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Abstract 

In this pa.per we develop a proof procedure for au- 
toepistemic (AEL) and defalrlt logics (DL), based 
on translating them into a. Truth Maintenance Sys- 
tem (TMS). The translation is decidable if t,he 
theory consists of a finite number of defaults a.nd 
premises and classical derivability for the base lan- 
guage is decida.ble. To determine all extensions of 
a network, we develop variants of Doyle’s labelling 
algorithms. 

‘Introduction 

We seek proof methods for autoepistemic logic (AEL) 
[ll] and default logic (DL) [14]. Most existing tech- 
niques are too restrictive in terms of the language al- 
lowed. Reiter’s original proof procedure is restricted to 
closed normal defaults [14]. Etherington handles only 
ordered network theories, a special class of general de- 
faults which are suitable for inheritance [4]. Ka.utz and 
Selman are mainly interested in complexity results and 
restrict their attention to disjunct8ion-free default the- 
ories [7]. Brewka’s prover handles modal implications 
having no preconditions of the form Lq [I]. Moore’s 
procedure for AEL is restricted to a propositional lan- 
guage [12], just as Niemela’s work [lo]. Closer to our 
approach is the work of Levesque on quantified AEL 
[9], which has a proof procedure under the same con- 
ditions as ours; however Levesque’s proof theory is a 
Hilbert-style axiomatization, without an efficient im- 
plementation. 

We want to develop a more general proof procedure 
for AEL and DL which profits from efficient truth main- 
tenance (TMS) techniques. To this end, we translate an 
AEL or DL theory into a TMS network, and relate the 
admissible labeling of the network to extensions of the 
original theory. It is already known from the work of 
Reinfrank, Dressler, and Brewka [13] that the TMS can 
be given a semantics by mapping to a restricted form 
of AEL or DL; here we give the inverse transforma- 
tion. Our approach has only two limits: 1) We do not 
handle infinite sets of defaults and premises. 2) Deriv- 
ability has to be decidable for the base language. If 
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both requirements are satisfied our procedure is able to 
determine all extensions and to detect incoherence, i.e., 
non-existence of an extension. To achieve this goal we 
ta.ckle three problems: 

Extensions of autoepistemic and default theories are 
defined as infinite fixed points of monotonic opera- 
tors, while the TMS is finite. Are there computa.ble, 
finite conditions for extensions? 

Doyle’s TMS lacks complete first-order derivability. 
What first-order derivations must be encoded by jus- 
tifications to get all needed conclusions? 

TMS labeling algorithms (cf. [2], [5]) are incomplete 
because they compute only one extension and can 
stop without a definite result if there are odd loops. 
How can we get all extensions? 

In outline the strategy of the paper is as follows. We 
concentrate initially on DL because its fixed-point con- 
dition is close to that of the TMS. First we identify 
all formulas which are relevant for the fixed point con- 
ditions, and develop alternative operators whose fixed 
points consist of relevant formulas. This set of formulas 
is finite for a finite number of defaults and allows re- 
construction of every extension. The a.ppropria.te TMS 
can then be constructed by considering only the rele- 
vant formulas as nodes, with justifications coming from 
the defaults and from appropriate first-order proofs re- 
lating the relevant formulas. Admissible labelings of 
the TMS provably correspond to extensions of the DL 
theory. 

For AEL the story is slightly more complicated. Be- 
cause of the relation between DL and strongly-grounded 
extensions of AEL, the above method can be transferred 
directly. However, in the case of weakly-grounded ex- 
tensions, the definition of admissible labeling must be 
changed to allow circular support in the TMS. 

Finally, we sketch a complete version of Doyle’s la.- 
beling algorithm. As in [6], it introduces choice points 
for loops and performs backtracking if it runs into an 
odd loop. 
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Closures of operators 

In this pa.per, we use extensively operators that apply 
defaults or justifications. Here we give notation and 

for these operators. Let u-be a domain and 
I- 2’ be a monoton ic and compact operator: 

if X E Y then apply(X) 5 apply(Y) 
if (I E apply(Y) then 3X 2 Y : S is finite a.nd 

Q E apply(X) 
(1) 

Repea:ted a.pplica.tion of apply lea.ds to an operator 
apply’ which is also monotonic and compact. If we 
apply. it to the empty set it sa.tisfies applyi 5 

apply”+“(s). N ow we define the transitive and reflexive 
closure of apply: 

Definition 1 Let apply : 2” t-+ 2” be a monotonic 
an.d com.pact operaior. The closure apply*(X) is the 
minimal set that contains X and is closed 1u.r.t. apply, 
i.e. app1JT(app1Jr*(X)) 5 apply*(X). 

