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Abstract 
An algorithm is described which computes stable mod- 
els of propositional logic programs with negation as fail- 
ure using the Assumption Based Truth Maintenance 
mechanism. Since stable models of logic programs are 
closely connected to stable expansions of a class of auto- 
epistemic theories, this algorithm points to a link be- 
tween stable expansions of a class of autoepistemic the- 
ories and ATMS structures 

Introduction 
In this paper an algorithm is described which com- 
putes stable models of propositional logic programs 
with negation as failure [l], using the Assumption Based 
Truth Maintenance mechanism [2]. Since stable models 
of logic programs are closely connected to stable expan- 
sions of a class of auto-epistemic theories, this algorithm 
points to a link between stable expansions of a class of 
auto-epistemic theories and ATMS structures. 

Stable Models of Logic Programs 
Stable models of logic programs with negation as failure 
were introduced in [l] as a means of specifying the se- 
mantics of logic programs. They are defined as follows: 

A logic program is a set of clauses of the type 

P + Pl,PZ,**. - q1,- q2.. 

where N indicates negation as failure. In this paper 
we only consider propositional logic programs, where 
Pl,P2,*41,Q2** are propositions. We do not place any 
other restriction on the structure of the clasues. 

Definition 1 The answer set of a propositional Horn 
Clause program is the set of all propositions provable 
from it. We use Answer(n) to denote the answer set 
of the program II 

Definition 2 Let P be a propositional logic program 
with negation as failure, and I a set of propositions. 
The negation-free program PI is derived from P by 

a Deleting all the clauses in P which 
conditions such as N q where q E I 

have a negative 

m Deleting all the negative conditions in all the remain- 
ing clauses of P. 

I is a stable model of P ifl I = Answer(PI) 

Example: let P be the program 

Then Pjb} = {b +), and therefore {b} is a stable 
model of P. 

In general, a logic program may have any number of 
stable models. The algorithm described here computes 
all of them. 

Stable models of logic programs are closely connected 
to stable expansions of auto-epistemic theories. In fact, 
as observed in [l], if we replace every negative condition 
N p in the program P with the condition 4?(p), where 
B is the belief operator of auto-epistemic logic, the sta- 
ble expansion of the resulting auto-epistemic theory is 
the same as the stable model of P. As such, the algo- 
rithm described in this paper can be considered to be a 
theorem prover for a restricted class of auto-epistemic 
theories. 

The ATMS 
We are only concerned with a subset of the capabilities 
of the ATMS, which we define below. 

Let N be a set of propositions, called nodes, and S a 
distinguished subset of N, called assumptions. Let J be 
a set of propositional Horn Clauses, called justifications, 
in which all propositional symbols are from N. When 
we transmit S and J to the ATMS, it computes the 
following structures: 

o All the minimal sets of assumptions E such tht J U E 
is inconsistent. These sets are called nogoods. 

e for every node n, all the minimal sets of assumptions 
e such that JUe I- n. e is called an environment of 12, 
and the set of all environments of a node n is called 
the label of n. 

272 AUTOMATEDREASONING 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



For example, let J be 

a t b* 

+ b, b* 

b c c* 

* c,c* 

and S = {b*, c*}. Then the ATMS will compute the 
only nogood to be (b*, c*}, and the following labels for 
each node: 

a : w*H 

b : i{c*H 

c:o 
(Note: +- c, c* is an alternative syntax for i(c A c*), 
where -) signifies classical negation) 

Notation: we will use nogoodJpS(e) to indicate that E 
is a nogood given the justifications J and assumptions 
S. We will use enwJjS (n, e) to indicate that e is an en- 
vironment of n given justifications J and assumptions 
S. 

For example, let P be 

at-b 

b--c 

Then P* is 

a + b* 

The Algorithm 
To compute the stable models of a logic program P, we 
proceed as follows: 

1. From the program P derive the set of Horn clauses 
P* and the set of assumptions S; 

2. Add the elements of S to the ATMS as assumptions, 
and add the clauses in P* to the ATMS as justifica- 
tions; 

3. From the data structures computed by the ATMS 
(environments and nogoods) compute the stable 
model of P. 

Each one of these steps is described below. 

Deriving P* and S 
Given a propositional logic program P, P* and S are 
derived as follows: for every clause such as 

PcPl,P2,..“Q1,“42...-Qn 

in P, add the assumptions qT,q$, . ..a. to S, where 
qT , qz . ..qE are propositional symbols not occuring in P, 
and add the Horn clauses 

P + P2, P2.., !I;, 4;...!lcT. 

