fluence, see [3] for precise definitions) [dPl]-[dP,.] = [cZQ]
where Pi is the pressure on the left, P, is the pressure on

the right and Q is the flow from left to right. ([dx] is the
qualitative (+, 0, -) value of

5’. Th
us, the attached

pipes can be completely modele by three confluences:

[@AI - [d&11 = [~QABI, (2)
[~PB] - WC] = [~QBc], (3)

[~QAB] = [~QBc]. (4)
Suppose we know that the pressure is rising at A (i.e,
[dPA] = [+I) and the pressure is fixed at C (i.e., [dPc] =
[O]). Considering each component or confluence individ-
ually we cannot infer anything about the flows. We only
know one of the three variables in confluences (2) and
(3), and none of the variables in confluence (4). There-
fore, none of the confluences, individually, can be used
to infer a new variable value. The only way to determine
the behavior is to somehow solve the confluences - but
that requires global reasoning over the confluences.

If the individual qualitative equations are converted
to their propositional equivalents for a TMS (as many
qualitative physics systems do), then [~PB], [~&AB] and
[QQBc] remain unknown due to the incompleteness of
most TMS’s. However, in our TMS if the formulae rep-
resenting the individual components are merged then
[QQAB] = [~QBc] = [+I is inferred. As such component
combinations reoccur in many systems, this combining
can be done once in the model library. To compile this
combination, our TMS merges the propositional encod-
ing of the confluences but without the specific inputs
([dPA] = [+] and [dPc] = [O]). The result is identical to
the propositional encoding of the confluence:

W’AI - [df’c] = [~&AB] = [~QBc].
After compiling this combination, and applying the in-
puts our TMS infers that [QQAB] = [$QBc] = [+] far
more efficiently than before (i.e., in one step).

A device can always be analyzed by first compiling it
without knowledge of any input or outputs. However,
compiling a full device model is expensive - it is only
useful if we expect to put it in the model library or
need to consider many input value combinations. When
analyzing a device our TMS does not force the problem-
solver to decide whether or not to compile the device
beforehand. Our TMS lazily compiles the propositional
formulae it is supplied - it only compiles enough to
answer queries for the givens it is supplied. When the
givens are changed the TMS, if necessary, incrementally
compiles more pieces of the device to answer the query.
If all possible givens and queries are applied, then the
compiled result will be the same as having compiled the
full device beforehand.

After developing our approach Section 8 expands on
these observations and analyzes its relationship with the
qualitative resolution rule [al; 121.

2 BCP on formulae and clauses

As our approach draws on the intuitions underlying
BCP, we give a synopsis of it here. (Note that BCP

DE KLEER 265

A B c

Figure 1: Assembling the qualitative models of the two
joined pipes is equivalent to merging the formulae mod-
eling the two pipes.

achieves similar results to unit resolution.) BCP oper-
ates on a set of propositional formulae (not just clauses)
F in terms of propositional symbols S. A formula is de-
fined in the usual way with the connectives 7, j, E, V, A
and oneof. (oneof is a useful connective requiring that
exactly one of its arguments be true.) For the purposes
of this paper a clause is a disjunction of literals with
no literal repeated and not containing complementary
literals.

BCP labels every symbol T (i.e., true), F (i.e., false)
or U (i.e., unknown). BCP is provided an initial set
of assumption literals d; if z E d, then x is labeled
T, and if lx E d, then x is labeled F. A may not
contain complementary literals. All remaining symbols
are initially labeled U. The reason for distinguishing A
from F is that F is guaranteed to grow monotonically
while assumptions may be added and removed from A
at any time.

BCP operates by relabeling symbols from U to T or
F as it discovers that these symbols logically follow from
F U A. A labeling which does not label any symbol U
is complete. Conversely a labeling which labels some
symbols U is partial. A completion of a partial labeling
is one which relabels all the U symbols T or F. Given
any labeling each BCP constraint (in the BCP literature
propositional formulae are called constraints) is in one
of 4 possible states.

The labeling satisfies the constraint: for every com-
pletion of the current labeling the constraint is true.
For example, labeling x T satisfies the constraint XV y.

The labeling violates the constraint: there is no com-
pletion of the current labeling which satisfies the con-
straint. Consider two examples: (1) if the constraint
is x V y and both x and y are labeled F, then the
constraint is violated, and (2) if the constraint is
(x v Y) A (1: v 1Y) and x is labeled I?, then there is
no way to satisfy the constraint.