We mention some alternative characterizations of 
apply* in Lemma 1. Minimality of apply* can be en- 
sured by iterating apply or by finite derivation chains. 

Lemma 1 Let apply’ : 2” H 2” be a monotonic, and 
compact operator. The follo,wing conditions are equiva- 
lent: 

1. T = app!y*(0). 

2. apply(T) = T 5 apply*(0). 
3. T = U;“=., applyi(0) 
/ t* apply(T) C T alzdQqET3ql,...,ql,:q=qk and 

qi E apply({ql,. . .,qi_l}) for i = l,~+~,k. 

Very often, we consider sets being closed w.r.t. two 
opera.tors apply, and appl_yz. For this purpose, we 
write (apply1 U zpply,)(X) for applyI U apply2(X). 
Consider (appl~r~ U applya)* (0). Here, both operakors 
are applied in parallel. Sometimes, a sequentia.1 view 
yields more insights: We first use apply2 and then de- 
termine the closure w.r.t. applyI. Thus, we get a con- 
catenaked operator apply; o applyz. 

Lemma 2 Let apply,, apply2 : 2” - 2” be two 
monotonic and compact operators, 

app&)*(@) = (aPPl,v; 0 aPPk)* (0). 
Then (apply1 U 

A reduced fixed point condition for DL 

In this section we reduce the infinite fixed-point exten- 
sions of DL to finite ones, which are called the exten- 
sion bases. Let ,& be a first-order language containing 
a contradiction formula _I_. A default theory A is a 
pair (D, W) consisting of a set D of defaults and a set 
of first-order premises W C ,&. Each default has the 
form (a : bl , - . - , bk/c) where a, bl, - - - , bk,, c are ordinary 
formulas. Informally, we say that the default is applied 
if its prerequisite a is provable and bl, - . -, bk are con- 
sistent, i.e. a.11 lbi are not provable. We abbreviate the 

set of prerequisites, the set of negated consistency as- 
sumptions (i.e. exceptions), and the set of conclusions 

by 

Pn = {u 1 (CI : bl,. . . , b&z) E D} 

ED = {lb; 1 (u : bl;-., b&z) E D,i E (1, . . . . h}} 

C’D = {c 1 (<I : bl,. -‘! bk/c) E D} (2) 

Let Th(S) be tl le set of first-order conclusions of X. 
We also introduce a. special operator that applies de- 
faults. We use different sets X, Y to check both 
kinds of preconditions. Our operator applies a default 
(a : 61,. . . ,6k/c) if CI. E S and 16; 6 Y: 

applyD,lr(X) := {c 1 (a : bl,. . -, bk/c) E D, a E X, 
a.ndlbi$-Y fori=l,e..,k} 

(3) 
To be more precise, we have defined a unary opera- 
tor for every Y. These operators have nice proper- 
ties: they are monot.onic and compact and we can 
apply the results of t,lie previous section in reformu- 
lating Reiter’s operat’or r. I’(T) is the smallest set 
tl1a.t contains IV and is closed w.r.t. the first-order clo- 
sure Th and our operator applyD,T. Hence, I’(T) = 

(Th u applyD ‘7’)* (TV). A 11 extension is defined using I’: 

Definition 2’ (Reiter): Let A = (D, W) be a closed 
default theory. A first-order set T is an extension of A 
ifl r(T) = T. 

We now discuss two problems: 

1. What a.re the relevant formulas to establish the fixed 
point condition? 

2. How can we reduce the azgument of I? to a finite 
domain? 

Every extension is an infinite set a.nd it is difficult to 
find a. set T satisfying the fixed point condition. What 
part of T is really needed for determining extensions? 
The operator applj’D,7 checks lb; $ T for every default 
(a : bl,-.. , bk/c) and ignores the rest of T. In addition 
to these nega.ted consistency assumptions, the prereq- 
uisites of clefa.ults are relevant because derived prereq- 
uisites are needed to apply further defaults. Thus our 
test doma.in is defined by 

CD := PD U ED. 