+ Ql, 4; 

+ 42, !l; 

. . . . 

to P*. (We call q and q* the complements of each other. 
In the rest of this paper, an assumption indicated as 
q* will always be the complement of the propositional 
symbol q). 

+ b,b* 

b +-- c* 

+ c,c* 

and S = {b*,c*}. 

The relationship between P and P* 
As mentioned before, the stable models of P are re- 
lated to the environments and nogoods returned by the 
ATMS when it is presented with the assumptions in S 
and the justifications in P*. To explore this relation- 
ship, first we define the notion of stable generator. 

Definition 3 A set of assumptions o is a stable gen- 
erator of P i$ 

P* U u is consistent 

Vn* E S, (n* e d + P* U u I- n) 

(Note: n is the complement of n*) 

The following two theorems establish the link be- 
tween stable generators and stable models: 

Theorem 1 Let o be a stable generator of P. Then the 
set 

I = Answer(P* U (I) \ cr 
is a stable model of P. 

Theorem 2 Let I be a stable model of P. Then the set 

u = (q* : q* E s A q $z I) 

is a stable generator of P. 

From these theorems it follows that for every stable 
model of P, there is a unique stable generator. Further- 
more, given a stable generator, it is straightforward to 
compute the corresponding stable model. The algo- 
rithm described in this paper computes stable genera- 
tors of a progam P from the environments and nogoods 
computed by the ATMS when it is given the assump- 
tions S and justifications P*. To do this, we need the 
following lemma. 

Lemma 1 A set of assumptions o is a stable generator 
of P ifl 

VE, nogoodP*js(e) -+ E (t o 

Vn* E S, (n* @ u + 3e, (envP’>S(n, e) A e C a)) 

(Note: n is the complement of n*) 
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T&s lemma directly follows from the definiton of stable 
generators and the properties of ATMS nogoods and 
environments. 

Example: When the S and P* computed in example 1 
are transmitted to the ATMS as assumptions and jus- 
tifications, {b*, c*} will be the only nogood. The nodes 
in the ATMS, with their labels, will be: 

a : Iv*33 

b : +*33 
c : 0 

In this situation, {c*) is the only set of assumptions 
satisfying the definition of a stable generator, i.e. it is 
the generator of the only stable model of P. (b*) is not a 
stable generator because it does not safisfy the second 
requirement of the definition of stable generators, for 
c* ${b*) but P*u(b*)yc. 

Computing Stable Generators 
In this section, an algorithm is described which, given 
the environments and nogoods returned by the ATMS, 
computes all stable generators of P. The algorithm 
computes a stable generator by finding a set of assump- 
tions, 7, such that S \ T is a stable generator. (We call 
r an acceptable culprit set if S \ r is a stable generator) 

The intuition behind the algorithm is as follows: find 
a set of assumptions r such that by removing them from 
S, the remaining set of assumptions u satisfies the re- 
quirements of lemma 1. The first requirement, that no 
nogood set should be a subset of u, can be satisfied by 
choosing one assumption from each nogood and includ- 
ing them in r. (This is similar to computing diagnoses 
from a set of conflict sets [9] [3]). However, if we re- 
move an assumption q* from S where q does not have 
any environment which is a subset of the remaining set 
of assumptions we violate the second requirement of 
lemma 1. For example, consider the only nogood set 
for the example program above, {b*, c*}. If we choose 
b* as the culprit, we will satisfy the requirements of 
lemma 1, because b has an environment, {c*), which 
is a subset of the remaining set of assumptions, {c* 3. 
But if we choose c* as the culprit, we violate the second 
requirement of lemma 1, because c does not have any 
environment which is a subset of the remaining set of 
assumptions {b* 3 .(In fact, c does not have any environ- 
ments at all). 

We call the environment e a complement environ- 
ment of the assumption q* if it is an environment of 
q. We call the set of all complement environments of 
q* the complement label of q*. In order to make sure 
that the second requirement of lemma 1 is satified, the 
algorithm keeps with each chosen culprit q* the set of 
all its complement environments which do not include 
any of the other culprits. We call this set of comple- 
ment environments the companion of assumption q*. 
Every time a new culprit is chosen, the companions of 

all the other culprits are updated to remove the envi- 
ronments which include the chosen culprit. If we can 
choose a culprit from each nogood without making the 
companion of any other culprit empty, this will be an 
acceptable culprit set, because the remaining set of as- 
sumptions will satisfy lemma 1, and will therefore be a 
stable generator. The details of this process are given 
below. 