A constraint forces a symbol’s label if in every com-
pletion of the current labeling which makes the con-
straint true that symbol is always labeled T or always
F. There may be multiple such symbols. For exam-
ple, if x is labeled T, then the constraint x - (y A z)
forces y and z to be labeled T. Consider the example

from the introduction: (x j (y V z)) A (z V y V z). If
y is labeled F, then the label of z is forced to be T.

l Otherwise a constraint is open.

BCP processes the constraints one at a time mono-
tonically expanding the current labeling. The behavior
of BCP depends on the condition the constraint is in:

If the current labeling satisfies the constraint, then
the constraint is marked as satisfied and is no longer
considered.
If the current labeling violates the constraint, then a
global contradiction is signaled.
If the current labeling forces the label of some other
symbol, then that symbol is labeled and all unsatis-
fied and unviolated constraints mentioning that sym-
bol are scheduled for reconsideration. If the current
constraint is now satisfied it is so marked.
Otherwise the constraint remains open and BCP re-
considers it when some (other) symbol it references is
labeled T or F.

If this BCP is applied purely to clauses, then the result-
ing behavior is identical to the clausal BCP dicussed in
the LTMS literature.

If the constraints are arbitrary formulae, then deter-
mining whether a constraint forces a symbol label is
complex to implement and computational expensive ex-
ecute. However, if the constraints are clauses, then BCP
can be implemented simply and efficiently. In particular,
we store a count with each clause indicating the number
of symbols which are labeled U or whose label satisfies
the clause. For example, given the clause x V -y where x
is labeled U and y is labeled T, the count for the clause
is 1. Whenever this counter is reduced to 1, then the
clause forces the label of a single remaining symbol (i.e.,
in this case 1: is forced to 3”). If the count is reduced
to 0, then the clause is violated and a contradiction is
signaled. As a consequence of this encoding, BCP on
clauses can be implemented simply by following point-
ers and decrementing counters. Conversely, the process
of removing an assumption from A can be efficiently im-
plemented by following pointers and incrementing coun-
ters. (See [7] for details.) BCP on clauses is equivalent
to the circuit value problem and therefore is P-complete
(see also [15]). Its worse case complexity is the number
of literals in the clauses.

BCP is logically incomplete in that it sometimes fails
to label a symbol T or F when it should. For example,
consider the two clauses from the introduction:

7xvyvz, xvyvz.

If y is labeled F, then BCP on the clauses does not label
z T. (Note that BCP is also logically incomplete in that
it sometimes fails to detect contradictions.)

3 Compiling into prime implicates

The previous example (the encoding of formula (1))
shows that running BCP on the original formulae is usu-

266 AUTOMATEDREASONING

ally not the same as running BCP on the clauses pro-
duced by converting the formulae to CNF. (BCP on the
original formulae is usually much stronger or, at worst,
equivalent.) Hence, we cannot directly use the efficient
BCP algorithms that have been developed for clauses for
arbitrary formulae and no correspondingly efficient BCP
algorithm is known. This section shows that if each in-
dividual formula is encoded by its prime implicates[16;
17; 221, then BCP on the resulting clauses is equivalent
to running BCP on the original formulae.

We use the following definitions. Clause A is sub-
sumed by clause B if all the literals of B appear in A.
Therefore if A subsumes B, then B is true wherever A
is. An implicate of a set of propositional formulae 3
is a clause entailed by 3 not containing complementary
literals. A prime implicate of a set of formulae 3 is an
implicate of 3 no proper subclause of which is an impli-
cate of 3.

Consider the simple example of the introduction. Us-
ing the conventional conversion to CNF the formula,

(x * (Y V %)) A (x V Y V z), (5)

is equivalent to the conjunction of the clauses,

1xv yvz, xvyvz.

However, there is only one prime implicate,

yv %.

This example illustrates that there may be fewer prime
implicates of a formula than the conjuncts in the CNF
of a formula. Unfortunately, the reverse is usually the
case. Consider the clause set:

YaVb, wvd, -eve, lbvldvle.