The relevant part of a set T is B = TfI,& and satisfies 
following properties: appfyD,T = appjyDIB and J?(T) = 

r(B). If T is an extension then B = T fl LD = I’(T) fl 
,& = I?(B)nL D . Thus, we have obtained a fixed point 
condition for a test domain LD which is finite if there 
are a finite number of defaults. We can IIOW define a 
reduced extension, called the extension base, as follows. 

Definition 3 Let A = (D, T/v) be a closed default the- 
ory. B is an extension base of n ifl B = r(B) II Lo. 

Hence, if T is am extension then Tn,& is an extension 
ba.se. Conversely, if B is an extension base then I’(B) = 
r(r(q rl Lo) = r(r(q) and l?(B) is an extension, 
giving the following theorem. 
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Theorem 3 Let A = (D, W) be a closed dejuult the- 
ory. There exists a bijective mopping of the set of ex- 
tensions of A to Ihe set of extension bases of A. 

There is at most one inconsistent extension of A. If B 
is the estension base of an inconsistent extension then 
_LE I’(B) and B = ,!Z D since 811 inconsistency implies 
every formula. We can check _l_E r(LD) to detect an 
inconsistent extension base. 

Now, we simplify I’(B) fl LD which is needed in Def- 
inition 3. We want to reduce the necessary first-order 
derivations as much as possible. First, we introduce 
a new operator that inserts W and then derives first- 
order consequences. We write it down using a. la.mbda.- 
expression, namely X(X).Th(X U TV). Then I’(B) is the 
minimal set that is closed w.r.t. X(X).Th(X U TV) and 
applyD,B. By Lemma 2, we get: 

r(B) = ((X(X)*Th(X u w)) o apPbD,B>*(@> c4) 

Since applyI, B expects only prerequisites which are in 
& and qxj.m(x u TV) is only supplied with conse- 
quents which are in CD we can show 

r(B) nLD = 
((x(x).(x u (Th((x n CD) u r/v) n &)))O 

~PP~Y~$?)* (0) I-7 LD 
(5) 

consistency assumptions 
from consequents and premises. Equation 5 allows a 
simple translation to TMS. 

Compact fixed point conditions for the 
TMS 

Doyle’s TMS maintains a network v := (N, J) consist- 
ing of a set N of nodes and a set J of justifications. A 
justification (in(I), out(O) --+ c) for a node c consists 
of a finite in-list I C N, a finite out-list 0 C N, and a 
consequent c. A justification is applied if all members 
of its in-list are believed, but no member of its out-list. 
As for default logic, we introduce an operator ap~Iy~,~ 
which is monotonic and compact: 

aPPlY_r,y (X) := G I k-0), out(O) + 4 E J> 
IGXandOnY=0} 

(6) 

Another property of applyJ,Y 
puting extensions, namely: 

is important for com- 

if X C Y then apply.7,~ (T) 2 apply~,~ (T) (7) 
T is an extension of a justification network if T is the 

minimal set closed w .r. t . applyJ,T : 

Definition 4 Let v = (N, J) be a justification network. 
T is an extension of v ifl T = apply;,, (0). 

Using the results of the section on operators, we 
find alternatives to definition 4. We split the set J 
of all justifications into a set iV of monotonic justifi- 
cations and a set NM of non-monotonic justifications. 
Monotonic justifications have an empty out-list and we 

wri tc apply,,, (_Y) for applynl @(X) which is equal to 
applynr *(X) for all T. Then we obtain 

app;4’J,T (X ) = apply ,%V,T(X) u aPP1Y,\f(X)* (8) 

Len~mcl 4 Let II = (AT, J) be a justificcltion n.etwork, 
A4 C .I be a set of monotonic justifications and NM := 
J - M. The f II 0 ouring sentences are equivalent: 

1. 7’ is tin extemion of v, i.e. T = appl~;,~(@). 

2. appl~~,~(T) C T and Vq E T 3q1,. . . , qk : q = qk, 
und qi E appl~,,~( {ql! . . . , qi-1)) for i = 1, - - -, k. 