Data Structures and Procedures 
The data structure used to keep assumptions together 
with their companions is the augmented assumption. 
An augmented assumption is a tuple (q*, E) where q* 
is an assumption, and E is a list of complement en- 
vironments of q*. We call q* the main assumption of 
(a*> Jq- 

The list of augmented assumptions 

bh%),(n& &z)..(n;, Eb)] 
is an augmented nogood when its main assumption set, 
i.e. (n;, r-4; . . . . n;), is a nogood (as returned by the 
ATMS) and for all i, Ei is the complement label of 
nr (i.e. the list of all complement environments of nz). 
The augmented nogood list relating to example 1 is 

u*, ck*lI)Y cc*, iI)1 
At the heart of the algorithm is the procedure sta- 

blecomp. If A is the list of all augmented nogoods of 
P*, stablecomp(A, Tau) succeeds iff Tau is a set of ac- 
ceptable culprits (i.e. S \ Tau is a stable generator of 
PI* 

We have presented the algorithm in Prolog because 
it is a non-deterministic algorithm. Prolog handles the 
non-determinism by its built-in backtracking. 

Below is the top level definition of stablecomp. 

stablecomp(A,Tau):- 

s~comp(A[l.Comp), 
main-assumptions(Comp,Tau). 

stablecomp is defined in terms of stcomp, which re- 
cursively chooses one assumption from each nogood as 
the next culprit, maintaining the list of culprits cho- 
sen so far with their companions in the argument Cul- 
prits-sofar. 

stcomp([,X,X). 
stcomp([NogoodINogoods].Culpritssofar,Comp):- 

choose(Nogood,(Node*,Label)), 
filterl(Culpritssofar,Label,Labell), 

filter2(Node*,Culpritssofar,Culpritsl), 

filter3(Node*,Nogoods,Nogoodsl), 

stcomp(Nogoodsl,[(Node*,Labell~Culpritsl],Comp). 

To explain the behaviour of stcomp, first we describe 
the data structures in its argument places, then we de- 
scribe the recursion invariant of the above clauses, and 
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then the constituent predicats choose, filterl,filter2 and 
filter3. 

o The first argument of stcomp is a list of augmented 
nogoods. 

o Its second argument is a list of augmented assump- 
tions [(a!, El), (u%,,?&)...], where a; are the chosen 
assumptions sofar, and Ei are their companions. 

o The third argument of stcomp is the variable that is 
used to return the result of the computation 

The following is the recursion invariant for the defini- 
tion of stcomp. It holds when stcomp is initially called 
by stablecomp, and whenever it is subsequently called 
in the recursion. 

Invariant 1 
Let r be the main assumptions set (a:, aa, ..) of Cul- 
prits-sofar. Then the following will always hold when- 
ever stcomp(Augmented-nogoods,Culprits-sofar,Comp) 
is called. 

I. 

2. 

For every augmented assumption (nt, Ea) in Cul- 
pritssofar, Ea is not empty, and it is the list of all 
complement environments of na whose intersection 
with r is empty, 
Augmented,Nogoods is a list of all augmented nogoods 
of P* the intersection of whose main assumption set 
with r is empty. 

These conditions are clearly satisfied when stcomp is 
initially invoked. Let r be the set of main assump- 
tions of Culprits-so-far when the base case of recursion 
is reached. Then it will be the case that 

a Every assumption a* in r will have at least one com- 
plement environment whose intersection with r is 
empty, 

o Every nogood will have at least one element from tau 

Thus r will be an acceptable culprit set, and S \ r will 
be a stable generator. 