In this case, these 4 are all prime implicates, but there
are 3 more (for a total of 7):

There are a variety of different algorithms for comput-
ing prime implicates (see [6; 7; 9; 16; 22; 231). Stripped
of all the efficiency refinements discussed in the next
section, our basic approach is to use a variation of the
consensus method to compute prime implicates. First,
the formula is converted into CNF to produce an initial
set of clauses. Then we repeatedly take two clauses with
exactly one pair of complementary literals and construct
a resulting clause with both those literals removed. All
clauses subsumed by others are removed. This process
continues until no new unsubsumed clause is producible.

Using the preceeding definitions, the following theo-
rems are key to an efficient implementation of BCP on
constraints:

Theorem 1 Given a set of clauses Z which are the set
of prime implicates of some set of propositional formulae
and a set of assumptions d, then if Iud is inconsistent,
then BCP will detect a violation.

Proof. If Z U A is inconsistent, then there must be a
clause,

-Al v . . . v -A,,

entailed by Z where Ai E A. This clause is an implicate
of Z and thus subsumed by some clause S of 2. As all
the 1Ai are labeled F, BCP will detect that clause S is
violated. 0

Theorem 2 Given a set of clauses Z which are the set
of prime implicates of some set of propositional formulae
and a set of assumptions A such that AM is consistent,
then BCP computes the correct label for every node.

Proofs for the remaining theorems can be found in [lo].

Theorem 3 Let A be a set of literuls, 3 a set of propo-
sitional formulae and Z is the union of the prime impli-
cates of euch of the formulae of 3 individually. If BCP
on A U 3 does not detect any violations, then BCP on
Au3 produces the same symbol labels us BCP on duz.

Theorem 4 Let A be a set of literuls, 3 a set of propo-
sitional formulae, and Z is the union of the prime im-
plicates of each of the formulae of 3 individually. BCP
on A U3 detects a violation exactly when BCP on ZU3
detects a violation.

The first two theorems tell us that we can make BCP
complete if we need to. The second two theorems tell
us that running BCP on the prime implicates of the in-
dividual formulae is the same as running BCP on the
formulae. Thus, we can exploit the efficient implemen-
tations of clausal BCP.

Note that the prime implicates, by themselves, do not
solve the task - they represent a family of solutions
each characterized by a distinct assumption set A. Com-
puting the prime implicates is analogous to compiling a
propositional formula (or set of them) so that it is easy
to compute the resulting solution once some input, i.e.,
A is provided.

Fig. 2 illustrates some of the options engendered by
the theorems. Although replacing the entire set of for-
mulae with their equivalent set of prime implicates al-
lows BCP to be logically complete, the required set of
prime implicates can be extremely large. This large set
is both difficult to construct and, its very size makes it
hard for BCP to work on. Therefore it is usually im-
practical to exploit this strategy directly.

4 Basic LAMS transactions

Our basic formula LTMS permits the following transac-
tions:

(add-formula formula): This adds an individual
formula to the TMS. Section 2 outlines the allowed con-
nectives.

(add-assumption symbol label): This labels the
symbol T or F. This retracts any previous
add-assumption for this symbol.

(retract-assumption symbol): This removes the
initial label for the symbol. Note that the symbol will
retain a non-U if it follows from A U 3.

DEKLEER 267

Figure 2: This figure illustrates the different ways BCP
can be used. BCP on arbitrary formulae (expensive)
produces labeling A. If the formulae encoded as their
CNF clauses, then an efficient clausal BCP produces an
(unfortunately weaker) labeling B. If formulae are in-
dividually converted into their prime implicates, then
the efficient clausal BCP finds the same labeling A as
the inefficient formula BCP on the original constraints.
Finally, if the prime implicates of all the formulae are
constructed, then clausal BCP is logically complete.

(label? symbol): This returns the label for the sym-
bol.

(inconsistent?): Tests whether A U 3 is inconsis-
tent.

5 Lazy compilation

Using the results of the section 3 a complete formula
LTMS algorithm can be implemented as follows. The
algorithm always maintains the set of prime implicates
3’ of 3. Whenever a new formula f is added to 3,
3’ is updated by computing the prime implicates of the
old 3’ and the new formula f thus avoiding recomput-
ing the same prime implicates from scratch each time.
Whenever A is changed, we execute the usual clausal
BCP algorithm on 3’. Therefore, the major cost is paid
up front when a formula is added to 3 and not when A
is changed.