3. T = (aPPk!;,l O aPPlq’Aw,T)*(rn)- 

Property (2) a.grees with usual definitions of extensions 
as closed and grounded sets (cf. [3], [13]). The third 
alternative allows a clear translation of AEL and DL 
to TMS. We map first-order deriva.tions to monotonic 
justifications and defaults or modal formulas to non- 
monotonic justifications. 

First-order derivations 
We need to derive TMS justifications for the first-order 
operator X(X).Th(X U TW). To limit the generated jus- 
tifications, we use subsets of X which are in a domain 
U and we are interested in theorems contained in a 
range IC For default logic, we choose U := CD and 
R:=iCo =PDuED. 

To realize Th((X fl U) U W) n R, ive try to find all 
minimal proofs for elements of the range R. More pre- 
cisely, we determine all minimal subsets Q of U inferring 
a Q E R in conjunction with T/v (i.e. Q U TV b (I and 
Q’ U T;f/ p q for every proper subset Q’ of Q) .l For this 
purpose, we a.pply a proof method that returns a goal q 
as well as the premises Q used to prove Q; LR-resolution 
would work here. The proof is translated into a mono- 
tonic justification (in(Q) --+ (1). Let 114w(U, R) be the 
set of all justifications obtained by this method: 

Nile (U, R) := {(in(Q) --+ q) 1 Q is a minimal subset 
of U s.t. Q U W b q for Q E R} 

(9) 
in question and we get: 

aPPlyM,(u,n)(X) = Th((X n U) u W) n R (10) 

w.r.t. applyM,(u,R). Hence we obtain the closure of 

a~dh&&J,R) if we add the input: 

a~d&w(U,R)(x> = X u (Th((X fi U) u T/V) n R) (11) 

Here, we translated complete proofs into justifications. 
Other encodings of first-order derivations including in- 
termediate steps are conceivable. 

Finding all minimal proofs is not computable in gen- 
eral. Therefore, our approach works only when W is a 
decidable subset of Cc (e.g., clauses with a finite her- 
brand universe). However, the source of the non-semi- 
decidability of DL is the non-decidability of classical 
logic, not the infinite fixed points. 

lIn fact, it is not necessary to determine minimal subsets: 
we can use any subset that infers q. But the minimal subsets 
give the minimal sufficient set of justification rules. 
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Translating default theories to a TMS 
We are now in a position to translate both the de- 
faults and first-order part of a default theory into 
a TMS network. We translat,e each default (CL : 
bl,-** , bk/c) of D into a non-monotonic justification 
(;??(u), UZ+& . . . ,41;) + c). This justifica.tion is ap- 
plied if and only if the default is a.pplied. We put all 
these justifica.tions into a set iSl\l and get 

aPPl?%%&, (X) = aPP~Y~,&V (12) 

Furthermore, we supply enough monotonic justifica- 
tions for first-order deriva.tions. As pointed out in the 
previous section, we ta.ke 1\/1 := n/lr,l (Co, CD). 

Definition 5 Let A = (D, T/r/) be II default theory. 
Its TMS-trunslu.tion is VA := (lo U CD, NM U 
11/r) where J/1 := Mw(CD, lo) and NM := 
{(z’?z(a),o,~rt(lb~,...,~bk) -+ c) 1 (a : bl,.“,bk/C) E 

Dl. 
Now we 

them to 
concatena.te applY:t 
I? using equa.tion 5: 

and ap~kY~~~,~ T and rela.te 1 

(wPh;r O aPP~YlvM,T)* (0) = 
(X(X).(X u (Th.((S n Co) u W) n &)))o (13) 

aPPJYD,T)*(Q)) 

(a&d& o a~w$‘~n,r,~)*(~) n LD = r(T) n LD (14) 
If T is an extension of VA then T n Lo = I’(T) n ,CD = 
r(TnLD) nC D and T fl LD is a.n extension base of A. 
Conversely, if B is an extension base of A consider T := 

(aPP~Y;vroaPP~YNVf B )*(0). ThenTfXD = r(B)n,&) = 

B and aPPIYNhd,T ’ “PPIY1~,~,~& = aPPIYNjta,B, and 
T is an extension of A. 

Theorem 5 Let A = (0, T/v) be a default theory and 
VA its TMS-tran.slation. There exists (I bijective map- 
ping of the set of extewion bases of A to the set of 
extensions of VA. 
This is the main result. We discuss some exa.mples. 