The constituent procedures of stcomp 

Below we discuss the function of the 
and the three filter procedures. 

choice procedure 

choose The call choose(Nogood,(Node*,Label)) non- 
deterministically chooses an augmented assumption 
(Node*, Label) from the augmented nogood Nogood. 

filter1 Let r be the main assumption set of Cul- 
pritssofar. The function of the filter1 procedure is 
to remove from the complement-label of the chosen 
assumption all the environments which include an as- 
sumption which occurs on r. Thus, if 

filterl(Culpritssofar,Label,Labell) 

is successful, Label1 will be the list of all the environ- 
ments in Label whose intersection with r is empty. If 
all the environments in Label include an assumption 
from r, then filterl(Culpritssofar,Label,Labell) fails. 

filter2 The function of this procedure is to remove 
from the companions of all assumptions on Cul- 
pritssofar those environments which include the 
chosen assumption. Let Culprits-sofar be the list 
[(n;, El), (nt, Ez)..]. Then if 

filter2(Node*,Culpritssofar,Culpritsl) 

. 

rst [( 
successful, Culprits1 will be the 

nT, Ei), (na, Ei)...] where Ei is the subset of Ei 
with all the environments in Ea which include Node* 
removed. If there is an Ei which would be empty af- 
ter removing all environments which contain Node*, 
filter2 fails. 

filter3 Let Nogoods be a list of augmented nogoods. 
Then the procedure call 

filter3( Node*,Nogoods,Nogoodsl) 

removes from Nogoods all the augmented nogoods 
whose main assumption set includes Node*, returning 
the result in Nogoodsl. 

Generating all stable generators 

The procedure stablecomp described above returns one 
acceptable culprit set when invoked, from which the 
corresponding stable generator can be computed by the 
set complement operation. To find all stable generators, 
the Prolog findall procedure can be used to find all the 
acceptable culprit sets. 

Related work 
The relationship between truth maintenance and non- 
monotonic reasoning formalisms is close, and there is an 
extensive literature on it. Of direct relevance to us is 
the work reported in [7], where an algorithm (different 
from the one presented here) is presented for computing 
stable models of propositional logic programs. The ma- 
jor difference between our work and the one reported in 
[7] is that they compute stable models directly, and ad- 
vocate their use as an alternative to the ATMS, whereas 
the work presented here derives the stable models from 
ATMS structures, and sheds some light on the relation- 
ship between stable expansions of auto-epistemic theo- 
ries and ATMS structures. 

In [6] and [s] th e semantics of Doyle’s TMS [4] are re- 
lated to auto-epistemic expansions. Their work can be 
considered complimentary to ours, because they start 
from a given truth maintenance system (Doyle’s TMS) 
and give its semantics in terms of auto-epistemic expan- 
sions, whereas we start from a class of autoepistemic 
theories and relate their expansions to ATMS struc- 
tures. 

The two theorems stated above are a special case of 
a more general theorem proved in [5], in which a link 
was established between stable models of logic programs 
and abductive hypotheses generation. 

ESHGHI 275 



PI Gelfond,M. & Lifschitz,V: “The stable model se- 
mantics for logic programming”, Proceeding Fifth 
International Conference on Logic Programming, 
MIT Press 1988 

PI DeKleer, J: “An assumption based truth mainte- 
nance system”, Artificial Intelligence Journal 28, 
1986 

PI 

PI 

PI 

DeKleer, J. & Williams, B.C.: “Diagnosing multiple 
faults”, Artificial Intelligence Journal 32, 1987 

Doyle, J: “A truth maintenance system”, Artificial 
Intelligence Journal 12, 1979 

Eshghi,K & Kowalski, R.A. “Abduction compared 
with negation as failure”, Proceedings of the Sixth 
International Conference on Logic Programming, 
MIT Press 1989 

PI 

PI 

PI 

PI 

Fujiwara, Y & Honiden, S: “Relating the TMS to 
auto-epistemic logic”, Proceedings IJCAI 89, Mor- 
gan Kaufman inc., 1989 

Pimental, S.G. & Cuadraro, J.L.: “A truth mainte- 
nance system based on stable models”, Proceedings 
of the North American Conference on Logic Pro- 
gramming, MIT Press 1989 
Reinfrank,M. et .al.: “On the relation between truth 
maintenance and auto-epistemic logic”, Proceedings 
IJCAI 89, Morgan Kaufman inc., 1989 

Reiter,R: “A theory of diagnosis from first princi- 
ple”, Artificial Intelligence Journal 32, 1987 

Appendix 
In this appendix the two theorems are proved. First, a 
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few preliminaries. 
Definition 4 Let P be a propositional logic program. 
Let P* and S be derived as described in the paper. Let 
CT be a subset of S. Then PJ’ is the horn clause program 
derived from P* by: 

1. Removing every clause which has a condition q* 
whereq* ES\C 

2. From the remaining clauses in P*, removing eve y 
condition q* where q* E o 

Lemma 2 For a program P,* defined as above, 
Answer(P,*) = Answer(P* U a) \ 0 

Proof Easily follows from the definition of P* and Pz 

Proof of Theorem 1 
From the definiton of I in theorem 1, the definition of 
P,* and lemma2 it follows that 