The algorithm just sketched out is needlessly expen-
sive. In the next few sections we present techniques
which substantially improve its performance in most cir-
cumstances. The basic intuition behind these techniques
to to delay the construction of additional implicates un-
til absolutely necessary because constructing and storing
implicates is the most expensive aspect of our frame-
work. In all these techniques 3’ is no longer a set of
prime implicates of 3, but simply a set of implicates of
3 none of which is subsumed by another.

Experience has shown that problem solvers often

supply a sequence of formulae without making any
intervening queries. Thus, calls to add-formula,
add-assumption and retract-assumption are not be
acted upon until an actual query is made. When the
problem solver requests a label of a symbol the follow-
ing steps are performed:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Update A.
Perform clausal BCP.

If BCP supplies a label for the symbol, we are done.

Take the first queued formula f. If there isn’t one,
then go to step 7.

Add each of its prime implicates to the LTMS clause
set 3’ and mark each such clause as unprocessed.

Go to step 2

Consider all unprocessed clauses u. Remove all other
clauses subsumed by u from 3’. Mark u as processed.

For two clauses u and v in 3’ which contain exactly
one complementary pair of literals, which have not
been resolved before, compute the consensus of u and
v, add it to 3’, and remove the clauses it subsumes
from 3’.

If no new clause was added in the previous step and
no formulae additions are queued, the the label is U.

Go to 2.

Although in the naive algorithm which initially com-
putes all prime implicates, retracting an assumption is
very simple, in this algorithm retracting an assumption
can later provoke further implicate construction because
some symbol might lose its T/F label. Checking for in-
consistency is nearly identical. If at any point clausal
BCP reports an inconsistency, then no further process-
ing is necessary.

The basic intuition behind this algorithm is to run
the efficient clausal BCP before constructing new impli-
cates. This is analogous to the familiar unit-preference
strategy except that the initial unit clauses (i.e, -4) can
be retracted.

The preceeding algorithm still computes far too many
implicates than is necessary for a particular A. We can
exploit BCP labels to further delay the construction of
new implicates. In particular, computing the consen-
sus of two clauses where the complementary literals are
labeled T/F cannot provide new information (for the
current d). Therefore, we can add this restriction to
the algorithm. This yields substantial performance im-
provements if not all possible A are explored.

Many efficiency improvements are possible on this ba-
sic scheme. An important one results from distinguish-
ing between the two different reasons a symbol can be
labeled T/F: (1) a symbol can be labeled because it
follows via BCP from 3 alone (we call this a fixed la-
bel), or (2) a symbol can be labeled because it follows
via BCP from 3 U A but not from 3 alone (we call this
a variable label). The important difference is that the

268 AUTOMATEDREASONING

fixed labels cannot change as A changes. If a fixed lit-
eral label satisfies a clause, then that clause is removed
from 7. If a variable literal label satisfies a clause, then
the clause is temporarily set aside. If a fixed literal label
violates a clause, then the literal is removed from the
clause. These results happen anyway as a consequence
of constructing implicates. However, BCP achieves them
earlier and more efficiently. Note that as variable labels
change, clauses which were previously set aside need to
be reanalyzed to compute further implicates.

6 Pre-compiling formulae
Many AI problem solvers operate with a knowledge base
or component library. Given a particular task, pieces of
this knowledge base are instantiated as needed. For ex-
ample, in Qualitative Process Theory most processes are
instantiated with the same fixed set of formulae (but
with different symbols). Hence, the schemas for the
prime implicates for each model in the library can be
constructed a priori, and many implicate constructions
can be thus avoided run time.

A single propositional formula may yield a very large
number of prime implicates. If some of the symbols of
a formula are internal (i.e., appear only in the formula,
are guaranteed never to be referenced by any new in-
put formula and are of no further interest to the prob-
lem solver), then all the clauses mentioning that symbol
can be discarded without affecting the functionality of
the TMS. As a result BCP need not stumble over these
needless clauses.

The basic formula LTMS transactions which support
this insight are:

(compile-formula schema internal-symbols):
Used at compile time. This converts the formula schema
into a set of prime implicate schemas. This is designed
to be used when constructing the knowledge base or
the model library. internal-symbols is a set of inter-
nal symbols which are guaranteed not to appear again.
Therefore, after computing prime implicates, all clauses
mentioning internal symbols are discarded.

(load-formula schema): This takes the prime im-
plicate schemas and communicates them to the TMS.