1) If D = {(a : /a)} and TV = 0 then the test do- 
main LD = { } a consists of a single element. There are 
no interesting first-order derivations, and the network 
consists simply of a single justifica.tion, (in(u) + a). Its 
single extension is empty. 

2) If D = { (: u/b)} and TV = {B > la} then the 
test domain LD = (1~) a.gain consists of a single 
element. There is one minima.1 first-order derivation 
from the domain CD = {b} to the range lo, namely 
buW i= la.. The network consists of a two justifica- 
tions ((out(72) + b) and (in(b) + la)), and has no 
extensions because of the odd loop. 

3) D = {(:. la/b), (: d/u)}, W = {a > b} is a more 
complex theory. Here, ,cD = {a, b}. There is one min- 
imal first-order derivation, a U W b b. The resulting 
justification network ((out(u) ---f b), (out(b) + a), and 
(in(u) + b)) has a single extension, {b). 

Thus, we have translated default theories into finite 
justification networks. Using this translation, we get a 

proper criterion for incoherence: if a t,lieory has no es- 
tension then its TRIS-translation contains a.11 odd loop. 

Our translation makes no special use of a contra- 
diction node. Therefore, st,andard labeling rolltines 
a.re also sufficient to determine inconsistent est,ensions. 
However, a high price is paid because a lot of justifica.- 
tions a.re needed for this purpose. If a sllbset Q of the 
domain U is inconsistent then (in(Q) - q) is included 
for every element Q of our range R. If we handle incon- 
sistent extensions separately we can reduce this effort 
a.nd replace the set {(‘i?? ((2) - q) 1 q E It> by a sin- 
gle justifica.tion (in(Q) -_L). Consistent extensions of 
this modified network correspond to consistent esten- 
sion bases of the theory. 

Autoepistemic logic 
We now turn to AEL. The results of the previous section 
carry over to strongly-grounded extensions of AEL t,he- 
ories, by first translating t,o DL, and then to a. ThflS. In 
this section we treat weakly-grounded extensions. The 
development is similar to that of the previous t\vo sec- 
tions. The only real difference is in the definition of 
extension for TMS networks: we must allow circu1a.r 
justifications for some nodes. 

We discuss autoepistemic logic using the terminol- 
ogy and concepts in [S]. Hence, we have a first,-order 
la,nguage &, containing a contradiction formula 1. Es- 
tending ,Co by a 1noda.l operator L leads t,o a modal lan- 
guage ,!Zael. If q is a closed formula. of iCael the modal 
literal LQ is also in ,Cnel. We use some abbreviations 
from [S]. Two opera.tors apply L and 1 L to each ele- 
ment of a set; To contains the ordinary formulas of T; 
and T is the complement of ‘7: 

LT={LqIqcT} 
‘LT={~L~I~ET} 
TO = T&LO 
2? = (,& - T) 

We must be careful in using these terms: To means 

(L ael - T) 17 ,CO, but not ,Cnel - To. There is a normal 
form for sentences of &l, in which there a.re no nested 
modal operators. From now on we assume that every 
sentence is in this form. 

From [S], the extensions of a premise set P c Gael 
are given by: 

Theorem 6 (Konolige): A subset T of ,!Zne. is an es 
tension of P iflT = {q E ,Cael 1 P U LTo U lLT0 j=~cds 

ql. 
I<45 is the modal logic of weak S5. By this theorem, 
the original fixed point condition is reduced to ordinary 
sets. From this, we can show that a set U C_ ,& is the 
kernel of an extension of P if and only if it satisfies 
U = {Q E ,CO I P U LU U 1Lu b q}, so the fixed-point 
condition is over first-order implica.tion. 

We now concentrate on the problem of reducing U in 
this fixed-point equation to a finite set. Define as a test 
domain: 

LP := {a I Lq occurs in a formula of P} (15) 
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Since P is in normal form every Lq in P refers only 
to ordinary formulas 9. Hence, ,Cp is a subset of ,Cu. 
Furthermore, if P is finite ,Cp is also finite. We define 
I’p for a set l7 as Pp := ‘r n Lp. For subsets of the 
test domain we can derive a reduced fix-point form, the 
extension base: 

Definition G Le2 P be in normal form. A subset B 
of .Cp is an exiension base of P i.8 B = {q E .Cp 1 
PuLBpulLBp/=q} 

If ‘7’ is an extension then Tp is an extension base. We 
also regain an extension from each extension base B: 
Consider U = {cl E & 1 P U LBp U 1LBp b y} which 
is fo-closed and satisfies Up = Bp. Then U = {q E ,& [ 
P U LUo U ~Loo ~KQS q} and U is the kernel of the 
extension {cl E ,Cael 1 P U LU0 U lLU0 b1~45 q}. 