I = Answer(P,*) 
Below we prove that PG = PI, thus proving that 

I = Answer(PI) 
which proves that I is a stable model of P. 
Proof of PI = Pb* 

1 Let c = p + pl,pz, . . . be a clause in PI. If c occurs 
in P, since it does not have any negative conditions 
it will be in Pz as well. 
Otherwise, there is a clause 

P + Pl, Pa, “‘3 - Ql, - q2... 

in P where ql, qz... 4 I. 
Let qn be any of q1 , qz.... Since - qn occurs as a 
condition of a clause in P, qz E S*. Since c is a 
stable generator of P, qg E CT t P* U CT y qn. But 
since qn $! 1, by definition of I P* U 0 y qn which 
shows that qi E IY. 
Now, since p + pl, ~2, . . . . - ql, - qz... is in P, by 
definition of P* there is a clause p t pl, ~2, . ..qT. a{.. 
in P*. Since, as proved above, qT, qa, . . E CT, from the 
definition of P,* it follows that p c ~1, p2 . . . is in Pz, 
i.e. c is in Pz 

2. Let c=p+pl,p2.. beaclausein P,*. Ifcoccursin 
P, since it does not have any negative conditions it 
will be in PI as well. 
Otherwise, there is a clause p + pl,p2, . ..qT. qz.. in 
P* where q; , qz . . E u. Now, let qi be any of qT, a;... 
Since cr is a stable generator of P, P* Ua is consistent. 
Furthermore, by definition P* contains a clause +- 

* Qn9 Qn* Thus P* U u y qn, for otherwise P* U u would 
be inconsistent. Thus, by definiton of I, qn @ I. 
Now, since there is a clause p t pl , ~2, . . .qT , qz . . in 
P* , there is a clause pl, ~2, . . . - q1 , q2 . . in P, where 
as shown above, ql, 42, . . . 4 I. Thus p + Pl,P2, *** 
belongs to PI, i.e. c E PI. 

Proof of Theorem 2 
First, we prove that Pa = PI 

1. Let c = p +-pl,p2.. be a clause in PO. 
If c occurs in P, since it does not have any negative 
conditions it will be in PI as well. 
Otherwise, there is a clause 

P + Pl,P2, -.d,!&. 

in P* where q;,q$, . . E u. Let qi be any of qT, qz.... 
Since q;T E CT, by definiton of u, qn @ I. 
Since 

P c P1,P2,4T,42*.. 

is in P*, there is a clause 

P+Pl,P:!,~~-Qll”qz.* 

in P where ql, qz... 6 I. Thus p + p1 ,p2.. is in PI, 
i.e. c E PI. 

2. Let c = p + pl,p2.. be a clause in PI. Then there is 
a clause 

P c Pl,P2, *a - Ql,” q2.. 

in P, where ql, 4.2, . . 4 I. Let qn be any of ql, q2 . . . . 
Since - qn occurs as a condition in P, qi E S. Thus, 
since qn 4 I, by definiton of a, q; E u. 
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Since 

P + Pl,P2, ** - 41,” 42.. 

is in P, there is a clause 

P+-Pl,P2,.4T,42*.. 

in P* where q:, qz... E CT. Thus p + ~1, ~2.. is in P,,, 
i.e. cE PO. 

Now we show u is a stable generator by showing that 
it satisfies the two requirements of stable generators. 

1. We prove that P* U u is consistent by contradiction. 
Suppose P* U u is inconsistent. Then, the proof 
of inconsistency would involve a denial of the form 
c P>PY whereP*Uut-pandP*Uukp*. But 
since, due to the definiton of P*, assumptions do not 
occur at the head of clauses, the only way p* can be 
provable from P* U u is for it to be a member of u. 
But, due to the definiton of u, this means that p 4 I, 
which means that PI If p, i.e, since PI = P,*, Pz lj p. 
Thus, by definiton of P,*, P* U u y p, leading to a 
contradiction. 

2. To prove that Vn* E S, (n* 4 u + P* U u I- n), 
assume that n* E S and n* 4 u. Then by definition 
of u, n E I, which, since I is a stable model of P, 
means that PI I- n. Since PI = Pz, this means that 
P; I- n, i.e. that P* U u I- n 
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