7 Exercising problem solver control
In many cases, even lazily constructing sufficient impli-
cates of Y=’ to ensure completeness for the given A is
too costly. In this circumstance the problem solver pro-
vides external guidance to control which prime impli-
cates should be constructed and to choose when to give
up completeness.

One way to limit the computational cost of the algo-
rithm is instead of running the algorithm on the entire
set of formulae, only apply the algorithm to subsets of
the formulae. This locality is captured by the notion of
module. A module is a set of formulae and the LTMS
data base consists of a set of modules. The algorithm
is restricted to perform subsumption tests and consen-
sus constructions only within modules. But the clausal

BCP is run across all clauses of all modules. The prob-
lem solver is provided an additional interface to control
when to modules are to be merged. This requires the
following additional transactions:

load-formula* and add-formula*: These create
modules initially containing only their formula argu-
ment.

(merge-modules module1 modulea): This tells the
TMS to conjoin the two modules, by computing the nec-
essary implicates of the combination.

(internal symbol) : Used at run time. This informs
the TMS that the symbol is internal. If all occurrences of
this symbol appear in the same module, than all clauses
mentioning this symbol can be discarded. This greatly
reduces the number of clauses the TMS needs to con-
sider .

At the one extreme every formula is an individual
module and the problem solver never merges modules.
In this case the result is equivalent to running BCP on
formulae. As all the formulae may be pre-compilable,
this may require no implicate construction at run time.

If the problem solver is exercising control to achieve
completeness, we must examine more carefully when
completeness is achieved for a particular A. Just be-
cause some symbol is labeled U is no indication of in-
completeness - no one guarantees that every literal or
its negation should follow from Fud. However, if every
clause is individually satisfied, then we know that the
clause set is consistent and we can complete the labeling
by arbitrarily changing every U to T or I?. (Of course,
this observation is implicit in the lazy algorithm which
stops resolving clauses when they are satisfied.)

This last observation provides two fundamental tech-
niques for coping with incompleteness. First, the prob-
lem solver can introduce additional assumptions to at-
tempt to satisfy open constraints, in effect, performing a
backtrack search. (This has the disadvantage of extend-
ing A which may not be desired.) Second, the problem
solver controls which modules should be merged and in
which order. Merging has two important effects: (a)
merging can enable the construction of new implicates
which yield relabelings, and (b) if each of the modules
are either satisfied (we define a module to be satisfied if
every one of its clauses is satisfied) or merged into one
common unsatisfied module, then we know that BCP is
complete. This tradeoff of whether to use backtracking
or merging to construct a solution is analogous to the
one faced by CSP [8; 181 solvers.

Both approaches to coping with incompleteness can
be improved with various tactics. We focus here on
tactics to improve the performance of merging. If an
internal symbol is labeled U, then the modules which
mention it are candidates for early merging. Whether
or not this relabels the internal symbol, after the merge
all clauses mentioning an internal symbol can be dis-
carded. Modules sharing no symbols can be trivially
merged as the implicates of the conjunction is the union
of the antecedent implicates. If all modules are merged
and BCP has not detected a violated clause, then by a

DEKLEER 269

slight extension of theorem 1 FUA is satisfiable. When
used in this way our TMS is yet another way to test for
propositional satisfiability.

Our implementation also includes an automatic fa-
cility which systematically merges those two modules
which would produce a module with the fewest number
of symbols (determined directly by counting the non-
internal symbols). This exploitation of locality often
avoids intermediate implicate bloat.

8 Modeling

The user of this style of TMS must make a fundamental
tradeoff whether all the formulae should be in one mod-
ule (and hence be logically complete), or whether the
formulae should all be in individual modules (more effi-
cient but incomplete). Suppose all the formulae are in
one module. For those symbols which were not provided
any initial labels, the same set of implicates will now suf-
fice for any labeling for them. This ideally matches the
requirements of problem solving tasks which require the
inputs to be changed while the input formulae remain
constant. In other words, by computing the implicates
we have made it easy to solve exponentially many prob-
lems via BCP on these implicates.