Theorem 7 Let P be in normal form. Then there is 
a bijective mapping of the set of extensions of P to the 
set of extension bases of P. 

As an example, consider P = {FLU > b, 1Lb > a}. Our 
test domain ,Cp = {CL, b} has four subsets two of which 
are extension bases: 

ifB=0 
then {(I E ,Cp 1 P U {‘L a, lLb1 I= ql = h-6 bl # 1 

if B = (a) 
then {y E ,Cp 1 P U {L a,~Lb}~q}={a}=B 

if B = {b} 
then ((1 E ,Cp 1 P U {FLU, Lb} i= q) = {b} = B 

if B = (CL, b) 
then {Q E .Cp 1 P U {La, Lb) b q) = 0 # B 

Finally, we briefly discuss inconsistent extension 
bases. Suppose a subset B of ,Cp satisfies P U LBp U 
1LBp /==I. Shce a.n inconsistency implies all formulas, 
B is an extension base if and only if B = ,Cp. Hence, 
it is easy to find out whether P has an inconsistent ex- 
tension: just check whether P U L,Cp is inconsistent. In 
the sequel we consider just the consistent extensions of 
P. 

The transla.tion to a TMS is similar to that of DL the- 
ories. For every modal sentence LaAlLbl - - - , lLb, > c 
of P, we supply a set of nonmonotonic justifications 
(in(a), out(bl, . . . , b,,) --+ c) . We also give a set of mono- 
tonic justifications over .Lp taking consequents of modal 
sentences as input. 

Definition 7 Let P be a subset of ,Cael in normal 
form. The Th?S-translation of P is up = (,Cp U 
Cp, M U NM) where M := Mpn~&Cp,Cp), NM := 

{(;n(~),out(bl,...,b~) -+ c) 1 La A lLbl...,lLb, > 
c E P-&} and Cp := {c I LaAlLb, ... > c E P-,&}. 

Unlike in the strongly-grounded case, the translated 
TMS network does not behave in the same way as the 
extensions of P, because P may have expressions like 
La > a that generate circular arguments. However, we 
must still avoid circular first-order proofs. So we modify 
the definition of extensions of the TMS. Let ,Cs E ,C:p 
be the set of ordinary sentences {a 1 La A -Lb1 - - - > 

c E P}, i.e., only the arguments of negalive occurrences 
of modal atoms. Define a new nronotonic, conlpact op- 
erator: 

(16) 
All the results for apply hold as well for appl_v+. We 
call consistent network labelings (those where _I_ is not 
believed) defined by t,he new operator +-extensions. 

Tlreorem 8 Let P be a. sf1bse-t of ,Cae, in normal form 
and l/p its TAGS-ircln.slniion. Then there exists a bijec- 
iive mapping of ihe sel of consis1en.t extension bases of 
P lo the se1 of +-exiensions of up. 

We discuss some examples for autoepistemic logic: 
1) If P = {La} (tha.t is, ~LCL 3-l in normal form) our 

test domain ,Ccp = {a.} consists of a single element, and 
,Cs is empty. There are no interesting first-order proofs. 
The network contains one justification, (out(u) +_I_), 
which leads to an inconsistency. It has no +-extension. 

2) The premise set P = {~LcL} (ill normal form, 
La 3-L) is similar. However, we get ,Cz = {a}. There 
is one justification, (jn(cl) --+I), and one +-extension, 

{4. 
3) P = {FLU > b, TLb > a} is a more complex the- 

ory. Here, ,Cp = {a, b}, ,lZz = 0. The resulting justifica- 
tion network ((owt(ct) + b) and (out(b) -+ a)) contains 
an even loop and has two extensions {a}, {b}. 