One clearcut example of this occurs in qualitative sim-
ulation. Typically qualitative analysis uses propagation
to determine the qualitative behavior of a system, how-
ever, it is well known that simple propagation is incom-
plete and therefore that additional techniques are needed
(feedback heuristics, feedback analysis, etc.) One such
technique is the qualitative resolution rule [ll] which
assembles individual component models into larger as-
semblages so that (a) the entire device can be repeat-
edly simulated on different inputs by simple propagation
alone and (b) larger devices can be analyzed by building
it out of known assemblages.

Our TMS framework achieves the analogous effect.
The qualitative resolution rule (sometimes called the
qualitative Gauss rule) is implemented using our TMS.
[ll] presents an example where two pipes (Fig. 1) con-
nected together produce a model for a single pipe. Con-
sider the following instance of the qualitative resolution
rule. Let 2, y and z be qualitative quantities such that
(we drop [...I when unambiguous),

a:+y=o, -x+z=o
From these two confluences we can infer the confluence,

y+z=o. (6)
(To those unfamiliar with qualitative physics this may
not seem that surprising, but it is important to remem-
ber that qualitative arithmetic does not obey the usual
field axioms and thus the equations cannot be manip-
ulated as in conventional arithmetic.) The qualitative
resolution rule is analogous to binary resolution. Two
confluences can be usefully combined only if they share
at most one symbol in common, otherwise the result is
meaningless.

Our TMS achieves the effect of the qualitative resolu-
tion rule by conjoining the formulae of the two individ-
ual pipes. One way to expand x + y = 0 into clauses is
to encode all the value combinations disallowed by the
confluence:

1(x=+) v 1(y=+),
1(x = +) v 1(y = O),
1(x = 0) v 1(y = +),
1(x = 0) v 1(y = -),

-lx= (4 v ‘(Y = 01,

1x= (-) v 1(y = -)*

Expanding -x + z = 0 into clauses includes:

1x= (-) v -(z = +),
1x= (-) v l(% = O),
1(x = 0) v l(% = +),
1(x = 0) v l(% = -),
1(x = +) v l(% = O),
1(x = +) v l(% = -).

If we add the clause,

(x = +) v (x = 0) v (2 = -),

compute prime implicates and consider {x = +, x =
0,x = -} internal symbols, then the result is exactly
the prime implicates of the result of the qualitative res-
olution rule (i.e., of y + z = 0). This encoding might
appear cumbersome, but the clauses are easily analyzed
with BCP. As we have argued earlier, propagation on
clauses (i.e., BCP) is efficiently implemented by follow-
ing pointers and manipulating counters. Thus, by ‘As-
sembling’ the device, we obtain a set of prime implicates
with which it is easy to determine a system’s outputs
from its inputs.

Dormoy [12] p oints out that applying the qualitative
resolution rule sometimes produces a combinatorial ex-
plosion. This is analogous to the explosion that can
occur in expanding a formula to its prime implicates. In
his paper Dormoy proposes a joining rule for controlling
this explosion. The joining rule applies the qualitative
resolution only to components which share an internal
variable - it is equivalent to our TMS heuristic of com-
bining modules which share internal symbols.

Consider the two pipe problem of the introduction
again. Suppose we know that [#A] = [+] and [d&l =
[O]. We have, in effect, two choices how to solve the
problem. We could first inform the TMS of these values
and then ask it to merge the modules of the two pipes;
or we could first merge the two modules and then add
these values. Although the answer [d&l = [+] remains
the same, the resulting TMS data base is quite different.
If we start with [&‘A] = [+] and [UC] = [0], then most
of the prime implicate constructions can be avoided be-
cause these initial values provide initial BCP labels to 6
symbols (i.e., the symbolsrepresenting the possible qual-
itative values for #A and ~PB). On the other hand, if

270 AUTOMATEDREASONING

the modules are merged first without initial values, then
all prime implicates are constructed, and although only
a few of them are necessary to solve for the given inputs
it is now much easier to solve problems when the inputs
are changed.

Although computing all the prime implicates for a full
device may be expensive, it often may be very useful to
incur this cost. Once the prime implicates of a device
are constructed, the input-output behavior is completely
characterized. From the resulting data base of prime im-
plicates one can construct the inputs from the outputs
just as easily as outputs from the inputs without con-
structing any additional prime implicates. So the same
data base can be efficiently utilized for a variety of dis-
tinct tasks.

9 Conclusion

We have shown a simple example of using our frame-
work for simple qualitative physics analysis tasks. The
applicability of these techniques extends to any problem-
solving paradigm for which finite propositional encod-
ings exist and there is some notion of locality in the
original task which can be conveyed to the TMS. Many
tasks for which TMS’s are normally used are candidates
for this approach. One obvious one which we are cur-
rently exploring is model-based diagnosis [5].

10 Acknowledgments

Daniel G. Bobrow, John Lamping, Olivier Raiman and
Vijay Saraswat provided extensive insights on early
drafts.

References

PI

PI

PI

t-4

PI

Chang, C. and Lee R.C., Symbolic Logic and Me-
chanical Theorem Proving, (Academic Press, New
York, 1973).
de Kleer, J., An assumption-based truth mainte-
nance system, Artificial Intelligence 28 (1986) 127-
162. Also in Readings in NonMonotonic Reasoning,
edited by Matthew L. Ginsberg, (Morgan Kaufman,
1987) 280-297.
de Kleer, J. and Brown, J.S., A qualitative physics
based on confluences, Artificial Intelligence 24
(1984) 7-83; also in: D.G. Bobrow (Ed.), Reuson-
ing About Physical Systems (MIT Press and North
Holland, 1985) 7-83; also in: J.R. Hobbs and R.C.
Moore (Eds.), Formal Models of the Common-Sense
World (Ablex, Norwood, NJ, 1985) 109-183.
de Kleer, J., Extending the ATMS, Artificial Intel-
ligence 28 (1986) 163-196.
de Kleer, J. and Williams, B.C., Diagnosing mul-
tiple faults, Artificial Intelligence 32 (1987) 97-
130. Also in Readings in NonMonotonic Reasoning,
edited by Matthew L. Ginsberg, (Morgan Kaufman,
1987), 372-388.

PI

PI

PI

PI

WI

WI

WI

P31

WI

WI

WI

PA

Dl

P91

PO1

WI

PI

WI

de Kleer, J., A practical clause management system,
SSL Paper P88-00140, Xerox PARC.
de Kleer, J., Forbus, K., and McAllester D., Tuto-
rial notes on truth maintenance systems, IJCAI-89,
Detroit, MI, 1989.
de Kleer, J., A comparison of ATMS and CSP tech-
niques , Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, Detroit,
MI (August 1989).
de Kleer, J., A Clause Management System based
on Boolean Constraint Propagation and clause syn-
thesis, 1990.
de Kleer , J . , Compiling Devices, submit ted for pub-
lication, 1990.
Dormoy, J. and Raiman, O., Assembling a device,
in: Proceedings AAAI-88, Saint Paul, Minn (1988)
330-336.
Dormoy, J-L., Controlling qualitative resolution,
in: Proceedings AAAI-88, Saint Paul, Minn (1988)
319-323.
Forbus, K.D., Qualitative process theory, Artificial
Intelligence 24 (1984) 85-168.
Forbus, K.D., The qualitative process engine, Uni-
versity of Illinois Technical Report UIUCDCS-R-
86-1288, 1986.
Dowling and Gallier, Linear time algorithms for
testing the satisfiability of propositional horn for-
mulae, Journal of Logic Programming 3 267-284
(1984).
Kean, A. and Tsiknis, G., An incremental method
for generating prime implicants/implicates, Univer-
sity of British Columbia Technical Report TR-88-
16, 1988.
Kohavi, Z., Switching and Finite Automata Theory
(McGraw-Hill, 1978).
Mackworth, A.K., Constraint satisfaction, Ency-
clopedia of Artificial Intelligence, edited by S.C.
Shapiro, (John Wiley and Son, 1987) 205-211.
McAllester, D., A three-valued truth maintenance
system, S.B. Thesis, Department of Electrical En-
gineering, Cambridge: M.I.T., 1978.
McAllester, D., An outlook on truth maintenance,
Artificial Intelligence Laboratory, AIM-551, Cam-
bridge: M.I.T., 1980.
McAllester, D., A widely used truth maintenance
system, unpublished, 1985.
Reiter, R. and de Kleer, J., Foundations of
Assumption-Based Truth Maintenance Systems:
Preliminary Report, in: Proceedings AAAI-87,
Seattle, WA (July, 1987), 183-188.
Tison, P., Generalized consensus theory and ap-
plication to the minimization of boolean functions,
IEEE transactions on electronic computers 4 (Au-
gust 1967) 446-456.

DEKLEER 271