We get the same TMS network for weakly and 
strongly grounded extensions. The major difference be- 
tween them is the inclusion of circular justifications in 
the definition of apply+. Moderately-grounded exten- 
sions have so far resisted analysis in terms of the applJ7 
operators, although we are still working on the problem. 

Computing TMS-extensions 
After translating autoepistemic and default theories 
into justification networks a single algorithm, with 
slight variations, is sufficient t,o compute both exten- 
sions and +-extensions. We use a complete variant of 
Doyle’s TMS to compute all extensions of a justifica- 
tion network. It additionally introduces choice points 
and considers an OUT-label, as well as an IN-label for 
a node of every loop. This algorithm is also able to 
detect incoherence, i.e. non-existence of an extension. 
The algorithm is NP-complete, and we have alterna- 
tively been experimenting with stochastic constraint- 
satisfaction methods to achieve good average time com- 
plexity. 

We use two disjoint sets, I and 0, to denote-all nodes 
that are la.beled IN, or OUT, respectively. Above, we 
mentioned that nodes in a loop may have a chosen la- 
bel which is unconfirmed and may fail in presence of 
odd loops. For this purpose, we introduce a third set U 
containing all unlabeled and unconfirmed nodes. For 
strongly grounded derivations, we may only use ele- 
ments of I - 17. 

Similar to TMS, our algorithm uses two rules to de- 
termine a.n IN-label and an OUT-la.bel of a node. The 
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first rule looks for a justification whose in-list members 
have confirmed IN-labels and whose out-list menlbers 
are la.beled with OUT, i.e. are not contained in any so- 
lution. If there is such a justifica.tion its consequent gets 
a confirmed IN-label. The second rule checks whether 
there is still a justification which may be applied if fur- 
ther unlabeled nodes get an IN-label. If there is none 
_the consequent gets a confirmed OUT-la.bel. If the al- 
gorithm cannot proceed with propagation it chooses a.n 
arbitrary node contained in a loop and tries a.n IN-label, 
a.s well as an OUT-label. However, these la.bels may fail 
and therefore are unconfirmed. A failure occurs if a 
node is added to 1 and 0. Finally, there is a termina- 
tion rule. If the algorithm cannot find any justification 
whose in-list members have a confirmed IN-label then it 
stops and adds all remaining nodes to 0. The precise 
algorithm is listed below: 

Algorithm 1 Ezt~(I,0, U) E 
1. if I I-IO # 8 then {} else 

2. if U = 0 then {I} 
3. if U # 0 then 

(uj if U Cl apply,,,(l - U) = 0 then ExtJ(I, 0 U U, 0) 
@J if 3q E U I7 applyJN_O(I - U) then ExtJ(I U 

-kW,~- {!a ’ 
(c) if 3q E U - applyJ1(N - 0) then ExtJ(I,O U 

’ -au - b>> 
(cl) if 3q E U - (I U 0) then ExtJ(I, 0 U {q}, U) U 

The algorithm terminates if it is supplied with a. f- 
nite set of nodes. Calling Ezt~(0,0, N) results in the 
set of all extensions of v = (N, J). A slight va.ria.tion 
of the algorithm is sufficient to get +-extensions, too. 
Justification in NiVf may be applied to nodes in I even 
if their label is not confirmed. This change affects lines 
3a and 3b. 

Conclusion 
We have developed a translation of AEL and DL to the 
finite constraint networks of the TMS. The advantage of 
doing so is that efficient constraint-sat‘isfaction methods 
can be exploited in the TMS to produce the extensions 
of the logics. There are two areas in which we wish to 
develop further results. The first is in the transla.tion 
process, which unfortunately is correct only for finite 
sets of defaults and a decidable base language. The ex- 
tension to infinite sets of defaults seems atta.inable, but 
the base language complexity must remain a problem, 
because the TMS labelling is always decidable. Rather, 
we can view the TMS as an approximation to the orig- 
inal (undecidable) AEL or DL theory. The question 
then becomes, under what conditions are we certain to 
have added enough justifications to the TMS so that its 
extensions are extensions of the original theory? 

The second area is the development of constraint- 
satisfaction methods for the TMS that allow the effi- 
cient computation of whether a node is in all extensions 

of the network or not. As mentioned above, we are cur- 
rently interested in stochastic methods, in which the 
answer is approximate, but improves with time. 
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